Калькулятор онлайн. Решение квадратного уравнения

В курсе математики 7 класса впервые встречаются с уравнениями с двумя переменными , но изучаются они лишь в контексте систем уравнений с двумя неизвестными. Именно поэтому из поля зрения выпадает целый ряд задач, в которых на коэффициенты уравнения введены некоторые условия, их ограничивающие. Кроме того, остаются без внимания и методы решения задач типа «Решить уравнение в натуральных или целых числах», хотя в материалах ЕГЭ и на вступительных экзаменах задачи такого рода встречаются все чаще и чаще.

Какое уравнение будет называться уравнением с двумя переменными?

Так, например, уравнения 5x + 2y = 10, x 2 + y 2 = 20 или xy = 12 являются уравнениями с двумя переменными.

Рассмотрим уравнение 2x – y = 1. Оно обращается в верное равенство при x = 2 и y = 3, поэтому эта пара значений переменных является решением рассматриваемого уравнения.

Таким образом, решением любого уравнения с двумя переменными является множество упорядоченных пар (x; y), значений переменных, которые это уравнение обращают в верное числовое равенство.

Уравнение с двумя неизвестными может:

а) иметь одно решение. Например, уравнение x 2 + 5y 2 = 0 имеет единственное решение (0; 0);

б) иметь несколько решений. Например, (5 -|x|) 2 + (|y| – 2) 2 = 0 имеет 4 решения: (5; 2), (-5; 2), (5; -2), (-5; -2);

в) не иметь решений. Например, уравнение x 2 + y 2 + 1 = 0 не имеет решений;

г) иметь бесконечно много решений. Например, x + y = 3. Решениями этого уравнения будут являться числа, сумма которых равна 3. Множество решений данного уравнения можно записать в виде (k; 3 – k), где k – любое действительное число.

Основными методами решения уравнений с двумя переменными являются методы, основанные на разложении выражений на множители, выделение полного квадрата, использование свойств квадратного уравнения, ограниченности выражений, оценочные методы. Уравнение, как правило, преобразовывают к виду, из которого можно получить систему для нахождения неизвестных.

Разложение на множители

Пример 1.

Решить уравнение: xy – 2 = 2x – y.

Решение.

Группируем слагаемые с целью разложения на множители:

(xy + y) – (2x + 2) = 0. Из каждой скобки вынесем общий множитель:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. Имеем:

y = 2, x – любое действительное число или x = -1, y – любое действительное число.

Таким образом, ответом являются все пары вида (x; 2), x € R и (-1; y), y € R.

Равенство нулю неотрицательных чисел

Пример 2.

Решить уравнение: 9x 2 + 4y 2 + 13 = 12(x + y).

Решение.

Группируем:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Теперь каждую скобку можно свернуть по формуле квадрата разности.

(3x – 2) 2 + (2y – 3) 2 = 0.

Сумма двух неотрицательных выражений равна нулю, только если 3x – 2 = 0 и 2y – 3 = 0.

А значит, x = 2/3 и y = 3/2.

Ответ: (2/3; 3/2).

Оценочный метод

Пример 3.

Решить уравнение: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Решение.

В каждой скобке выделим полный квадрат:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Оценим значение выражений, стоящих в скобках.

(x + 1) 2 + 1 ≥ 1 и (y – 2) 2 + 2 ≥ 2, тогда левая часть уравнения всегда не меньше 2. Равенство возможно, если:

(x + 1) 2 + 1 = 1 и (y – 2) 2 + 2 = 2, а значит x = -1, y = 2.

Ответ: (-1; 2).

Познакомимся с еще одним методом решения уравнений с двумя переменными второй степени. Этот метод заключается в том, что уравнение рассматривается как квадратное относительно какой-либо переменной .

Пример 4.

Решить уравнение: x 2 – 6x + y – 4√y + 13 = 0.

Решение.

Решим уравнение как квадратное относительно x. Найдем дискриминант:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Уравнение будет иметь решение только при D = 0, т. е. в том случае, если y = 4. Подставляем значение y в исходное уравнение и находим, что x = 3.

Ответ: (3; 4).

Часто в уравнениях с двумя неизвестными указывают ограничения на переменные .

Пример 5.

Решить уравнение в целых числах: x 2 + 5y 2 = 20x + 2.

Решение.

Перепишем уравнение в виде x 2 = -5y 2 + 20x + 2. Правая часть полученного уравнения при делении на 5 дает в остатке 2. Следовательно, x 2 не делится на 5. Но квадрат числа, не делящегося на 5, дает в остатке 1 или 4. Таким образом, равенство невозможно и решений нет.

Ответ: нет корней.

Пример 6.

Решить уравнение: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Решение.

Выделим полные квадраты в каждой скобке:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Левая часть уравнения всегда больше или равна 3. Равенство возможно при условии |x| – 2 = 0 и y + 3 = 0. Таким образом, x = ± 2, y = -3.

Ответ: (2; -3) и (-2; -3).

Пример 7.

Для каждой пары целых отрицательных чисел (x; y), удовлетворяющих уравнению
x 2 – 2xy + 2y 2 + 4y = 33, вычислить сумму (x + y). В ответе указать наименьшую из сумм.

Решение.

Выделим полные квадраты:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. Так как x и y – целые числа, то их квадраты также целые числа. Сумму квадратов двух целых чисел, равную 37, получим, если складываем 1 + 36. Следовательно:

(x – y) 2 = 36 и (y + 2) 2 = 1

(x – y) 2 = 1 и (y + 2) 2 = 36.

Решая эти системы и учитывая, что x и y – отрицательные, находим решения: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Ответ: -17.

Не стоит отчаиваться, если при решении уравнений с двумя неизвестными у вас возникают трудности. Немного практики, и вы сможете справиться с любыми уравнениями.

Остались вопросы? Не знаете, как решать уравнения с двумя переменными?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

С помощью этой математической программы вы можете решить квадратное уравнение .

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
- с помощью дискриминанта
- с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

$$ x_1 = \frac{8+\sqrt{145}}{81}, \quad x_2 = \frac{8-\sqrt{145}}{81} $$ а не в такой: \(x_1 = 0,247; \quad x_2 = -0,05 \)

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5z +1/7z^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} z + \frac{1}{7}z^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac{4}{9}=0 \)
имеет вид
\(ax^2+bx+c=0, \)
где x - переменная, a, b и c - числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями .

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b и c - некоторые числа, причём \(a \neq 0 \).

Числа a, b и c - коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \(a \neq 0 \), наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением . Например, приведёнными квадратными уравнениями являются уравнения
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением . Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \(c \neq 0 \);
2) ax 2 +bx=0, где \(b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \(c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\(x^2 = -\frac{c}{a} \Rightarrow x_{1,2} = \pm \sqrt{ -\frac{c}{a}} \)

Так как \(c \neq 0 \), то \(-\frac{c}{a} \neq 0 \)

Если \(-\frac{c}{a}>0 \), то уравнение имеет два корня.

Если \(-\frac{c}{a} Для решения неполного квадратного уравнения вида ax 2 +bx=0 при \(b \neq 0 \) раскладывают его левую часть на множители и получают уравнение
\(x(ax+b)=0 \Rightarrow \left\{ \begin{array}{l} x=0 \\ ax+b=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=0 \\ x=-\frac{b}{a} \end{array} \right. \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \(b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\(x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2- \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \Rightarrow \)

\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \Rightarrow \) \(\left(x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \Rightarrow \left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \(x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \(x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни - различитель). Его обозначают буквой D, т.е.
\(D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\(x_{1,2} = \frac{ -b \pm \sqrt{D} }{2a} \), где \(D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \(x=-\frac{b}{2a} \).
3) Если D Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x 1 и x 2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\(\left\{ \begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array} \right. \)

Примеры:

\(3x^2-26x+5=0\)
\((4-x)(4x-3)=3\)
\(\frac{x^2}{2}\) \(+\) \(\frac{2x}{3}\) \(=\)\(\frac{x-2}{6}\)

В первом примере \(a=3\), \(b=-26\), \(c=5\). В двух других \(a\),\(b\) и \(c\) не выражены явно. Но если эти уравнения преобразовать к виду \(ax^2+bx+c=0\), они обязательно появятся.

Коэффициент \(a\) называют первым или старшим коэффициентом, \(b\) – вторым коэффициентом, \(c\) – свободным членом уравнения.


Левая часть уравнения, то есть \(ax^2+bx+c\), является .

Виды квадратных уравнений

Итак, стандартный алгоритм решения полного квадратного уравнения :

    Преобразовать уравнение к виду \(ax^2+bx+c=0\).

    Выписать значения коэффициентов \(a\), \(b\) и \(c\).
    Пока не отработали решение квадратных уравнений до автоматизма, не пропускайте этот этап! Особенно обратите внимание, что знак перед членом берется в коэффициент. То есть, для уравнения \(2x^2-3x+5=0\), коэффициент \(b=-3\), а не \(3\).

  1. Ответ : \(x_1=3\), \(x_2=-2,5\).


    Решите квадратное уравнение \(x^2+9=6x\)
    Решение :


    Ответ : \(x=3\).


    Решите квадратное уравнение \(3x^2+x+2=0\)
    Решение :

    Ответ : нет корней.


    Также многие квадратные уравнения могут быть решены с помощью . Это быстрее, но требует определенного навыка.


    Пример . Решить уравнение \(x^2-7x+6=0\).
    Решение : Согласно обратной теореме Виета, корнями уравнения будут такие числа, которые в произведении дадут \(6\), а в сумме \(7\). Простым подбором получаем, что эти числа: \(1\) и \(6\). Это и есть наши корни (можете проверить решением через дискриминант).
    Ответ : \(x_1=1\), \(x_2=6\).


    Данную теорему удобно использовать с квадратными уравнениями, имеющими целые коэффициенты \(b\) и \(c\).

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Для того, чтобы решить уравнение, для начала определимся каким уравнение оно является. Уравнение имеет 2 модуля. Модуль раскрывается со знаком плюс и минус. Так как, в уравнении 2 модуля, то данное уравнение имеет 4 уравнения, а значит и 4 корня.

{ (|x| - 2) = 10;

- (|x| - 2) = 10;

Сначала раскрываем скобки. Если перед скобками стоит знак минус, то при ее раскрытии, знаки значений меняются на противоположный знак. Если же перед скобками стоит знак плюс, то при ее раскрытии знаки значений остаются без изменений. То есть получаем:

Из уравнения с модулем ||x| - 2| = 10 получили 4 уравнения

  1. x - 2 = 10;
  2. - x - 2 = 10;
  3. - x + 2 = 10;
  4. x + 2 = 10;

Решим каждое уравнение по отдельности и найдем корни уравнения. Для того, чтобы решить уравнения известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:

2) - x - 2 = 10;

3) - x + 2 = 10;

Отсюда получили 4 корня уравнения:

  1. x = 12;
  2. x = - 12;
  3. x = 8;
  4. x = - 8.

Модуль раскрывается со знаком плюс и минус. Получим 2 уравнения:
1) |x| - 2 = 10;

Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
|x| = 10 + 2;
|x| = 12;
x = 12;
x = - 12;
2) - (|x| - 2) = 10;

Раскрываем скобки. Так как, перед скобками стоит знак минус, то при ее раскрытии, знаки значений меняются на противоположный знак. То есть получаем:
- |x| + 2 = 10;
- |x| = 10 - 2;
- |x| = 8;
|x| = - 8;
x = 8;
x = - 8;
Ответ: х = 12, x = - 12, x = 8, x = - 8.