Колебания. Гармонические колебания

>> Гармонические колебания

§ 22 ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Зная, как связаны между собой ускорение и координата колеблющегося тела, можно на основе математического анализа найти зависимость координаты от времени.

Ускорение - вторая производная координаты по времени. Мгновенная скорость точки, как вам известно из курса математики , представляет собой производную координаты точки по времени. Ускорение точки - это производная ее скорости по времени, или вторая производная координаты по времени. Поэтому уравнение (3.4) можно записать так:

где х" - вторая производная координаты по времени. Согласно уравнению (3.11) при свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.

Из курса математики известно, что вторые производные синуса и косинуса по их аргументу пропорциональны самим функциям, взятым с противоположным знаком. В математическом анализе доказывается, что никакие другие функции таким свойством не обладают. Все это позволяет с полным основанием утверждать, что координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или пасинуса. На рисунке 3.6 показано изменение координаты точки со временем по закону косинуса .

Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями.

Амплитуда колебаний. Амплитудой гармонических колебаний называется модуль наибольшего смещения тела от положения равновесия.

Амплитуда может иметь различные значения в зависимости от того, насколько мы смещаем тело от положения равновесия в начальный момент времени, или от того, какая скорость сообщается телу. Амплитуда определяется начальными условиями, а точнее энергией, сообщаемой телу. Но максимальные значения модуля синуса и модуля косинуса равны единице. Поэтому решение уравнения (3.11) не может выражаться просто синусом или косинусом. Оно должно иметь вид произведения амплитуды колебаний х m на синус или косинус.

Решение уравнения, описывающего свободные колебания . Запишем решение уравнения (3.11) в следующем виде:

а вторая производная будет равна:

Мы получили уравнение (3.11). Следовательно, функция (3.12) есть решение исходного уравнения (3.11). Решением этого уравнения будет также функция


График зависимости координаты тела от времени согласно (3.14) представляет собой косинусоиду (см. рис. 3.6).

Период и частота гармонических колебаний . При колебаниях движения тела периодически повторяются. Промежуток времени Т, за который система совершает один полный цикл колебаний, называется периодом колебаний.

Зная период, можно определить частоту колебаний, т. е. число колебаний в единицу времени, например за секунду. Если одно колебание совершается за время Т, то число колебаний за секунду

В Международной системе единиц (СИ) частота колебаний равна единице, если за секунду совершается одно колебание. Единица частоты называется герцем (сокращенно: Гц) в честь немецкого физика Г. Герца.

Число колебаний за 2 с равно:

Величина - циклическая, или круговая, частота колебаний. Если в уравнении (3.14) время t равно одному периоду, то T = 2. Таким образом, если в момент времени t = 0 х = х m , то и в момент времени t = Т х = х m , т. е. через промежуток времени, равный одному периоду, колебания повторяются.

Частоту свободных колебаний нааынают собственной частотой колебательной системы 1 .

Зависимость частоты и периода свободных колебаний от свойств системы. Собственная частота колебаний тела, прикрепленного к пружине, согласно уравнению (3.13) равна:

Она тем больше, чем больше жесткость пружины k, и тем меньше, чем больше масса тела m. Это легко понять: жесткая пружина сообщает телу большее ускорение, быстрее меняет скорость тела. А чем тело массивнее, тем медленнее оно наменяет скорость под влиянием силы. Период колебаний равен:

Располагая набором пружин различной жесткости и телами различной массы, нетрудно убедиться на опыте, что формулы (3.13) и (3.18) правильно описывают характер зависимости и Т от k и m.

Замечательно, что период колебаний тела на пружине и период колебаний маятника при малых углах отклонения не зависят от амплитуды колебаний.

Модуль коэффициента пропорциональности между ускорением t , и смещением х в уравнении (3.10), описывающем колебания маятника, представляет собой, как и в уравнении (3.11), квадрат циклической частоты. Следовательно, собственная частота колебаний математического маятника при малых углах отклонения нити от вертикали зависит от длины маятника и ускорения свободного падения:

Эта формула была впервые получена и проверена на опыте голландским ученым Г. Гюйгенсом - современником И. Ньютона. Она справедлива только для малых углов отклонения нити.

1 Часто в дальнейшем для краткости мы будем называть циклическую частоту просто частотой. Отличить циклическую частоту от обычной частоты можно по обозначениям.

Период колебаний возрастает с увеличением длины маятника . От массы маятника он не зависит. Это легко проверить на опыте с различными маятниками. Зависимость периода колебаний от ускорения свободного падения также можно обнаружить. Чем меньше g, тем больше период колебаний маятника и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут за сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета (высота 200 м). И это только за счет уменьшения ускорения свободного падения с высотой.

Зависимость периода колебаний маятника от значения g используется на практике. Измеряя период колебаний, можно очень точно определить g. Ускорение свободного падения меняется с географической широтой. Но и на данной широте оно не везде одинаково. Ведь плотность земной коры не всюду одинакова. В районах, где залегают плотные породы, ускорение g несколько большее. Это учитывают при поисках полезных ископаемых.

Так, железная руда обладает повышенной плотностью по сравнению с обычными породами. Проведенные под руководством академика А. А. Михайлова измерения ускорения свободного падения под Курском позволили уточнить места залегания железной руды. Сначала они были обнаружены посредством магнитных измерений.

Свойства механических колебаний используются в устройствах большинства электронных весов. Взвешиваемое тело кладут на платформу, под которой установлена жесткая пружина. В результате возникают механические колебания, частота которых измеряется соответствующим датчиком. Микропроцессор, связанный с этим датчиком, переводит частоту колебаний в массу взвешиваемого тела, так как эта частота зависит от массы.

Полученные формулы (3.18) и (3.20) для периода колебаний свидетельствуют о том, что период гармонических колебаний зависит от параметров системы (жесткости пружины, длины нити и т. д.)

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Полный перечень тем по классам, календарный план согласно школьной программе по физике онлайн , видеоматериал по физике для 11 класса скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Гармонические колебания

Графики функций f (x ) = sin(x ) и g (x ) = cos(x ) на декартовой плоскости.

Гармоническое колебание - колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

,

где х - смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А - амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω - циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

Эволюция во времени перемещения, скорости и ускорения при гармоническом движении

  • Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).
  • Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Применение

Гармонические колебания выделяются из всех остальных видов колебаний по следующим причинам:

См. также

Примечания

Литература

  • Физика. Элементарный учебник физики / Под ред. Г. С. Лансберга. - 3 изд. - М ., 1962. - Т. 3.
  • Хайкин С. Э. Физические основы механики. - М ., 1963.
  • А. М. Афонин. Физические основы механики. - Изд. МГТУ им. Баумана, 2006.
  • Горелик Г. С. Колебания и волны. Введение в акустику, радиофизику и оптику. - М .: Физматлит, 1959. - 572 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Гармонические колебания" в других словарях:

    Современная энциклопедия

    Гармонические колебания - ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодические изменения физической величины, происходящие по закону синуса. Графически гармонические колебания изображаются кривой синусоидой. Гармонические колебания простейший вид периодических движений, характеризуется … Иллюстрированный энциклопедический словарь

    Колебания, при которых физическая величина изменяется с течением времени по закону синуса или косинуса. Графически Г. к. изображаются кривой синусоидой или косинусоидой (см. рис.); они могут быть записаны в форме: х = Asin (ωt + φ) или х … Большая советская энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодическое движение, такое как движение МАЯТНИКА, атомные колебания или колебания в электрической цепи. Тело совершает незатухающие гармонические колебания, когда оно колеблется вдоль линии, перемещаясь на одинаковое… … Научно-технический энциклопедический словарь

    Колебания, при к рых физ. (или любая другая) величина изменяется с течением времени по синусоидальному закону: x=Asin(wt+j), где x значение колеблющейся величины в данный. момент времени t (для механич. Г. к., напр., смещение или скорость, для… … Физическая энциклопедия

    гармонические колебания - Механические колебания, при которых обобщенная координата и (или) обобщенная скорость изменяются пропорционально синусу с аргументом, линейно зависящим от времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук … Справочник технического переводчика

    Колебания, при к рых физ. (или любая другая) величина изменяется во времени по синусоидальному закону, где х значение колеблющейся величины в момент времени t (для механич. Г. к., напр., смещение и скорость, для электрич. напряжение и сила тока) … Физическая энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - (см.), при которых физ. величина изменяется с течением времени по закону синуса или косинуса (напр. изменения (см.) и скорости при колебании (см.) или изменения (см.) и силы тока при электрических Г. к.) … Большая политехническая энциклопедия

    Характеризуются изменением колеблющейся величины x (напр., отклонения маятника от положения равновесия, напряжения в цепи переменного тока и т. д.) во времени t по закону: x = Asin (?t + ?), где А амплитуда гармонических колебаний, ? угловая… … Большой Энциклопедический словарь

    Гармонические колебания - 19. Гармонические колебания Колебания, при которых значения колеблющейся величины изменяются во времени по закону Источник … Словарь-справочник терминов нормативно-технической документации

    Периодич. колебания, при к рых изменение во времени физ. величины происходит по закону синуса или косинуса (см. рис.): s = Аsin(wt+ф0), где s отклонение колеблющейся величины от её ср. (равновесного) значения, А=const амплитуда, w= const круговая … Большой энциклопедический политехнический словарь

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебания широко распространены в окружающем мире и могут иметь самую различную природу. Это могут быть механические (маятник), электромагнитные (колебательный контур) и другие виды колебаний.
Свободными , или собственными колебаниями, называются колебания, которые происходят в системе предоставленной самой себе, после того как она была выведена внешним воздействием из состояния равновесия. Примером могут служить колебания шарика, подвешенного на нити.

Особую роль в колебательных процессах имеет простейший вид колебаний - гармонические колебания. Гармонические колебания лежат в основе единого подхода при изучении колебаний различной природы, так как колебания, встречающиеся в природе и технике, часто близки к гармоническим, а периодические процессы иной формы можно представить как наложение гармонических колебаний.

Гармоническими колебаниями называются такие колебания, при которых колеблющаяся величина меняется от времени по закону синуса или косинуса .

Уравнение гармонических колебаний имеет вид:

где A - амплитуда колебаний (величина наибольшего отклонения системы от положения равновесия) ; - круговая (циклическая) частота. Периодически изменяющийся аргумент косинуса - называется фазой колебаний . Фаза колебаний определяет смещение колеблющейся величины от положения равновесия в данный момент времени t. Постоянная φ представляет собой значение фазы в момент времени t = 0 и называется начальной фазой колебания . Значение начальной фазы определяется выбором начала отсчета. Величина x может принимать значения, лежащие в пределах от -A до +A.

Промежуток времени T, через который повторяются определенные состояния колебательной системы, называется периодом колебаний . Косинус - периодическая функция с периодом 2π, поэтому за промежуток времени T, через который фаза колебаний получит приращение равное 2π, состояние системы, совершающей гармонические колебания, будет повторяться. Этот промежуток времени T называется периодом гармонических колебаний.

Период гармонических колебаний равен : T = 2π/ .

Число колебаний в единицу времени называется частотой колебаний ν.
Частота гармонических колебаний равна: ν = 1/T. Единица измерения частоты герц (Гц) - одно колебание в секунду.

Круговая частота = 2π/T = 2πν дает число колебаний за 2π секунд.

Графически гармонические колебания можно изображать в виде зависимости x от t (рис.1.1.А), так и методом вращающейся амплитуды (метод векторных диаграмм) (рис.1.1.Б).

Метод вращающейся амплитуды позволяет наглядно представить все параметры, входящие в уравнение гармонических колебаний. Действительно, если вектор амплитуды А расположен под углом φ к оси х (см. Рисунок 1.1. Б), то его проекция на ось х будет равна: x = Acos(φ). Угол φ и есть начальная фаза. Если вектор А привести во вращение с угловой скоростью , равной круговой частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения, лежащие в пределах от -A до +A, причем координата этой проекции будет меняться со временем по закону:
.


Таким образом, длина вектора равна амплитуде гармонического колебания, направление вектора в начальный момент образует с осью x угол равный начальной фазе колебаний φ, а изменение угла направления от времени равно фазе гармонических колебаний. Время, за которое вектор амплитуды делает один полный оборот, равно периоду Т гармонических колебаний. Число оборотов вектора в секунду равно частоте колебаний ν.

Изменения какой- либо величины описывают с помощью законов синуса или косинуса, то такие колебания называют гармоническими. Рассмотрим контур, из конденсатора (который перед включением в цепь зарядили) и катушки индуктивности (рис.1).

Рисунок 1.

Уравнение гармонических колебаний можно записать следующим образом:

$q=q_0cos({\omega }_0t+{\alpha }_0)$ (1)

где $t$-время; $q$ заряд, $q_0$-- максимальное отклонение заряда от своего среднего (нулевого) значения в ходе изменений; ${\omega }_0t+{\alpha }_0$- фаза колебаний; ${\alpha }_0$- начальная фаза; ${\omega }_0$- циклическая частота. За период фаза меняется на $2\pi $.

Уравнение вида:

уравнение гармонических колебаний в дифференциальном виде для колебательного контура, который не будет содержать активного сопротивления.

Любой вид периодических колебаний можно точности представить как сумму гармонических колебаний, так называемого гармонического ряда.

Для периода колебаний цепи, которая состоит из катушки и конденсатора мы получим формулу Томсона:

Если мы продифференцируем выражение (1) по времени, то можем получить формулу фунци $I(t)$:

Напряжение на конденсаторе, можно найти как:

Из формул (5) и (6) следует, что сила тока опережает напряжение на конденсаторе на $\frac{\pi }{2}.$

Гармонические колебания можно представлять как в виде уравнений, функций так и векторными диаграммами.

Уравнение (1) представляет свободные незатухающие колебания.

Уравнение затухающих колебаний

Изменение заряда ($q$) на обкладках конденсатора в контуре, при учете сопротивления (рис.2) будет описываться дифференциальным уравнением вида:

Рисунок 2.

Если сопротивление, которое входит в состав контура $R \

где $\omega =\sqrt{\frac{1}{LC}-\frac{R^2}{4L^2}}$ -- циклическая частота колебаний. $\beta =\frac{R}{2L}-$коэффициент затухания. Амплитуда затухающих колебаний выражается как:

В том случае, если при $t=0$ заряд на конденсаторе равен $q=q_0$, тока в цепи нет, то для $A_0$ можно записать:

Фаза колебаний в начальный момент времени (${\alpha }_0$) равна:

При $R >2\sqrt{\frac{L}{C}}$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Пример 1

Задание: Максимальное значение заряда равно $q_0=10\ Кл$. Он изменяется гармонически с периодом $T= 5 c$. Определите максимально возможную силу тока.

Решение:

В качестве основания для решения задачи используем:

Для нахождения силы тока выражение (1.1) необходимо продифференцировать по времени:

где максимальным (амплитудным значением) силы тока является выражение:

Из условий задачи нам известно амплитудное значение заряда ($q_0=10\ Кл$). Следует найти собственную частоту колебаний. Ее выразим как:

\[{\omega }_0=\frac{2\pi }{T}\left(1.4\right).\]

В таком случае искомая величина будет найдена при помощи уравнений (1.3) и (1.2) как:

Так как все величины в условиях задачи представлены в системе СИ, проведем вычисления:

Ответ: $I_0=12,56\ А.$

Пример 2

Задание: Каков период колебаний в контуре, который содержит катушку индуктивности $L=1$Гн и конденсатор, если сила тока в контуре изменяется по закону: $I\left(t\right)=-0,1sin20\pi t\ \left(A\right)?$ Какова емкость конденсатора?

Решение:

Из уравнения колебаний силы тока, которое приведено в условиях задачи:

мы видим, что ${\omega }_0=20\pi $, следовательно, мы можем вычислить период Колебаний по формуле:

\ \

По формуле Томсона для контура, который содержит катушку индуктивности и конденсатор, мы имеем:

Вычислим емкость:

Ответ: $T=0,1$ c, $C=2,5\cdot {10}^{-4}Ф.$