Классификация моделей представления знаний. Размерность подобия: некоторые тонкости

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.

Описание предметной области (создание ее онтологии) начинается с выделения объектов и их классификации, которая традиционно заключается в составлении дерева классов-подклассов и приписывании к ним индивидов. При этом термин «класс», по сути, используется в значении «множество»: отнесение объекта к классу мыслится как включение его в качестве элемента в соответствующее множество. Цель этого текста показать, что такой унифицированный подход к описанию структуры предметной области является сильным упрощением и не позволяет зафиксировать разнообразие семантических отношений объектов.

Давайте рассмотрим три варианта классификации индивида Жучка:

  1. Животное - собака - лайка - Жучка.
  2. Служебная - ездовая - Жучка.
  3. Псарня - упряжка собак - Жучка.

Первую последовательность соподчиненных сущностей однозначно принято описывать через задание классов и подклассов: Жучка является индивидом класса «лайка», класс «лайка» - подклассом собак, а тот подклассом класса «животное». При этом класс «животные» трактуется как множество всех животных, а класс «лайки», как подмножество множества «собаки». Однако, такое описание, несмотря на то, что оно достаточно наглядно, содержательно является тавтологичным, самореферентным: индивида Жучку мы называем лайкой, если она входит в множество лаек, а само множество лаек определяем как совокупность всех индивидов лаек - то есть включение в множество содержательно дублирует поименование. К тому же описание класса-множества полностью исчерпывается описанием индивида, подпадающего под задающее класс понятие. Также следует отметить, что оперирование подобными классами-множествами не зависит от количества элементов в них: лайка Жучка будет лайкой даже тогда, когда она останется единственной, последней лайкой на Земле. Более того, оперировать такими классами-множествами мы можем даже при отсутствии индивидов в них: можно построить онтологию уже вымерших динозавров, помыслить класс, в который только в будущем войдет проектируемое уникальное устройство или построить модель предметной области мифических животных, героев сказок, хотя при этом мощность всех классов-множеств будет равна нулю.

Итак, если говорить о содержательной стороне анализируемой классификации (животное - собака - лайка - Жучка), то она (содержательная сторона) никак не может быть выражена через отношение множеств и подмножеств. В данном случае мы имеем дело с концептуализацией - выделением понятий и установлением родо-видовых отношений между ними. При этом фактическое число элементов концептуального класса, то есть объем понятия, не фигурирует при его определении и упоминается (да и то не содержательно) только, когда одно понятие («лайка») подпадает под другое («собака»), то есть когда выступает как вид рода. Да, мы можем констатировать, что объем понятия «собака» больше, чем объем понятия «лайка», но реальное числовое соотношение этих множеств не имеет никакого онтологического смысла. Превышение объемом класса объема подкласса при родо-видовых отношениях отражает лишь то, что по определению рода в него должно входить несколько видов - в противном случае эта классификация становится бессмысленной. То есть в родо-видовой концептуальной классификации нас интересует именно содержание понятий - чем вид «собака» отличается от вида «кот» (которое также подпадает под родовое для них понятие «животное»), а не то, как соотносятся объемы множеств рода и вида и тем более объемы видовых понятий («собака» и «кошка»). И чтобы отличать концептуальные классы от действительно счетных множеств, правильнее было бы говорить о подпадании индивида под понятие , а не о включении его в класс/множество. Ясно, что в формальной записи утверждения «подпадает под понятие Х» и «является элементом класса Х» могут выглядеть одинаково, но непонимание существенной разницы между двумя этими описаниями может привести к серьезным ошибкам в построении онтологии.

Во втором варианте (служебная - ездовая - Жучка) нас также не интересует сопоставление понятию «ездовая» какого-либо множества: смысловое содержание утверждения «Жучка - ездовая» не зависит от того, является ли она единственной ездовой или таковых много. Казалось бы, мы и здесь имеем дело с родо-видовыми отношениями: понятие «ездовая» можно рассматривать как видовое относительно родового понятия «служебная». Но связь индивида «Жучка» с понятием «ездовая» существенно отличается от связи с понятием «лайка»: второе, концептуальное, понятие имманентно и неизменно присуще индивиду, а первое отражает локальную во времени специализацию . Жучка не родилась ездовой и возможно с возрастом может перестать быть ею и перейти в разряд сторожевых, а под старость вообще потерять всякую «профессию». То есть, говоря о специализации, мы всегда можем выделить события приобретения и утраты связи с тем или иным понятием. К примеру, Жучка могла быть признана абсолютным чемпионом породы, а потом утерять это звание, что принципиально невозможно с концептуальными понятиями: Жучка от рождения и до смерти, то есть на всем временном отрезке своего существования как индивида, является собакой и лайкой. Так и человек остается концептом «человек» всю жизнь, но ситуационно (от события до события) может подпадать под специализирующие понятия «школьник», «студент», «врач», «муж» и пр. И как уже отмечалось, связь с этими понятиями ничуть не означает включение в некоторое множество (хотя это и может так выглядеть) - приписывание специализирующего понятия всегда есть результат конкретного отношения индивида с другими индивидами: поступление в школу, ВУЗ, получение диплома, регистрация брака и пр. Поэтому специализирующие понятия можно назвать еще реляционными . Из приведенных примеров следует еще одно существенное отличие концептуальной классификации от специализации: индивид может обладать несколькими специализациями (Жучка являться ездовой и чемпионом породы, человек студентом и мужем), но не может одновременно входить более чем в одну концептуальную иерархию (Жучка не может быть и собакой, и кошкой).

И только в третьем варианте описания Жучки - как принадлежащей к некоторой псарне и как члена конкретной упряжки, тянущей нарты по тундре - просто необходимо упоминание множества. Только в этом случае мы имеем право говорить, что индивид является элементом конкретного множества со счетным количеством элементов, а не подпадает под понятие, которое может быть представлено как абстрактное множество, условно фиксирующее объем этого понятия. И здесь принципиально, что индивид является частью другого индивида, исходно определяемого как множество: псарня и упряжка - это обязательно непустое множество собак, и количество элементов этого множества непременно входит в их определения как индивидов. То есть в данном случае следует говорить об отношении часть-целое : Жучка является частью псарни и частью упряжки. Более того, вхождение или невхождение Жучки в конкретную упряжку меняет ее (упряжки) содержание: если у нас была упряжка-двойка, то после изъятия Жучки, упряжка превращается в одинарную. В таких случаях мы имеем дело не просто со счетным множеством (собаки в псарне), а с индивидом, сущность которого меняется при изменении состава его элементов, определяется этим составом, то есть с системой . Если псарня - это просто индивид-группа, описываемый через множество входящих в него элементов, то упряжка - это система, сущность которой зависит от числа и специфики ее частей.

Следовательно, при построении онтологии предметной области можно выделить действительные объекты-множества, определяемые именно как совокупность некоторого числа индивидов. Таковы: класс в школе, товары в ящике на складе, детали блока электронного устройства и пр. И эти множества могут быть подмножествами других реальных счетных множеств: всех учеников школы, всех товаров на складе, всех деталей устройства. При выделении этих множеств существенно то, что они (эти множества) выступают как самостоятельные индивиды (коллектив, партия товара, комплект деталей), основным атрибутом которых является именно число входящих в них элементов. Причем изменение этого атрибута может привести к смене статуса объекта, скажем, при росте количества элементов превратить квартет в квинтет или полк в бригаду. Важно также, что описание этих объектов-множеств, сложных объектов не сводится к описанию входящих в них индивидов, хотя может включать указание на допустимый тип последних (струнный квартет, упряжка лошадей). И такие отношения - не между абстрактными множествами, а между множествами, являющимися индивидами, сложными объектами - точнее описывать как отношения часть-целое, а не класс-подкласс.

Итак, традиционная классификация индивидов через приписывание их к тем или иным классам-множествам не может считаться однородной. Следует различать (1) включение индивидов как частей в сложный объект (целое), семантическая специфичность которого не сводится к описанию его элементов. При этом (1.1.) объект-целое может рассматриваться лишь как поименованное множество индивидов (детали в упаковке, коллекция картин), для которой, по сути, важно лишь количество частей. Такие объекты возможно называть группами (или коллекциями ). Также (1.2.) объект-целое может содержательно (а не только количественно) определяться своими частями и, как следствие, обладать атрибутами, которыми не обладают части. Такие целостности традиционно называют системами , а части систем - элементами. Вторым вариантом описания объектов через приписывание их к классам-подклассам является (2) подпадание индивидов под понятие, что лишь формально, тавтологично может быть описано как включение индивидов в множество мощность которого равна мощности понятия. Понятийное описание индивидов в свою очередь можно классифицировать на (2.1) концептуальное , глобально фиксирующее тип индивида, и (2.2) специализирующее (реляционное) , локально во времени и пространстве (событийно) связывающее индивид с другими объектами.

Приведенные рассуждения, прежде всего, ставят вопрос о достаточности, адекватности традиционного подхода к описанию предметной области с использованием классификации, основанной на теории множеств. И предлагается вывод: для фиксации в онтологиях всего разнообразия связей объектов нужны более дифференцированные инструменты классификации (группы, системы, концептуальные и специализирующие понятия). Формализм теории множеств может использоваться только как локальное упрощение для нужд логического вывода, а не как основной метод описания.

В настоящее время разработано множество моделей представления знаний. Имея обобщенное название, они различаются по идеям, лежащим в их основе, с точки зрения математической обоснованности. Рассмотрим классификацию на рисунке.

Рис 1. Классификация моделей представления знаний.

Первый подход, называемый эмпирическим, основан на изучении принципов организации человеческой памяти и моделировании механизмов решения задач человеком. На основе этого подхода в настоящее время разработаны и получили наибольшую известность следующие модели:

1)продукционные модели – модель, основанная на правилах, позволяет представить знание в виде предложений типа: «ЕСЛИ условие, ТО действие». Продукционная модель обладает тем недостатком, что при накоплении достаточно большого числа (порядка нескольких сотен) продукций они начинают противоречить друг другу. Также к ее недостаткам можно отнести неясность взаимных отношений правил и сложность оценки базы знаний.

Рост противоречивости продукционной модели может быть ограничен путём введения механизмов исключений и возвратов. Механизм исключений означает, что вводятся специальные правила-исключения. Их отличает большая конкретность в сравнении с обобщёнными правилами. При наличии исключения основное правило не применяется. Механизм возвратов же означает, что логический вывод может продолжаться в том случае, если на каком-то этапе вывод привёл к противоречию. Просто необходимо отказаться от одного из принятых ранее утверждений и осуществить возврат к предыдущему состоянию.

Существуют два типа продукционных систем – с «прямыми» и «обратными» выводами. Прямые выводы реализуют стратегию «от фактов к заключениям». При обратных выводах выдвигаются гипотезы вероятностных заключений, которые могут быть подтверждены или опровергнуты на основании фактов, поступающих в рабочую память. Существуют также системы с двунаправленными выводами.

В общем случае продукционную модель можно представить в следующем виде:

i – Имя продукции;

S– Описание класса ситуаций;

L– Условие, при котором продукция активизируется;

– ядро продукции;

Q– Постусловие продукционного правила;

Примерпродукционной сети:

«двигатель не заводится»

«стартёр двигателя не работает»

«неполадки в системе электропитания стартёра»

2)сетевые модели (или семантические сети) – информационная модель предметной области, имеющая вид ориентированного графа, вершины которого соответствуют объектам предметной области, а дуги (рёбра) задают отношения между ними. Формально сеть можно задать в следующем виде:

I – множество информационных единиц;

C – Множество типов связей между информационными единицами;

G– Отображение, задающее конкретные отношения из имеющихся типов междуэлементами.

В семантической сети роль вершин выполняют понятия базы знаний, а дуги (причем направленные) задают отношения между ними. Таким образом, семантическая сеть отражает семантику предметной области в виде понятий и отношений.

Как правило, различают экстенсиональные и интенсиональные семантические сети. Экстенсиональная семантическая сеть описывает конкретные отношения данной ситуации. Интенсиональная – имена классов объектов, а не индивидуальные имена объектов. Связи в интенсиональной сети отражают те отношения, которые всегда присущи объектам данного класса.

Примеры семантической сети:

Рис 2. Пример семантической сети.

Рис 3. Семантическая сеть, упорядоченная отношениями «целое - часть», «род - вид».

3) фреймовая модель – основывается на таком понятии как фрейм (англ. frame – рамка, каркас). Фрейм – структура данных для представления некоторого концептуального объекта. Информация, относящаяся к фрейму, содержится в составляющих его слотах. Слот может быть терминальным (листом иерархии) или представлять собой фрейм нижнего уровня.

Фреймы подразделяются на:

Ø фрейм-экземпляр – конкретная реализация фрейма, описывающая текущее состояние в предметной области;

Ø фрейм-образец – шаблон для описания объектов или допустимых ситуаций предметной области;

Ø фрейм-класс – фрейм верхнего уровня для представления совокупности фреймов образцов.

Пример фреймовой модели:


Рис 4. Структура фреймовой модели.

4) ленемы представляют собой смешанный тип модели, являющийся как бы «развитием» других моделей (фреймы, семантические сети и т.д.). Ленема предназначена для структурного комплексного описания понятий предметной области. По изобразительным возможностям ленемы более совершенны, чем такие традиционные модели представления знаний, как семантическая сеть, фрейм, система продукций. Однако, для некоторых понятий, модель представления знаний, на основе ленем, может быть неудобной и даже неприемлемой. Например, это такие понятия, в описании которых очень большую роль играет внутренняя динамика. Модель, созданная на базе ленем, позволяет объединить на пользовательском уровне три существующие в настоящее время парадигмы представления знаний:



1) логическую (продукционная и логическая модели);

2) структурную (семантические сети и фреймы);

3) процедурную.

Для некоторых ситуаций это очень удобно, так как при реализации сложных моде-лей, включающих знания различных типов, возникает необходимость совмещения в одном языке представления знаний различных концепций.

5)Нейронные сети, генетические алгоритмы . Эти модели нельзя строго отнести к эмпирическому или теоретическому подходам. Их относят, как было сказано ранее, к бионическому направлению. Оно основывается на предположении о том, что если в искусственной системе воспроизвести структуры и процессы человеческого мозга, то и результаты решения задач такой системой будут подобны результатам, получаемым человеком.

6) Логическая модель . Вся информация в логической модели рассматривается как совокупность фактов и связывающих их утверждений, которые представляются как формулы в некоторой логике. Знания при этом представляются набором подобных утверждений, а построение выводов и получение новых знаний сводится к реализации процедуры логического вывода. Этот процесс может быть строго формализован, так как в его основе лежит классический аппарат математической логики.

Для представления математического знания в математической логике пользуются логическими формализмами - исчислением высказываний и исчислением предикатов. Эти формализмы имеют ясную формальную семантику и для них разработаны механизмы вывода. Поэтому исчисление предикатов было первым логическим языком, который применяли для формального описания предметных областей, связанных с решением прикладных задач.

Логическиемоделипредставления знаний реализуются средствами логики предикатов.Предикат – логическая N-арная пропозициональная функция, определенная для предметной области и принимающая значения либо истинности, либо ложности.

Пример логической модели:

ДАТЬ (МИХАИЛ, ВЛАДИМИРУ, КНИГУ);

($x) (ЭЛЕМЕНТ (x, СОБЫТИЕ-ДАТЬ) ? ИСТОЧНИК (x, МИХАИЛ) ? АДРЕСАТ? (x, ВЛАДИМИР) ОБЪЕКТ(x, КНИГА).

Здесь описаны два способа записи одного факта: «Михаил дал книгу Владимиру».

Логический вывод осуществляется с помощью силлогизма (если из A следует B, а из B следует C, то из A следует C).

7)Комбинаторные модели основаны на рассмотрении дискретных объектов, конечных множеств и заданном на них отношении порядка. В рамках комбинаторики также рассматриваются все возможные изменения, перестановки и сочетания, в рамках заданных множеств.Под комбинаторикой понимают более обширный раздел дискретной математики, включающий, в частности, теорию графов.

Комбинаторные модели используются в задачах топологии (например, поиск пути), задачах прогнозирования поведения автоматов, при изучении деревьев решений, частично упорядоченных множеств.

Основная проблема указана еще в определении этой модели: она оперирует только дискретными объектами и конечными множествами, связанными однородными отношениями.

8) Алгебраическая модель подразумевает представление знаний в виде некоторых алгебраических примитивов, над которыми определено множество действий (некоторые из которых можно задать таблично). Для набора знаний представленного в таком виде действуют правила алгебраических множеств, такие как формализация, определение подсистем и отношений эквивалентности. Также возможно построение цепей множеств (множества, для которых определен порядок отношения «быть подсистемой»).

Изначально предполагалось использовать подобную модель в качестве формализованной системы построения аналогий (за счет определения эквивалентности). Однако, на эту формальную модель очень сложно отобразить весь набор знаний, поэтому от этой идеи отказались.

Второй подход можно определить как теоретически обоснованный, гарантирующий правильность решений. Он в основном представлен моделями, основанными на формальной логике (исчисление высказываний, исчисление предикатов), формальных грамматиках, комбинаторными моделями, в частности моделями конечных проективных геометрий, теории графов, тензорными и алгебраическими моделями. В рамках этого подхода до настоящего времени удавалось решать только сравнительно простые задачи из узкой предметной области.

Заключение

На сегодняшний день разработано уже достаточное количество моделей. Каждая из них обладает своими плюсами и минусами, и поэтому для каждой конкретной задачи необходимо выбрать именно свою модель. От этого будет зависеть не столько эффективность выполнения поставленной задачи, сколько возможность ее решения вообще.

Список используемой литературы

1. Гаврилова Т. А., Хорошевский В. Ф. Базы знаний интеллектуальных систем. Учебник. - СПб.: Питер, 2000.

2. Дьяконов В.П., Борисов А.В. Основы искусственного интеллекта.-Смоленск, 2007.

3. Представление знаний в ИИ// Википедия – свободная энциклопедия [Электронный ресурс]. URL:http://ru.wikipedia.org/wiki/представление_знаний (дата обращения: 06.12.2011).

4. Модели представления знаний// Портал искусственного интеллекта [Электронный ресурс]. URL:http://www.aiportal.ru/articles (дата обращения: 06.12.2011).

В некоторых открытых множествах (т.е. не содержащих свои предельные точки) можно наблюдать серьезное несоответствие размерностей.

Множество концевых точек трем канторовой пыли самоподобно и характеризуется теми же значениями и , что и вся канторова пыль, т.е. его размерность подобия совпадает с размерностью подобия канторовой пыли. Однако оно является счетным, а это означает, что его размерность Хаусдорфа – Безиковича равна нулю. Если добавить сюда предельные точки пыли, то мы получим саму канторову пыль, и несоответствие исчезнет «в пользу» размерности подобия, которая для этого множества является более важной характеристикой.

Еще один простой пример, который я называю множеством Безиковича, рассматривается в разделе нелакунарные фракталы, 3.

Размерность Фурье и эвристика

Пусть - некоторая неубывающая функция от . Если максимальные открытые интервалы, в которых значение постоянно, составляют в сумме дополнение замкнутого множества , то мы говорим, что множество является опорным для . Преобразование Фурье – Стилтьеса функции имеет вид

Самые гладкие функции дают наивысшую возможную скорость уменьшения . Обозначим через наибольшее вещественное число, при котором, по меньшей мере, одна функция с носителем удовлетворяет равенству

при для всех ,

но ни одна не удовлетворяет

при для некоторых .

Выражение « при » означает здесь, что . Когда множество заполняет весь интервал , величина бесконечна. И напротив, когда - одна – единственная точка, . Интересно, что, когда представляет собой множество нулевой меры Лебега, величина конечна и не превышает размерности Хаусдорфа – Безиковича этого множества. Неравенство показывает, что фрактальные и гармонические свойства фрактального множества связаны между собой, но не обязательно совпадают.

Для доказательства того, что эти размерности могут различаться, предположим, что - это множество на прямой, причем его размерность равна . Если рассматривать как множество на плоскости, то размерность не изменится, а обратится в нуль.

Определение. В качестве удобного способа обобщения некоторых гармонических свойств , предлагаю назвать величину размерностью Фурье множества .

Множества Сейлема. Равенство описывает целую категорию множеств, называемых множествами единственности, или множествами Сейлема (см. ).

Эмпирическое правило и эвристика. Интересующие нас в прецедентных исследованиях фракталы оказываются, как правило, множествами Сейлема. Поскольку величина во многих случаях легко определяется из экспериментальных данных, можно использовать ее для оценки .

Неслучайные множества Сейлема. Неслучайная канторова пыль является множеством Сейлема только тогда, когда коэффициент удовлетворяет определенным теоретико-числовым свойствам.

Случайные множества Сейлема. Случайная канторова пыль является множеством Сейлема тогда, когда ее случайность достаточно велика для нарушения любой арифметической закономерности.

Оригинальный пример, предложенный самим Р. Сейлемом, очень сложен. В качестве альтернативного примера можно привести пыль Леви: в показано, что спектр (здесь - лестница Леви, см. рис. 399) в среднем почти совпадает со спектром дробной броуновской функции из прямой в прямую и представляет собой сглаженный вариант спектра функции Гаусса – Вейерштрасса.

В монографии (теоремы 1, с. 165, и 5, с. 173) показано, что образ компактного множества с размерностью относительно дробной броуновской функции из прямой в прямую с показателем представляет собой множество Сейлема с размерностью .

Канторова пыль не является множеством Сейлема. Троичная канторова пыль появилась в свое время на свет в результате поисков Георгом Кантором множества единственности (см. , I, с. 196), - поисков, которые не увенчались успехом. (Кантор тогда забросил гармонический анализ и – за неимением лучшего – создал теорию множеств.) Обозначим канторову лестницу через . Спектр имеет ту же общую форму, что и спектр , однако содержит, в отличие от последнего, некоторое количество случайно расположенных острых пиков неубывающего размера, из чего можно заключить, что . См. .

Для теории множеств единственности наличие этих пиков играет решающую роль, однако на практике они вовсе не столь значимы. В большинстве случаев при оценке спектральной плотности пики игнорируются, и в расчет принимается только общая форма спектра, определяемая размерностью .

Серединные и прерывистые многоугольники

Материалы по этой теме (связанной с кривыми Пеано) можно найти в главе XII «Фракталов» 1977 г.

Статистический анализ с применением нормированного размаха

До недавних пор в прикладной статистике принимались как само собой разумеющиеся два следующих допущения в отношении временных рядов: предполагалось, что и что случайная величина обладает краткосрочной зависимостью. Я, однако, показал (см. главу 37), что эмпирические последовательности данных с длинными хвостами часто лучше интерпретируются в свете допущения . С вопросом же о том, является та или иная последовательность данных слабо (краткосрочно) или сильно (долгосрочно) зависимой, мы впервые столкнулись еще тогда, когда я ввел долгосрочную зависимость для интерпретации феномена Херста (см. главу 27).

Такая смесь длинных хвостов и очень долгосрочной зависимости могла бы завести статистиков в тупик, поскольку стандартные методы второго порядка, рассчитанные на неизменную зависимость (корреляцию, спектры), руководствуются допущением . Есть. Однако, альтернатива.

Можно пренебречь распределением величины и проанализировать ее долгосрочную зависимость с помощью нормированного размаха; иначе такая процедура называется - анализом. Этот статистический метод, предложенный в и получивший математическое обоснование в , основан на различии между краткосрочной и очень долгосрочной зависимостями. В этом методе вводится постоянная , которая называется коэффициентом Херста, или - показателем, и может принимать любые значения в интервале от 0 до 1.

Значимость постоянной можно описать еще до ее определения. Особое значение характерно для независимых, марковских и других случайных функций с краткосрочной зависимостью. Таким образом, для того, чтобы узнать, присутствует ли в эмпирических данных или в выборочных функциях очень долгосрочная непериодическая статистическая зависимость, достаточно проверить, приемлемо ли статистически предположение . Если нет, то такая зависимость присутствует, а мера ее интенсивности определяется разностью , значение которой можно оценить на основании имеющихся данных.

Главное достоинство такого подхода заключается в том, что показатель устойчив по отношению к маргинальному распределению. То есть он эффективен не только в тех случаях, когда последовательности данных или случайные функции являются почти гауссовыми, но и тогда, когда распределение настолько далеко от гауссова, что расходится, а в этом случае не работает ни один из методов второго порядка.

Определение статистического - размаха . В непрерывном времени определим , и . В дискретном времени определим и ; здесь - целая часть . Для всякого (величину назовем запаздыванием) определим скорректированный размах суммы на временнóм промежутке от 0 до в виде

Величина называется статистическим - размахом или самонормированным самокорректированным размахом суммы .

Определение - показателя . Предположим, что существует некоторое вещественное число , такое, что при величина сходится по распределению к некоторой невырожденной предельной случайной величине. Как доказано в , из этого предположения следует, что . В этом случае говорят, что функция имеет - показатель и постоянный - префактор.

Сделаем более общее предположение: пусть к некоторой невырожденной предельной случайной величине сходится по распределению отношение , где - некоторая медленно изменяющаяся на бесконечности функция, т.е. функция, удовлетворяющая условию при для всех . Простейшим примером такой функции является . В этом случае говорят, что функция имеет - показатель и - префактор .

Основные результаты . Когда - белый гауссов шум, имеем и постоянный префактор. Если точнее, то отношение является стационарной случайной функцией от .

В более общем виде, равенство справедливо во всех случаях, когда , а нормированная сумма при слабо сходится к .

Когда - дискретный дробный гауссов шум (т.е. последовательность приращений функции , см. с. 488), имеем , где .

В более общем виде, для получения и постоянного префактора достаточно, чтобы и чтобы сумма приближалась к функции так, что .

В еще более общем виде, значение и префактор преобладают, если , а приближается к функции и удовлетворяет соотношению .

И наконец, , если , а приближается к некоторой негауссовой масштабно-инвариантной случайной функции с показателем . Примеры можно найти в .

С другой стороны, если - белый устойчивый по Леви шум (т.е. ), то .

Когда функция в результате дифференцирования становится стационарной, то .

Стационарность. Степени стационарности

Используя в научных текстах «обыкновенные» слова, мы либо имеем в виду их общеупотребительные, «мирские» значения (выбор которых зависит от автора), либо придаем им статус формальных определений (для чего выделяем какое-либо особое значение и заносим его на – в данном случае – математические «скрижали»). Терминам стационарный и эргодический повезло в том смысле, что математики достигли согласия относительно их значения. Я, однако, имел возможность на собственном опыте убедиться в том, что многие инженеры, физики и статистики-практики, признавая математическое определение на словах, на деле придерживаются более узких взглядов. Мне же, напротив, хотелось бы расширить математическое определение. Ниже я перечислю основные недоразумения, возникающие при употреблении упомянутых терминов, и попытаюсь объяснить, почему математическое определение нуждается в расширении.

Математическое определение. Процесс является стационарным, если распределение величины не зависит от , а совместное распределение и не зависит от ; причем то же верно и для совместных распределений при всех .

Первое недоразумение (философия). Согласно распространенному мнению, научной может считаться та деятельность, объектом которой являются феномены, подчиняющиеся неизменным правилам. Неверное понимание стационарности чаще всего является следствием именно такого взгляда на вещи: многие полагают, что под стационарностью подразумевается всего лишь инвариантность во времени управляющих процессом правил. Это далеко не так. Например, приращение броуновского движения представляет собой гауссову случайную величину, среднее и дисперсия которой не зависят от . Не зависит от и правило построения множества нулей броуновского движения. К стационарности, однако, имеют отношение только те правила, которые управляют значениями самого процесса. В случае броуновского движения эти правила не являются инвариантными во времени.

Второе недоразумение (прикладная статистика). Статистики предлагают нам множество методов (иногда даже в виде программного обеспечения для компьютеров) «анализа временных рядов»; на деле же диапазон возможностей этих методов оказывается гораздо ỳже, чем можно было бы ожидать, судя по ярлыку. Это неизбежно, так как математическая стационарность – понятие слишком общее для того, чтобы какой-нибудь отдельный метод оказался бы применим ко всем возможным случаям. Однако тем самым статистики невольно воспитывают в своих клиентах убежденность в том, что понятие «стационарного временнóго ряда» тождественно другим, более узким понятиям, охватываемым тем или иным методом. Даже в тех случаях, когда авторы методов берут на себя труд проверить свои творения на «устойчивость», они учитывают лишь минимальные отклонения от простейшего состояния, не принимая в расчет весьма радикальных отклонений, ничуть не противоречащих стационарности.

Третье недоразумение (инженеры и физики). Многие исследователи (отчасти благодаря более ранним недоразумениям) полагают, что если выборочный процесс стационарен, то это означает, что он «может сдвигаться вверх и вниз, но остается в некотором роде статистически тем же». Такая интерпретация вполне годилась на раннем, «неформальном», этапе, однако в настоящий момент она неприемлема. Математическое определение описывает лишь правила порождения, но никак не затрагивает порождаемые объекты. Когда математики впервые столкнулись со стационарными процессами с чрезвычайно беспорядочными выборками, они были поражены тем, что понятие стационарности может включать в себя такое изобилие самых различных и неожиданных форм поведения. К сожалению, именно такие формы поведения многие практики наотрез отказываются признавать стационарными.

Серая зона. Нет никаких сомнений в том, что граница между стационарными и нестационарными процессами проходит где-то между белым гауссовым шумом и броуновским движением; споры вызывает лишь точное ее местонахождение.

Уточнение границы с помощью масштабно-инвариантных шумов. Гауссовы масштабно-инвариантные шумы (см. главу 27) могут послужить весьма удобным средством для уточнения спорной границы, поскольку их спектральная плотность имеет вид , где . Для белого шума , для броуновского движения , граница же между стационарными и нестационарными процессами попадает на различные значения в зависимости от того, какими соображениями руководствуются «землемеры»., необходима исключительно нестационарная модель.

Я, в свою очередь, обнаружил, что вследствие исключения из рассмотрения значений определение стационарности оказывается недостаточно общим для многих прецедентных исследований.

Условно стационарные спорадические процессы. Например, теория фрактальных шумов (см. главу 9) позволяет предположить, что процесс, состоящий из броуновских нулей стационарен в ослабленной форме. В самом деле, предположим, что где-то в промежутке между и имеется хотя бы один нуль. Результатом такого предположения будет случайный процесс, зависящий от как от дополнительного внешнего параметра. Я отмечал, что совместное распределение значений не зависит от. О бесконечной мере для случайных переменных писал еще Реньи . Для того чтобы мера не привела к катастрофе, в теории обобщенных случайных величин делается допущение о том, что эти величины наблюдаются только будучи обусловленными некоторым событием , таким, что .

Хотя применимость случайных переменных Реньи очень ограниченна, спорадические функции оказываются иногда весьма полезными: в частности, с их помощью мне в удалось избежать в нескольких случаях инфракрасной катастрофы, объяснив тем самым существование некоторых масштабно-инвариантных шумов с .

Эргодичность. Перемешивание. Различным интерпретациям подвергается также и понятие эргодичности. В математической литературе понятие эргодичности включает в себя различные формы перемешивания. Существуют процессы с сильным перемешиванием и процессы со слабым перемешиванием. Различие между этими формами (если судить о нем по математическим трудам) может показаться весьма незначительным и далеким от реальных природных феноменов. Не позволяйте ввести себя в заблуждение – это не так. Например, масштабно-инвариантные шумы с, либо эффекту Иосифа (бесконечная зависимость, как в - шумах с ). Следует сказать, однако, что почти все мои прецедентные исследования были на некотором этапе a priori раскритикованы неким «экспертом», который утверждал, что исследуемые феномены явно нестационарны, и, следовательно, мои стационарные модели изначально обречены на неудачу. Рассуждение ошибочное, но психологически очень значимое.

Заключение. Вокруг границы между математически стационарными и нестационарными процессами не прекращаются бурные семантические диспуты. На практике же граница оккупирована процессами, которые хотя и не отвечают нашим интуитивным представлениям о стационарных процессах, все же способны выступать в роли объектов научного исследования. Эти процессы весьма пригодились и мне – как в настоящем эссе, так и в остальной исследовательской работе.

Лексические проблемы. И снова возникает необходимость в новых терминах. Возьму на себя смелость порекомендовать термин установившийся в качестве синонима того, что математики называют «стационарный и такой, что сумма сходится к », и термина для обозначения того интуитивного понятия, которое исследователи-практики склонны именовать «стационарностью». Обратное понятие можно обозначить терминами неустановившийся или блуждающий.

В одной из своих ранних работ (а именно: в ) я предложил называть установившиеся процессы лапласовыми и мягкими. Последнее слово употреблено в значении «безопасный, легко контролируемый»; это значение показалось мне вполне подходящим, поскольку, имея дело с таким случайным процессом, можно не опасаться каких-либо сюрпризов с его стороны – не стоит ждать от него тех резких отклонений и разнообразных конфигураций, благодаря которым анализ блуждающих случайных процессов представляет собой более сложное, но и гораздо более интересное занятие.

Краткий синопсис


По образованию я физик-теоретик, однако имею неплохую математическую базу. В магистратуре одним из предметов была философия, необходимо было выбрать тему и сдать по ней работу. Поскольку большинство вариантов не единожды было обмусолено, то решил выбрать что-то более экзотическое. На новизну не претендую, просто получилось аккумулировать всю/почти всю доступную литературу по этой теме. Философы и математики могут кидаться в меня камнями, буду лишь благодарен за конструктивную критику.

P.S. Весьма «сухой язык», но вполне читабельно после университетской программы. По большей части определения парадоксов брались из Википедии (упрощённая формулировка и готовая TeX-разметка).

Введение


Как сама теория множеств, так и парадоксы, ей присущие, появились не так уж и давно, чуть более ста лет назад. Однако за этот период был пройден большой путь, теория множеств так или иначе фактически стала основой большинства разделов математики. Парадоксы же её, связанные с бесконечностью Кантора, были успешно объяснены буквально за половину столетия.

Следует начать с определения.

Что есть множество? Вопрос достаточно простой, ответ на него вполне интуитивен. Множество это некий набор элементов, представляемый единым объектом. Кантор в своей работе Beiträge zur Begründung der transfiniten Mengenlehre даёт определение: под «множеством» мы понимаем соединение в некое целое определённых хорошо различимых предметов нашего созерцания или нашего мышления (которые будут называться «элементами» множества ) . Как видим, суть не изменилась, разница лишь в той части, которая зависит от мировоззрения определяющего. История же теории множеств как в логике так и в математике весьма противоречива. Фактически начало ей положил Кантор в XIX веке, далее Рассел и остальные продолжили работу.

Парадоксы (логики и теории множеств) - (от др.-греч. παράδοξος - неожиданный, странный от др.-греч. παρα-δοκέω - кажусь) - формально-логические противоречия, которые возникают в содержательной множеств теории и формальной логике при сохранении логической правильности рассуждения. Парадоксы возникают тогда, когда два взаимоисключающих (противоречащих) суждения оказываются в равной мере доказуемыми. Парадоксы могут появиться как в пределах научной теории, так и в обычных рассуждениях (например, приводимая Расселом перифраза его парадокса о множестве всех нормальных множеств: «Деревенский парикмахер бреет всех тех и только тех жителей своей деревни, которые не бреются сами. Должен ли он брить самого себя?»). Поскольку формально-логическое противоречие разрушает рассуждение как средство обнаружения и доказательства истины (в теории, в которой появляется парадокс, доказуемо любое, как истинное, так и ложное, предложение), возникает задача выявления источников подобных противоречий и нахождения способов их устранения. Проблема философского осмысления конкретных решений парадоксов - одна из важных методологических проблем формальной логики и логических оснований математики.

Целью данной работы является изучение парадоксов теории множеств как наследников античных антиномий и вполне логичных следствий перехода к новому уровню абстракции - бесконечности. Задача - рассмотреть основные парадоксы, их философскую интерпретацию.

Основные парадоксы теории множеств


Брадобрей бреет только тех людей, которые не бреются сами. Бреет ли он себя?


Продолжим кратким экскурсом в историю.

Некоторые из логических парадоксов были известны с античных времён, однако по причине того, что математическая теория ограничивалась одной лишь арифметикой и геометрией, соотнести их с теорией множеств было невозможно. В XIX веке ситуация изменилась коренным образом: Кантор в своих работах вышел на новый уровень абстракции. Он ввёл понятие бесконечности, создав тем самым новый раздел математики и позволив тем самым сравнивать различные бесконечности с помощью понятия «мощность множества» . Однако тем самым он породил множество парадоксов. Самым первым является так называемый парадокс Бурали-Форти . В математической литературе встречаются различные формулировки, опирающиеся на разную терминологию и предполагаемый набор известных теорем. Вот одно из формальных определений.

Можно доказать, что если - произвольное множество порядковых чисел, то множество-сумма есть порядковое число, большее или равное каждому из элементов . Предположим теперь, что - множество всех порядковых чисел. Тогда - порядковое число, большее или равное любому из чисел в . Но тогда и - порядковое число, причём уже строго большее, а значит, и не равное любому из чисел в . Но это противоречит условию, по которому - множество всех порядковых чисел.

Сущность же парадокса в том, что при образовании множества всех порядковых чисел образуется новый порядковый тип, которого ещё не было среди «всех» трансфинитных порядковых чисел, существовавших до образования множества всех порядковых чисел. Этот парадокс был обнаружен самим Кантором, независимо открыт и опубликован итальянским математиком Бурали-Форти, ошибки же последнего были исправлены Расселом, после чего формулировка приобрела окончательный вид .

Среди всех попыток избежать подобных парадоксов и в какой-то мере попробовать их объяснить наибольшего внимания заслуживает идея уже упомянутого Рассела. Он предложил исключить из математики и логики импредикативные предложения, в которых определение элемента множества зависит от последнего, что и вызывает парадоксы. Правило звучит так: «никакое множество не может содержать элементов , определяемых лишь в терминах множества , а так же элементов , предполагающих в своём определении это множество» . Подобное ограничение определения множества позволяет избежать парадоксов, но при этом значительно сужает область его применения в математике. Вдобавок этого недостаточно для объяснения их природы и причин появления, коренящихся в дихотомии мышления и языка, в особенностях формальной логики . В какой-то мере в данном ограничении можно проследить аналогию с тем, что в более поздний период когнитивные психологи и лингвисты начали называть «категоризацией основного уровня»: определение сведено к наиболее легкой для понимания и изучения концепцией.

Парадокс Кантора . Предположим, что множество всех множеств существует. В этом случае справедливо , то есть всякое множество является подмножеством . Но из этого следует - мощность любого множества не превосходит мощности . Но в силу аксиомы множества всех подмножеств, для , как и любого множества, существует множество всех подмножеств , и по теореме Кантора , что противоречит предыдущему утверждению. Следовательно, не может существовать, что вступает в противоречие с «наивной» гипотезой о том, что любое синтаксически корректное логическое условие определяет множество, то есть что для любой формулы , не содержащей свободно. Замечательное доказательство отсутствия подобных противоречий на основе аксиоматизированной теории множеств Цермело-Френкеля приводится у Поттера .

Оба вышеуказанных парадокса с логической точки зрения идентичны «Лжецу» либо «Брадобрею»: высказываемое суждение обращено не только на нечто объективное по отношению к нему, но и само на себя. Однако следует обращать внимание не только на логическую сторону, но и на понятие бесконечности, которое тут наличествует. В литературе ссылаются на работу Пуанкаре, в которой он пишет: "вера в существование актуальной бесконечности… делает необходимым эти непредикативные определения" .

В целом же имеют место основные моменты :

  1. в данных парадоксах нарушается правило чётко разделять „сферы“ предиката и субъекта; степень смешения близка к подмене одного понятия другим;
  2. обычно в логике предполагается, что в процессе рассуждения субъект и предикат сохраняют свой объём и содержание, в данном же случае происходит переход из одной категории в другую, что даёт в результате несоответствие;
  3. наличие слова „все“ имеет смысл для конечного числа элементов, в случае же бесконечного их количества возможно наличие такого, которое для определения себя потребует определение множества;
  4. нарушаются основные логические законы:
    1. закон тождества нарушается тогда, когда обнаруживается нетождественность себе субъекта и предиката;
    2. закон противоречия - когда с одинаковым правом выводятся два противоречащих друг другу суждения;
    3. закон исключённого третьего - когда это третье приходится признавать, а не исключать, поскольку ни первое, ни второе не могут быть признаны одно без другого, т.к. они оказываются одинаково правомерными.
Парадокс Рассела . Приведем один из его вариантов. Пусть - множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли само себя в качестве элемента? Если да, то, по определению , оно не должно быть элементом - противоречие. Если нет - то, по определению , оно должно быть элементом - вновь противоречие. Данное утверждение логически выводится из парадокса Кантора, что показывает их взаимосвязь. Однако философская сущность проявляется более чётко, поскольку „самодвижение" понятий происходит прямо “на наших глазах» .

Парадокс Тристрама Шенди . В романе Стерна «Жизнь и мнения Тристрама Шенди, джентльмена» герой обнаруживает, что ему потребовался целый год, чтобы изложить события первого дня его жизни, и еще один год понадобился, чтобы описать второй день. В связи с этим герой сетует, что материал его биографии будет накапливаться быстрее, чем он сможет его обработать, и он никогда не сможет ее завершить. «Теперь я утверждаю, - возражает на это Рассел, - что если бы он жил вечно и его работа не стала бы ему в тягость, даже если бы его жизнь продолжала быть столь же богатой событиями, как вначале, то ни одна из частей его биографии не осталась бы ненаписанной».

Действительно, события -го дня Шенди мог бы описать за -й год и, таким образом, в его автобиографии каждый день оказался бы запечатленным. Иначе говоря, если бы жизнь длилась бесконечно, то она насчитывала бы столько же лет, сколько дней.

Рассел проводит аналогию между этим романом и Зеноном с его черепахой. По его мнению решение лежит в том, что целое эквивалентно его части в бесконечности. Т.е. к противоречию приводит только «аксиома здравого смысла» . Однако же разрешение проблемы лежит в области чистой математики. Очевидно, что имеется два множества - года и дни, между элементами которых установлено взаимно-однозначное соответствие - биекция. Тогда при условии бесконечной жизни главного героя имеется два бесконечных равномощных множества, что, если рассматривать мощность как обобщение понятия количества элементов в множестве, разрешает парадокс.

Парадокс (теорема) Банаха-Тарского или парадокс удвоения шара - теорема в теории множеств, утверждающая, что трёхмерный шар равносоставлен двум своим копиям.

Два подмножества евклидова пространства называются равносоставленными, если одно можно разбить на конечное число частей, передвинуть их, и составить из них второе. Более точно, два множества и являются равносоставленными, если их можно представить как конечное объединение непересекающихся подмножеств и так, что для каждого подмножество конгруэнтно .

Если же пользоваться теоремой выбора, то определение звучит так:

Аксиома выбора подразумевает, что существует разбиение поверхности единичной сферы на конечное количество частей, которые преобразованиями трёхмерного Евклидова пространства, не меняющими форму этих составляющих, могут быть собраны в две сферы единичного радиуса.

Очевидно, что при требовании для данных частей быть измеримыми, данное постоение неосуществимо. Известный физик Ричард Фейнман в своей биографии рассказывал, как в своё время у него получилось победить в споре о разбиении апельсина на конечное количество частей и пересоставлении его .

В определённых моментах этот парадокс используется для опровержения аксиомы выбора, однако проблема в том, что то, что мы считаем элементарной геометрией, - несущественно. Те понятия, которые мы считаем интуитивными, должны быть расширены до уровня свойств трансцендентных функций .

Чтобы и дальше ослабить уверенность тех, кто считает аксиому выбора неверной, следует упомянуть теорему Мазуркевича и Серпинского, которая утверждает, что существует непустое подмножество Евклидовой плоскости, которое имеет два непересекающихся подмножества, каждое из которых может быть разбито на конечное количество частей, так что их можно перевести изометриями в покрытие множества . При этом доказательство не требует использования аксиомы выбора. Дальнейшие же построения на основе аксиомы определённости дают разрешение парадокса Банаха-Тарского, но не представляют такого интереса .

  1. Парадокс Ришара : требуется назвать «наименьшее число, не названное в этой книге». Противоречие в том, что с одной стороны, это можно сделать, так как есть наименьшее число, названное в этой книге. Исходя из него, можно назвать и наименьшее неназванное. Но тут возникает проблема: континуум является несчётным, между двумя любыми числами можно вставить ещё бесконечное множество промежуточных чисел. С другой стороны, если бы мы могли назвать это число, оно автоматически бы перешло из класса неупомянутых в книге, в класс упомянутых .
  2. Парадокс Греллинга-Нильсона : слова либо знаки могут обозначать какое-либо свойство и при этом иметь его или нет. Самая тривиальная формулировка звучит так: является ли слово «гетерологичный» (что означает «неприменимый к самому себе»), гетерологичным?.. Весьма схож с парадоксом Рассела в связи с наличием диалектического противоречия: нарушается двойственность формы и содержания. В случае со словами, имеющими высокий уровень абстракции, невозможно решить, являются ли эти слова гетерологичными .
  3. Парадокс Сколема : используя теорему Гёделя о полноте и теорему Лёвенхейма-Сколема получаем, что аксиоматическая теория множеств остаётся истинной и тогда, когда будет предполагаться (иметься) для её интерпретации только счётная совокупность множеств. В то же время аксиоматическая теория включает в себя уже упомянутую теорему Кантора, что приводит нас к несчётным бесконечным множествам.

Разрешение парадоксов


Создание теории множеств породило то, что считают третьим кризисом математики, который до сих пор не был разрешён удовлетворительно для всех . Исторически сложилось, что первым подходом был теоретико-множественный. Он основывался на использовании актуальной бесконечности, когда считалось, что любая бесконечная последовательность является завершённой в бесконечности. Идея заключалась в том, что в теории множеств часто приходилось оперировать множествами, которые могли являться части других, более обширных множеств. Успешные действия в таком случае были возможны лишь в одном случае: данные множества (конечные и бесконечные) завершены. Определённый успех был очевиден: аксиоматическая теория множеств Цермело-Френкеля, целая школа математики Николя Бурбаки, которая существует уже больше половины столетия и до сих пор вызывает множество критики.

Логицизм был попыткой свести всю известную математику к терминам арифметики, а потом термины арифметики свести к понятиям математической логики. Вплотную этим занялся Фреге, однако после окончания работы над трудом, он вынужден был указать о своей несостоятельности, после того, как Рассел указал на имеющиеся в теории противоречия. Тот же Рассел, как уже был упомянуто ранее, попытался исключить использование импредикативных определений с помощью «теории типов». Однако его понятия множества и бесконечности, а так же аксиома сводимости оказались нелогичными. Основной проблемой было то, что не учитывались качественные различия между формальной и математической логикой, а так же наличие лишних понятий, в том числе и интуитивного характера.
В итоге теория логицизма не смогла устранить диалектических противоречий парадоксов, связанных с бесконечностью. Имели место лишь принципы и методы, которые позволяли избавиться хотя бы от непредикативных определений. В свох же рассуждениях Рассел был наследником Кантора

В конце XIX - начале XX в. распространение формалистической точки зрения на математику было связано с развитием аксиоматического метода и той программой обоснования математики, которую выдвинул Д. Гильберт. На степень важности этого факта указывает то, что первой проблемой из двадцати трёх, которые он поставил перед математическим сообществом, была проблема бесконечности. Формализация была необходима для доказательства непротиворечивости классической математики, «исключив при этом из неё всю метафизику». Учитывая средства и методы, которыми пользовался Гильберт, его цель оказалась принципиально невыполнимой, но его программа имела огромное влияние на все последующее развитие оснований математики. Гильберт достаточно долго работал над этой проблемой, построив первоначально аксиоматику геометрии. Поскольку решение проблемы оказалось достаточно успешным, он решил применить аксиоматический метод к теории натуральных чисел. Вот что он писал в связи с этим: «Я преследую важную цель: именно я хотел бы разделаться с вопросами обоснования математики как таковыми, превратив каждое математическое высказывание в строго выводимую формулу.» От бесконечности при этом планировалось избавиться с помощью сведения её к некому конечному числу операций. Для этого он обращался к физике с её атомизмом, дабы показать всю несостоятельность бесконечных величин. Фактически Гильберт поставил вопрос о соотношении теории и объективной реальности.

Более или менее полное представление о финитных методах дает ученик Гильберта Ж. Эрбран. Под финитными рассуждениями он понимает такие рассуждения, которые удовлетворяют следующим условиям: логические парадоксы

Всегда рассматривается лишь конечное и определенное число предметов и функций;

Функции имеют точное определение, и это определение позволяет нам вычислить их значение;

Никогда не утверждается «Этот объект существует», если не известен способ его построения;

Никогда не рассматривается множество всех предметов X какой-либо бесконечной совокупности;

Если известно, что какое-либо рассуждение или теорема верны для всех этих X , то это означает, что это общее рассуждение можно повторить для каждого конкретного X , причем само это общее рассуждение следует рассматривать только как образец для проведения таких конкретных рассуждений.


Однако в момент последней публикации в этой области Гёдель уже получил свои результаты, в сущности опять обнаружил и утвердил наличие диалектики в процессе познания. По сути своей дальнейшее развитие математики продемонстрировало несостоятельность программы Гильберта.

Что же, собственно, доказал Гёдель? Можно выделить три основных результата:

1. Гёдель показал невозможность математического доказательства непротиворечивости любой системы, достаточно обширной, чтобы включать в себя всю арифметику, доказательства, которое не использовало бы каких-либо иных правил вывода, кроме тех, что имеются в самой данной системе. Такое доказательство, которое использует более мощное правило вывода, может оказаться полезным. Но если эти правила вывода сильнее логических средств арифметического исчисления, то уверенности в непротиворечивости используемых в доказательстве допущений не будет. Во всяком случае, если используемые методы не будут финитистскими, то программа Гильберта окажется невыполнимой. Гёдель как раз и показывает несостоятельность расчетов на нахождение финитистского доказательства непротиворечивости арифметики.

2. Гёдель указал на принципиальную ограниченность возможностей аксиоматического метода: система Principia Mathematica, как и всякая иная система, с помощью которой строится арифметика, существенно неполна, т. е. для любой непротиворечивой системы арифметических аксиом имеются истинные арифметические предложения, которые не выводятся из аксиом этой системы.

3. Теорема Гёделя показывает, что никакое расширение арифметической системы не может сделать ее полной, и даже если мы наполним ее бесконечным множеством аксиом, то в новой системе всегда найдутся истинные, но не выводимые средствами этой системы положения. Аксиоматический подход к арифметике натуральных чисел не в состоянии охватить всю область истинных арифметических суждений, и то, что мы понимаем под процессом математического доказательства, не сводится к использованию аксиоматического метода. После теоремы Гёделя стало бессмысленно рассчитывать, что понятию убедительного математического доказательства можно будет придать раз и навсегда очерченные формы.


Последним в этой череде попыток объяснить теорию множеств был интуиционизм.

Он прошел ряд этапов в своей эволюции - полуинтуиционизм, собственно интуиционизм, ультраинтуиционизм. На разных этапах математиков волновали разные проблемы, но одной из основных проблем математики является проблема бесконечности. Математические понятия бесконечности, непрерывности служили предметом философского анализа с момента их появления (идеи атомистов, апории Зенона Элейского, инфинитезимальные методы в античности, исчисление бесконечно малых в Новое время и пр.). Наибольшие споры вызывало применение различных видов бесконечности (потенциальной, актуальной) как математических объектов и их интерпретация. Все эти проблемы, на наш взгляд, были порождены более глубокой проблемой - о роли субъекта в научном познании. Дело в том, что состояние кризиса в математике порождено эпистемологической неопределенностью соизмерения мира объекта (бесконечности) и мира субъекта. Математик как субъект имеет возможность выбора средств познания - или потенциальной, или актуальной бесконечности. Применение потенциальной бесконечности как становящейся, дает ему возможность осуществлять, конструировать бесконечное множество построений, которые можно надстраивать над конечными, не имея конечного шага, не завершая построение, оно только возможно. Применение актуальной бесконечности дает ему возможность работать с бесконечностью как с уже осуществимой, завершенной в своем построении, как актуально данной одновременно.

На этапе полуинтуиционизма проблема бесконечности еще не была самостоятельной, а была вплетена в проблему построения математических объектов и способов его обоснования. Полуинтуиционизм А. Пуанкаре и представителей парижской школы теории функций Бэра, Лебега и Бореля был направлен против принятия аксиомы свободного выбора, с помощью которой доказывается теорема Цермело, утверждавшая, что всякое множество можно сделать вполне упорядоченным, но без указания теоретического способа определения элементов любого подмножества искомого множества. Нет способа построения математического объекта, нет и самого математического объекта. Математики считали, что наличие или отсутствие теоретического способа построения последовательности объектов исследования может служить основой обоснования или опровержения этой аксиомы. В российском варианте полуинтуиционистская концепция в философских основаниях математики получила развитие в таком направлении, как эффективизм, развиваемый Н.Н. Лузиным. Эффективизм представляет собой оппозицию к основным абстракциям учения множества Кантора о бесконечном - актуальности, выбора, трансфинитной индукции и др.

Для эффективизма гносеологически более ценными абстракциями является абстракция потенциальной осуществимости, чем абстракция актуальной бесконечности. Благодаря этому становится возможным введение понятия о трансфинитных ординалах (бесконечных порядковых числах) на основе эффективного понятия о росте функций. Гносеологическая установка эффективизма для отображения непрерывного (континуума) опиралась на дискретные средства (арифметики) и созданную Н.Н.Лузиным дескриптивную теорию множеств (функций). Интуиционизм голландца Л. Э. Я. Брауэра, Г. Вейля, А. Гейтинга в качестве традиционного объекта исследования видит свободно становящиеся последовательности различных видов. На этом этапе, решая собственно математические проблемы, в том числе о перестройке всей математики на новой основе, интуиционисты подняли философский вопрос о роли математика как познающего субъекта. Каково его положение, где он более свободен и активен в выборе средств познания? Интуиционисты первыми (и на этапе полуинтуиционизма) стали критиковать концепцию актуальной бесконечности, канторовскую теорию множеств, усмотрев в ней ущемление возможностей субъекта влиять на процесс научного поиска решения конструктивной задачи. В случае использования потенциальной бесконечности субъект себя не обманывает, так как для него идея потенциальной бесконечности интуитивно значительно яснее, чем идея актуальной бесконечности. Для интуициониста объект считается существующим, если он дан непосредственно математику или известен метод его построения, конструирования. Субъект в любом случае может приступить к процессу достраивания ряда элементов своего множества. Непостроенный объект для интуиционистов не существует. В то же время субъект, работающий с актуальной бесконечностью, будет лишен этой возможности и будет чувствовать двойную уязвимость принятой позиции:

1) никогда нельзя осуществить это бесконечное построение;

2) он принимает решение оперировать с актуальной бесконечностью как с конечным объектом и в этом случае теряет свою специфику понятия бесконечности. Интуиционизм сознательно ограничивает возможности математика тем, что тот может осуществлять построение математических объектов исключительно посредством таких средств, которые хотя и получаемы с помощью абстрактных понятий, но эффективны, убедительны, доказуемы, функционально конструктивны именно практически и сами интуитивно ясны как конструкции, построения, надежность которых на практике не вызывает никаких сомнений. Интуиционизм, опираясь на понятие потенциальной бесконечности и конструктивные методы исследования, имеет дело с математикой становления, теория множеств относится к математике бытия.


Для интуициониста Брауэра как представителя математического эмпиризма логика вторична, он критикует ее и закон исключённого третьего.

В своих отчасти мистических работах он не отрицает наличие бесконечности, однако не допускает её актуализации, лишь потенциализацию. Главное для него - интерпретация и обоснование практически используемых логических средств и математических рассуждений. Принятое интуиционистами ограничение преодолевает неопределенность использования понятия бесконечности в математике и выражает стремление преодолеть кризис в основании математики.

Ультраинтуиционизм (А.Н. Колмогоров, А.А.Марков и др.) - последняя стадия развития интуиционизма, на которой модернизируются, существенно дополняются и преобразуются основные его идеи, не изменяя его сущности, но преодолевая недостатки и усиливая позитивные стороны, руководствуясь критериями математической строгости. Слабостью подхода интуиционистов было узкое понимание роли интуиции как единственного источника обоснования правильности и эффективности математических методов. Принимая «интуитивную ясность» в качестве критерия истинности в математике, интуиционисты методологически обедняли возможности математика как субъекта познания, сводили его деятельность лишь к мыслительным операциям на основе интуиции и не включали практику в процесс математического познания. Ультраинтуиционистская программа обоснования математики является российским приоритетом. Поэтому отечественные математики, преодолевая ограниченность интуиционизма, принимали действенной методологию материалистической диалектики, признающей человеческую практику источником формирования как математических понятий, так и математических методов (умозаключений, построений). Проблему существования математических объектов ультраинтуиционисты решали, опираясь уже не на неопределяемое субъективное понятие интуиции, а на математическую практику и конкретный механизм построения математического объекта - алгоритм, выражаемый вычислимой, рекурсивной функцией.

Ультраинтуиционизм усиливает достоинства интуиционизма, заключающиеся в возможности упорядочивания и обобщения приемов решения конструктивных проблем, употребляемых математиками любого направления. Поэтому интуиционизм последней стадии (ультраинтуиционизм) близок конструктивизму в математике. В гносеологическом аспекте основные идеи и принципы ультраинтуиционизма таковы: критика классической аксиоматики логики; использование и значительное усиление (по явному указанию А.А. Маркова) роли абстракции отождествления (мысленного отвлечения от несходных свойств предметов и одновременного вычленения общих свойств предметов) как способа построения и конструктивного понимания абстрактных понятий, математических суждений; доказательство непротиворечивости непротиворечивых теорий. В формальном аспекте применение абстракции отождествления оправдывается тремя ее свойствами (аксиомами) равенства - рефлексивности, транзитивности и симметрии.

Для решения основного противоречия в математике по проблеме бесконечности, породившего кризис ее оснований, на этапе ультраинтуиционизма в работах А.Н. Колмогорова были предложены пути выхода из кризиса посредством решения проблемы отношений между классической и интуиционистской логикой, классической и интуиционистской математикой. Интуиционизм Брауэра в целом отрицал логику, но так как любой математик не может обойтись без логики, в интуиционизме все-таки сохранилась практика логических рассуждений, допускались некоторые принципы классической логики, имеющей в качестве своей базы аксиоматику. С.К. Клини, Р. Весли даже отмечают, что интуиционистскую математику можно описать в виде некоторого исчисления, а исчисление является способом организации математического знания на основах логики, формализации и ее формы - алгоритмизации. Новый вариант соотношения логики и математики в рамках интуиционистских требований к интуитивной ясности суждений, особенно тех, которые включали отрицание, А.Н. Колмогоров предложил следующим образом: интуиционистскую логику, тесно связанную с интуиционистской математикой, он представил в форме аксиоматического импликативного минимального исчисления высказываний и предикатов. Тем самым ученый представил новую модель математического знания, преодолевающую ограниченность интуиционизма в признании лишь интуиции как средства познания и ограниченность логицизма, абсолютизирующего возможности логики в математике. Эта позиция позволила в математической форме продемонстрировать синтез интуитивного и логического как основы гибкой рациональности и ее конструктивной эффективности.


Таким образом, эпистемологический аспект математического познания позволяет оценить революционные изменения на этапе кризиса оснований математики на рубеже XIX-XX вв. с новых позиций в понимании процесса познания, природы и роли субъекта в нем. Гносеологический субъект традиционной теории познания, соответствующий периоду господства теоретико-множественного подхода в математике, - это абстрактный, неполный, «частичный» субъект, представленный в субъектно-объектных отношениях, оторванный абстракциями, логикой, формализмом от действительности, рационально, теоретически познающий свой объект и понимаемый как зеркало, точно отражающее и копирующее действительность. По сути, субъект исключался из познания как реального процесса и результата взаимодействия с объектом. Выход интуиционизма на арену борьбы философских направлений в математике привел к новому пониманию математика как субъекта познания - человека познающего, философская абстракция которого должна быть выстроена как бы заново. Математик предстал как эмпирический субъект, понимаемый уже как целостный реальный человек, включающий все те свойства, от которых отвлекались в гносеологическом субъекте, - эмпирическую конкретность, изменчивость, историчность; это действующий и познающий в реальном познании, творческий, интуитивный, изобретательный субъект. Философия интуиционистской математики стала базой, фундаментом современной эпистемологической парадигмы, построенной на концепции гибкой рациональности, в которой человек - это цельный (целостный) субъект познания, обладающий новыми познавательными качествами, методами, процедурами; он синтезирует свою как абстрактно-гносеологическую и логико-методологическую природу и форму, так и одновременно получает экзистенциально-антропологическое и «историко-метафизическое» осмысление.

Важным моментом так же является интуиция в познании и, в частности, в образовании математических понятий. Опять же идёт борьба с философией, попытки исключить закон исключённого третьего, как не имеющий смысла в математике и пришедший в неё из философии. Однако же наличие излишнего акцента на интуицию и отстутствие чётких математических обоснований не позволили перевести математику на твёрдый фундамент.

Однако после появления в 1930-х годах строгого понятия алгоритма эстафету от интуиционизма принял математический конструктивизм, представители которого внесли немалый вклад в современную теорию вычислимости. Кроме того, в 1970-е и 1980-е годы обнаружились существенные связи между некоторыми идеями интуиционистов (даже теми, которые раньше казались абсурдными) и математической теорией топосов. Математика, имеющаяся в некоторых топосах, весьма напоминает ту, которую пытались создать интуиционисты.

В качестве итога можно сделать утверждение: большинство из вышеуказанных парадоксов попросту не существуют в теории множеств с самопринадлежностью . Является ли подобный подход окончательным - спорный вопрос, дальнейшие работы в этой области покажут.

Заключение


Диалектико-материалистический анализ показывает, что парадоксы являются следствием дихотомии языка и мышления, выражением глубоких диалектических (теорема Гёделя позволила проявить диалектику в процессе познания) и гносеологических трудностей, связанных с понятиями предмета и предметной области в формальной логике, множества (класса) в логике и теории множеств, с употреблением принципа абстракции, позволяющего вводить в рассмотрение новые (абстрактные) объекты (бесконечность), со способами определения абстрактных объектов в науке и т. п. Поэтому не может быть дано универсального способа устранения всех парадоксов.

Закончен ли третий кризис математики (потому как он находился в причинно-следственной связи с парадоксами; теперь же парадоксы - неотъемлемая часть) - тут мнения расходятся, хотя формально известные парадоксы к 1907-му году были устранены. Впрочем, сейчас в математике имеются и другие обстоятельства, которые можно считать либо кризисными, либо предвещающими кризис (например), отсутствие строгого обснования у континуального интеграла).

Что же касается парадоксов, то весьма важную роль в математике сыграл известный парадокс лжеца, а так же целая серия парадоксов в так называемой наивной (предшествовавшей аксиоматической) теории множеств, вызвавших кризис оснований (один из таких парадоксов сыграл роковую роль в жизни Г. Фреге). Но, возможно, одним из самых недооценённых явлений в современной математике, которое вполне можно назвать и парадоксальным, и кризисным, является решение Полом Коэном в 1963 году первой проблемы Гильберта. Точнее, не сам факт решения, а характер этого решения .

Литература

  1. Georg Cantor. Beiträge zur begründung der transfiniten mengenlehre. Mathematische Annalen, 46:481-512, 1895.
  2. И.Н. Бурова. Парадоксы теории множеств и диалектика. Наука, 1976.
  3. M.D. Potter. Set theory and its philosophy: a critical introduction. Oxford University Press, Incorporated, 2004.
  4. Жуков Н.И. Философские основания математики. Мн.: Университетское, 1990.
  5. Фейнман Р.Ф., С. Ильин. Вы, конечно, шутите, мистер Фейнман!: похождения удивительного человека, поведанные им Р. Лейтону. КоЛибри, 2008.
  6. О. М. Мижевич. Два способа преодоления парадоксов в теории множеств Г. Кантора. Логико-философские штудии, (3):279-299, 2005.
  7. С. И. Масалова. ФИЛОСОФИЯ ИНТУИЦИОНИСТСКОЙ МАТЕМАТИКИ. Вестник ДГТУ, (4), 2006.
  8. Чечулин В.Л. Теория множеств с самопринадлежностью (основания и некоторые приложения). Перм. гос. ун-т. – Пермь, 2012.
  9. С. Н. Тронин. Краткий конспект лекций по дисциплине "Философия математики". Казань, 2012.
  10. Гришин В.Н., Бочвар Д.А. Исследования по теории множеств и неклассическим логикам. Наука, 1976.
  11. Хофштадтер Д. Гедель, Эшер, Бах: эта бесконечная гирлянда. Бахрах-М, 2001.
  12. Кабаков Ф.А., Мендельсон Э. Введение в математическую логику. Издательство «Наука», 1976.
  13. Д.А. Бочвар. К вопросу о парадоксах математической логики и теории множеств. Математический сборник, 57(3):369-384, 1944.