Какое изображение форм ищется в плоскости зеркала. Построение изображений в сферических зеркалах

Данный урок посвящен плоскому зеркалу. Вы узнаете виды зеркал и виды оптических изображений. Познакомитесь с общими характеристиками изображений в плоских зеркалах, а также с зеркальным и рассеянным отражением света и поглощением света. В конце урока приведены интересные факты о зеркалах.

На сегодняшнем уроке речь пойдет о зеркалах, а точнее – о плоском зеркале.

Зеркало – это гладкая поверхность, которая отражает излучение (рис. 1). Оптические зеркала – это обычно полированные металлы или стекла, которые отражают почти весь видимый свет (рис. 2).

Рис. 1. Зеркало

Рис. 2. Оптическое зеркало

Зеркала бывают трех видов – плоские, вогнутые и выпуклые.

Плоские зеркала отражают излучения без искажений и дают изображение, близкое к оригиналу (рис. 3).

Рис. 3. Отражение в плоском зеркале

Вогнутые – концентрируют энергию излучения (рис. 4).

Рис. 4. Отражение в вогнутом зеркале

Выпуклые – рассеивают (рис. 5).

Рис. 5. Отражение в выпуклом зеркале

На сегодняшнем уроке мы подробнее поговорим о плоском зеркале.

Плоское зеркало – это плоская поверхность, зеркально отражающая свет (рис. 6).

Рис. 6. Плоское зеркало

Рассмотрим, как образуется изображение в плоском зеркале.

Пусть из точечного источника света на поверхность плоского зеркала падает расходящийся пучок света. Из множества падающих лучей выделим лучи, и . Пользуясь законами отражения света, построим отраженные лучи , ,.

Рис. . Построение отраженных лучей

Эти лучи пойдут также расходящимся пучком. Если продолжить их в противоположном направлении, все они пересекутся в одной точке , расположенной за зеркалом. Нам будет казаться, что эти лучи выходят из точки , хотя в действительности никакого источника света в этой точке не существует. Поэтому точку называют мнимым изображением точки .

Рис. . Построение мнимого изображения в зеркале

Зеркальное и рассеянное отражение света. Поглощение света

Вечером, когда в комнате горит свет, мы можем видеть свое отражение в оконном стекле, однако стоит нам задернуть шторы, и изображение пропадает. Мы не видим своего отражения в ткани.

Это связано с двумя физическими явлениями. Одно из них - отражение света.

Чтобы появилось изображение, свет должен отразиться от зеркальной поверхности. Если свет отражается от неровной и шероховатой поверхности, то такое отражение называется рассеянным, или диффузным (рис. 9).

Рис. 9. Отражение света от зеркальной и от шероховатой поверхностей

На такой поверхности нельзя получить изображение. Даже некоторые гладкие на ощупь поверхности, такие как кусок пластика или обложка книги, для света являются недостаточно гладкими, свет отражается от таких поверхностей рассеянно.

Другое физическое явление, влияющее на возможность видеть изображение, - это поглощение света. Физические тела могут не только отражать свет, но и поглощать его. Наилучший отражатель света - зеркало, оно отражает более 90 % света, падающего на него. Хорошими отражателями являются также тела белого цвета, именно поэтому в солнечный зимний день, когда все бело от снега, мы жмуримся, защищая глаза от яркого света. А вот черная поверхность поглощает практически весь свет, например, на черный бархат можно смотреть, не жмурясь, даже при самом ярком освещении.

Поговорим о том, какие виды оптических изображений существуют и что такое оптическое изображение.

Оптическое изображение - это картина, получаемая в результате прохождения через оптическую систему световых лучей, распространяющихся от объекта, и воспроизводящая его контуры и детали.

Различают два случая: действительное изображение и мнимое изображение.

Действительное изображение создается, когда после всех отражений и преломлений лучи, вышедшие из одной точки предмета, собираются в одну точку (рис. 10).

Рис. 10. Действительное изображение

Действительное изображение нельзя видеть непосредственно, можно увидеть его проекцию, поставив рассеивающие экраны. Действительное изображение создается такими оптическими системами, как объектив кинопроектора или фотоаппарата или собирающая линза (рис.11).

Рис. Оптические системы

Мнимое изображение - такое изображение, которое можно видеть глазом.

При этом каждой точке предмета соответствует выходящий из оптической системы пучок лучей, которые, если продолжить их обратно прямыми линиями, сошлись бы в одной точке. Возникает видимость, что пучок выходит именно оттуда.

Мнимое изображение создается такими системами, как бинокль, микроскоп, отрицательная или положительная линза, лупа, а также плоское зеркало. Плоское зеркало дает именно мнимое изображение.

Интересные факты

Существуют так называемые полупрозрачные зеркала, или, как их иногда называют, зеркальные, или односторонние, стекла.

Такие стекла применяются для скрытого наблюдения за людьми в целях контроля за поведение или шпионажа. При этом шпион находится в темном помещении, а объект наблюдения - в светлом (рис. 12). Принцип действия зеркального стекла в том, что тусклый шпион не виден на фоне яркого зеркального отражения. Полупрозрачных зеркал, которые пропускали бы свет в одну сторону и не пропускали в другую, не существует.

Рис. 12 Помещение с полупрозрачным зеркалом

Не так давно в новых американских аттракционах ужаса появились зеркальные лабиринты. В России первые зеркальные лабиринты появились в Санкт-Петербурге и приобрели большую популярность в развлекательной индустрии.

Проведем демонстрацию, с помощью которой выясним, как расположены предмет и его изображение относительно плоского зеркала.

Возьмем плоское стекло, закрепленное вертикально. С одной стороны стекла установим горящую свечу, с другой стороны – точно такую же, но не зажженную. Передвигая незажженную свечу, найдем такое ее расположение, когда эта свеча будет казаться горящей. В этом случае незажженная свеча окажется в месте, где наблюдается в стекле изображение горящей свечи.

Схематично изобразим местоположение стекла – прямая линия, зажженной свечи и незажженной свечи .

Эта точка также показывает местоположение изображения зажженной свечи (рис.). Если теперь соединить точки и и провести необходимые измерения, то мы убедимся, что прямая перпендикулярна отрезку , а длина отрезка равна длине отрезка .

Рис. . Местоположение изображения горящей свечи

Проведем еще ряд демонстраций, которые позволят нам охарактеризовать изображения в плоских зеркалах.

Возьмем плоское зеркало, линейку и ластик. Сначала линейку расположим так, чтобы ее ноль располагался около зеркала (рис. ).

Рис. . Расстояние от зеркала до предмета и его изображения

В результате мы увидим, что расстояние от зеркала до предмета равно расстоянию от зеркала до изображения предмета в зеркале. Сделаем на ластике отметку. Мы увидим, что изображение в зеркале симметрично самому предмету, однако не является тождественным (рис. ).

Рис. . Симметричность предмета и его изображения в зеркале

Благодаря проведенным демонстрациям можно установить общие характеристики изображений в плоских зеркалах:

  1. Плоское зеркало дает мнимое изображение предмета.
  2. Изображение предмета в плоском зеркале равно по размеру самому предмету и расположено на том же расстоянии от зеркала, что и предмет.
  3. Прямая, которая совмещает точку на предмете с соответствующей ей точкой на изображении предмета в зеркале, перпендикулярна поверхности зеркала.

Решение задач

Задача № 1

Почему на машинах скорой помощи надписи пишутся «перевернутыми»?

Решение

Водители других автомобилей должны быстро и безошибочно определить машину скорой помощи в потоке других машин, чтобы уступить ей дорогу. Такая ситуация возникает тогда, когда скорой помощи необходимо обогнать автомобиль и водитель может увидеть ее только в зеркало заднего вида.

Как мы уже знаем, изображение в зеркале не является тождественным, а является симметричным. Поэтому на машине скорой помощи пишут текст «перевернутым», чтобы водитель в зеркале заднего вида видел правильную надпись и мог своевременно совершить необходимые маневры.

Задача № 2

Какая минимальная высота должна быть у плоского зеркала, чтобы вы могли увидеть себя в нем в полный рост?

Решение

Изображение в зеркале равно предмету, расположенному перед зеркалом, и находится на том же расстоянии от зеркала, что и предмет. Нарисуем рисунок с изображением человека, стоящего перед зеркалом (рис. 16).

Рис. 16. Изображение человека, стоящего перед зеркалом

Человек, - изображение человека в зеркале, точка - глаз человека. Чтобы зеркало было минимального размера, края зеркала и должны располагаться на прямых и . Если точка будет выше этой прямой, то ее можно опустить, уменьшив высоту зеркала.

А если она будет ниже прямой, то мы не увидим часть головы нашего изображения в зеркале.

Отрезок, параллельный прямым и и расположенный на одинаковом расстоянии от них. Значит, это средняя линия треугольника . Пусть она равна половине основания треугольника или половине роста человека (рис. 17).

Найдем связь между оптической характеристикой и расстояниями, определяющими положение предмета и его изображения.

Пусть предметом служит некоторая точка А, располагающаяся на оптической оси. Используя законы отражения света, построим изображение этой точки (рис. 2.13).

Обозначим расстояние от предмета до полюса зеркала (АО), а от полюса до изображения(ОА).

Рассмотрим треугольник АРС, получаем, что

Из треугольника АРА, получаем, что
. Исключим из этих выражений угол
, так как единственный который не опирается на ОР.

,
или

(2.3)

Углы ,,опираются на ОР. Пусть рассматриваемые пучки параксиальны, тогда эти углы малы и, следовательно, их значения в радианной мере равно тангенсу этих углов:

;
;
, гдеR=OC, является радиусом кривизны зеркала.

Подставим полученные выражения в уравнение (2.3)

Так как мы ранее выяснили, что фокусное расстояние связано с радиусом кривизны зеркала, то

(2.4)

Выражение (2.4) называется формулой зеркала, которая используется лишь с правилом знаков:

Расстояния ,,
считаются положительными, если они отсчитываются по ходу луча, и отрицательными – в противном случае.

Выпуклое зеркало .

Рассмотрим несколько примеров на построение изображений в выпуклых зеркалах.

1) Предмет расположен на расстоянии большем радиуса кривизны. Строим изображение концевых точек предмета А и В. Используем лучи: 1) параллельный главной оптической оси; 2) луч, проходящий через оптический центр зеркала. Получим изображение мнимое, уменьшенное, прямое.(рис.2.14)

2) Предмет расположен на расстоянии равном радиусу кривизны. Изображение мнимое, уменьшенное, прямое (рис.2.15)

Фокус выпуклого зеркала мнимый. Формула выпуклого зеркала

.

Правило знаков для d и f остается таким же, как и для вогнутого зеркала.

Линейное увеличение предмета определяется отношением высоты изображения к высоте самого предмета

. (2.5)

Таким образом, независимо от расположения предмета относительно выпуклого зеркала изображение оказывается всегда мнимым, прямым, уменьшенным и расположенным за зеркалом. В то время как изображения в вогнутом зеркале более разнообразны, зависят от расположения предмета относительно зеркала. Поэтому вогнутые зеркала применяются чаще.

Рассмотрев принципы построения изображений в различных зеркалах, мы подошли к пониманию действия столь различных приборов, как астрономические телескопы и увеличивающие зеркала в косметических приборах и медицинской практике, мы способны сами спроектировать некоторые приборы.

Зеркальное отражение, диффузное отражение

Плоское зеркало.

Простейшей оптической системой является плоское зеркало. Если параллельный пучок лучей, падающий на плоскую поверхность раздела двух сред, после отражения остается параллельным, то отражение называется зеркальным, а сама поверхность называется плоским зеркалом (рис. 2.16).

Изображения в плоских зеркалах строятся на основании закона отражения света. Точечный источник S (рис.2.17) дает расходящийся пучок света, построим отраженный пучок. Восстановим перпендикуляр в каждую точку падения и отраженный луч изображаем из условияÐa=Ðb(Ða 1 =Ðb 1, Ða 2 =b 2 и т.д.) Получаем расходящийся пучок отраженных лучей, продолжаем эти лучи до пересечения, точка их пересечения S ¢ является изображением точки S, это изображение будет мнимым.

Изображение прямой линии AB можно построить, соединяя прямой изображения двух концевых точек А¢и В¢. Измерения показывают, что это изображение находится на таком же расстоянии за зеркалом, на каком предмет находится перед зеркалом, и, что размеры его изображения такие же, как и размеры предмета. Изображение, обра­зующееся в плоском зеркале, обращенное и мнимое (см. рис.2.18).

Если отражающая поверхность шероховата, то отражение неправильное и свет рассеивается, или диффузно отражается (рис.2.19)

Диффузное отражение гораздо более приятно для глаза, чем отражение гладкими поверхностями, называемое правильным отражением.

Линзы.

Линзы, также как и зеркала являются оптическими системами, т.е. способны изменять ход светового луча. Линзы по форме могут быть различными: сферическими, цилиндрическими. Мы остановимся только на сферических линзах.

Прозрачное тело, ограниченное двумя сферическими поверхностями, называется линзой .

Прямую линию, на которой лежат центры сферических поверхностей, называют главной оптической осью линзы. Главная оптическая ось линзы пересекает сферические поверхности в точках М и N – это вершины линзы. Если расстоянием MN можно пренебречь по сравнению с R 1 и R 2 , то линза называется тонкой. В этом случае (×)М совпадает с (×)N и тогда (×)М будет называться оптическим центром линзы. Все прямые, проходящие через оптический центр линзы, кроме главной оптической оси называются побочными оптическими осями (рис.2.20).

Собирающие линзы . Фокусом собирающей линзы называется точка, в которой пересекаются параллельные оптической оси лучи после преломления в линзе. Фокус собирающей линзы – действительный. Фокус, лежащий на главной оптической оси, называется главным фокусом. Любая линза имеет два главных фокуса: передний (со стороны падающих лучей) и задний (со стороны преломленных лучей). Плоскость, в которой лежат фокусы, называется фокальной плоскостью. Фокальная плоскость всегда перпендикулярна главной оптической оси и проходит через главный фокус. Расстояние от центра линзы до главного фокуса называется главным фокусным расстоянием F (рис.2.21).

Для построения изображений какой- либо светящейся точки следует проследить ход любых двух лучей, падающих на линзу и преломленных в ней до их пересечения (или пересечения их продолжения). Изображение протяженных светящихся предметов представляет собой совокупность изображений отдельных его точек. Наиболее удобными лучами, используемыми при построении изображений в линзах, являются следующие характерные лучи:

1) луч, падающий на линзу параллельно какой-либо оптической оси, после преломления пройдет через фокус, лежащий на этой оптической оси

2) луч, идущий вдоль оптической оси, не меняет своего направления

3) луч, проходящий через передний фокус, после преломления в линзе пойдет параллельно главной оптической оси;

На рисунке 2.25 продемонстрировано построение изображения точки А предмета АВ.

Кроме перечисленных лучей при построении изображений в тонких линзах используют лучи, параллельные какой-либо побочной оптической оси. Следует иметь в виду, что лучи, падающие на собирающую линзу пучком, параллельным побочной оптической оси, пересекают заднюю фокальную поверхность в той же точке, что и побочная ось.

Формула тонкой линзы:

, (2.6)

где F - фокусное расстояние линзы; D - оптическая сила линзы; d - расстояние от предмета до центра линзы; f - расстояние от центра линзы до изображения. Правило знаков будет таким же, как и для зеркала: все расстояния до действительных точек считаются положительными, все расстояния до мнимых точек считаются отрицательными.

Линейное увеличение, даваемое линзой,

, (2.7)

где H - высота изображения; h - высота предмета.

Рассеивающие линзы . Лучи, падающие на рассеивающую линзу параллельным пучком, расходятся так, что их продолжения пересекаются в точке, называемоймнимым фокусом.

Правила хода лучей в рассеивающей линзе:

1) лучи, падающие на линзу параллельно какой-нибудь оптической оси, после преломления пойдут так, что их продолжения пройдут через фокус, лежащий на оптической оси (рис. 2.26):

2)луч, идущий вдоль оптической оси, не меняет своего направления.

Формула рассеивающей линзы:

(правило знаков остается прежним).

На рисунке 2.27 приведен пример построения изображений в рассеивающих линзах.

Если отражающая поверхность зеркала является плоской, то оно относится к типу плоских зеркал. Свет всегда отражается от плоского зеркала без рассеяния по законам геометрической оптики:

  • Угол падения равен углу отражения.
  • Падающий луч, отраженный луч и нормаль к поверхности зеркала в точке падения лежат в одной плоскости.

Следует помнить, что у стеклянного зеркала отражающая поверхность (обычно тонкий слой алюминия или серебра) помещается на его задней стороне. Ее покрывают защитным слоем. Это означает, что хотя основное отраженное изображение формируется на этой поверхности, свет будет также отражаться и от передней поверхности стекла. Образуется вторичное изображение, которое гораздо слабее основного. Оно, как правило, невидимо в повседневной жизни, но создает серьезные проблемы в области астрономии. По этой причине все астрономические зеркала имеют отражающую поверхность, нанесенную на переднюю сторону стекла.

Типы изображений

Существует два типа изображений: действительное и мнимое.

Действительное формируется на пленке видеокамеры, фотоаппарата или на сетчатке глаза. Световые лучи проходят через линзу или объектив, сходятся, падая на поверхность, и на своем пересечении образуют изображение.

Мнимое (виртуальное) получается, когда лучи, отражаясь от поверхности, образуют расходящуюся систему. Если достроить продолжение лучей в противоположную сторону, то они обязательно пересекутся в определенной (мнимой) точке. Именно из таких точек формируется мнимое изображение, которое невозможно зарегистрировать без использования плоского зеркала или других оптических приборов (лупы, микроскопа или бинокля).

Изображение в плоском зеркале: свойства и алгоритм построения

Для реального объекта, изображение, полученное с помощью плоского зеркала, является:

  • мнимым;
  • прямым (не перевернутым);
  • размеры изображения равны размерам объекта;
  • изображение находится на таком же расстоянии за зеркалом, как объект перед ним.

Построим изображение некоторого объекта в плоском зеркале.

Воспользуемся свойствами мнимого изображения в плоском зеркале. Нарисуем изображение красной стрелки с другой стороны зеркала. Расстояние А равно расстоянию В, а изображение имеет тот же размер, что и объект.

Мнимое изображение получается на пересечении продолжения отраженных лучей. Изобразим световые лучи, идущие от мнимой красной стрелки к глазу. Покажем, что лучи мнимые, нарисовав их пунктиром. Непрерывные линии, идущие от поверхности зеркала, показывают путь отраженных лучей.

Проведем от объекта прямые линии в точки отражения лучей на поверхности зеркала. Учитываем, что угол падения равен углу отражения.

Плоские зеркала используются во многих оптических приборах. Например, в перископе, плоском телескопе, графопроекторе, секстанте и калейдоскопе. Стоматологическое зеркало для осмотра полости рта тоже плоское.

Маршалкин В.Ю. 1

Милостивая Н.Ю. 1

1 Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №6

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Актуальность выбранной темы.

Мы современные школьники - поколение, выросшее на мобильных телефонах и компьютерах, планшетах, хорошо разбираемся в гаджетах, умеем молниеносно находить информацию в Интернете, но пользуемся всеми научными достижениями и не задумываемся а как эти благо цивилизации были изобретена и какой путь они прошли до нас. Взять хотя бы исторический путь зеркал, их поразительные свойства и современное применение.

Обобщить эти материалы в одной работе, отличить мистику от реальности - было моей задачей.

Цели и задачи исследовательской работы

Цель моей работы - донести до нашего поколения историю возникновения зеркал, рассказать о начальном этапе их развития, показать самые уникальные свойства зеркал и самые уникальные способы их применения.

экспериментальное и теоретическое изучение свойств зеркал различной формы: плоских, сферических и асферических, которые применяются в быту и технике

2.Теоритический материал.

2.1 История плоских зеркал

Ученые считают, что возраст зеркал насчитывает уже более семи тысяч лет. До появления зеркального стекла использовали хорошо наполированные разные виды металлов, к примеру, золото и серебро, олово и медь, бронза, и камень.

Согласно древнегреческим мифам, именно собственное изображение, увиденное медузой Горгоной на щите Персея, настолько испугало ее, что она превратилась в камень. Многие археологи считают наиболее ранними зеркалами полированные кусочки обсидиана, которые были найдены в Турции, а насчитывают они около 7500 лет. Но использовать подобные зеркальные поверхности, чтобы тщательно рассмотреть себя, к примеру, сзади, было нельзя, да и оттенки различать было очень проблематично.

Однако купить зеркало тогда было очень трудно, стоимость его к тому же была очень высока, ведь наполировать металл до блеска было непросто. Стоит учитывать, что подобная чистка была необходима зеркальной поверхности ежедневно, ведь она постоянно окислялась.

Годом рождения настоящего зеркала считается 1279 год, когда францисканцем Джоном Пекам был описан уникальный, в то время, способ покрытия обычного стекла тончайшим слоем свинца.

В это время появилась первая багетная мастерская, ведь технология производства подобного чуда была непростой. Слой фольги из олова клали на бумагу, которую с обратной стороны покрывали ртутью, после чего на нее опять помещали лист бумаги, и только после этого накладывали стекло, которое служило неким прессом для этого слоеного пирога, откуда в это время аккуратно вытаскивали бумагу. Конечно, зеркало было очень мутным. Эта технология просуществовала без существенных изменений практически до 1835 года. Именно в этом году профессор Либих обнародовал весьма интересную гипотезу о том, что покрытие серебром вместо олова сделает зеркала более ясными и сверкающими.

Венеция очень ревностно охраняла тайну создания этого чудо -товара. Зеркальщикам было запрещено покидать республику, в ином случае угрожали расплатой над их родными и близкими. По следам тех, кто особенно упорствовал, посылали убийц. Поэтому целых три века это был невероятно дорогой и фантастически редкий товар, позволить себе сделать зеркала могли лишь очень состоятельные люди.

Любителем зеркал был и французский король Людовик XIV. В его время был разгадан секрет производства венецианских зеркал и цены начали резко уменьшаться. Теперь этот атрибут интерьера можно было все чаще встретить в стенах обычных граждан. В восемнадцатом веке больше половины парижан имели зеркала. Королевский дворец в Париже в это время имел особое превосходство, именно здесь впервые появилось напольное зеркало.

Появившаяся возможность наблюдать за собой со стороны, привела к огромным последствиям: все состоятельные граждане стали более тщательно следить не только за своим внешним видом, но и своим поведением.

2.2 История сферических зеркал.

Еще более интересна история сферических зеркал.

История возникновения сферического стеклянного зеркала уходит в глубь веков, в Венецию конца XII - начала XIII века. В то время венецианские стеклодувы научились выдувать из стекла небольшие колбы, которые в размягченном виде наполнялись через трубку оловом. Когда колбы остывали, их нарезали на куски в форме выпуклых линз. Эти выпуклые зеркала, представляющие из себя часть сферы, называли «воловий глаз». Они мало чем походили на современные зеркала. Изображение в них было искаженным, слегка уменьшенным и прямым. Чтобы представить отражение в таком зеркале, достаточно взглянуть на «Автопортрет в выпуклом зеркале» итальянского художника Пармиджанино.

А вот история произошедшая с Архимедом.

Этот день 212 года до н.э. уцелевшим римлянам запомнился на всю жизнь. Почти полтысячи маленьких солнц вдруг загорелись на крепостной стене. Сначала они просто ослепили, но через некоторое время произошло нечто фантастическое: передовые римские корабли, подошедшие к Сиракузам, один за другим вдруг начали вспыхивать, как факелы. Бегство римлян было паническим...

Вообще говоря, о необычном архимедовом оружии вспомнили мы не ради исторических изысканий. Нас интересуют уникальные свойства вогнутых зеркал. Да-да, вогнутых зеркал. Ведь Архимедом, по существу, было изобретено "распределенное" вогнутое зеркало. Составленное из множества обычных зеркал, отражения от которых направлены в одну точку, оно способно концентрировать в своем фокусе огромную энергию. В случае с римскими кораблями это — световая и тепловая энергии.

Вогнутые зеркала издавна использовали и для других целей — "магических". Более того, их всегда считали самыми эффективными в этом деле. Маги и колдуны полагали, что вогнутость позволяет собрать в одном фокусе некий "астральный свет". Мистики говорили, что там, "где происходит сосредоточение света, появляется эфирный фокус — узел вибраций эфирной среды".

С помощью больших вогнутых чаш вызывали духов умерших. Об этом упоминают — кто смутно, кто яснее — древние авторы. Некоторые из них даже указывают места, где происходили эти таинства. В конце 1950-х годов по такой "наводке" греческий археолог Сотир Дакар обнаружил в Эпире (Западная Греция) подземную пещеру. Самой интересной для нас находкой в этой пещере были остатки огромного бронзового котла. По мнению ряда исследователей, его внутренняя часть, будучи хорошо отполированной, могла вызывать видения величиной в человеческий рост.

Но есть вогнутые зеркала, назначение которых остается тайной и по сей день. К ним, например, относятся так называемые "зеркала Тулу", во множестве найденные в захоронениях вблизи всемирно известного плато Наска в Перу. Диаметром до полуметра, зеркала эти изготовлены из тщательно отполированных металлов: золота, серебра, меди и их сплавов. Для чего они были нужны? Для передачи сигналов (отраженный от них солнечный луч виден за несколько километров)? Для проецирования огромных рисунков на плато Наска? Для магических целей? А может, с помощью этих зеркал краснокожие жрецы получали те самые знания, что и сегодня поражают ученых своей точностью? Кто знает. Во всяком случае, есть сведения, что некоторые научные открытия были сделаны именно благодаря вогнутым зеркалам.

Одно из таких загадочных зеркал принадлежало крупнейшему ученому XIII века монаху Роджеру Бэкону (1214-1294). Большинство научных работ Бэкона до сих пор не напечатаны, но и то, что сегодня известно, поражает воображение. Непостижимым образом он заглядывал на сотни лет вперед: предсказал изобретение микроскопа и телескопа, автомобиля и самолета, кораблей, приводимых в действие моторами; за двести лет до изобретения пороха Бертольдом Шварцем описал состав и действие этого взрывчатого вещества.

В наше время большинство производимых зеркал представляет собой зеркала, изготовленные из листового стекла, полированного или неполированного, толщиной 3-7 мм.

2.3. Физика сферических зеркал.

2.3.1. Изображение в плоском зеркале.

Изображение предмета, даваемое плоским зеркалом, формируется за счет лучей, отраженных от зеркальной поверхности.

На рисунке показано, как глаз воспринимает изображение точки S в зеркале. Лучи SО, SО1 и SО2 отражаются от зеркала в соответствии с законами отражения. Луч падает на зеркало перпендикулярно (= 0°) и, отражаясь (= 0°), не попадает в глаз. Лучи SО1 и SО2 после отражении попадают в глаз расходящимся пучком, глаз воспринимает светящуюся точку S1 за зеркалом. На самом деле в точке S1 сходятся продолжения отраженных лучей (пунктир), а не сами лучи (это только кажется, что попадающие в глаз расходящиеся лучи исходят из точек, расположенных в "зазеркалье"), поэтому такое изображение называют воображаемым (или мнимым), а точка из которой, как нам кажется, исходит каждый пучок, и есть точка изображения. Каждой точке объекта соответствует точка изображения.

Вследствие закона отражения света мнимое изображение предмета располагается симметрично относительно зеркальной поверхности. Размер изображения равен размеру самого предмета.

В действительности световые лучи не проходят сквозь зеркало. Нам только кажется , будто свет исходит от изображения, поскольку наш мозг воспринимает попадающий к нам в глаза свет как свет от источника, находящегося перед нами. Так как лучи в действительности не сходятся в изображении, поместив лист белой бумаги или фотоплёнку в то место, где находитсяизображение, мы не получим никакого изображения. Поэтому такое изображение называют мнимым. Его следует отличать от действительного изображения , через которое свет проходит и которое можно получить, поместив там, где оно находится, лист бумаги или фотоплёнку. Как мы увидим в дальнейшем, действительные изображения можно формировать с помощью линз и кривых зеркал (например сферических).

Точки S и S" симметричны относительно зеркала: SО = ОS". Их ображение в плоском зеркале воображаемое, прямое (не обратное), одинаковое по размерам с предметом и расположено на таком же расстоянии от зеркала, что и сам предмет.

2.3.2. Сферическое зеркало.

Отражающими поверхности не обязательно должны быть плоскими. Изогнутые зеркала чаще всего бывают сферическими , т. е. имеют форму сферического сегмента. Сферические зеркала бывают вогнутыми и выпуклыми. Сферическое вогнутое зеркало представляет собой тщательно отполированную шаровую поверхность. На рисунках далее точка О - центр сферической поверхности, которая образует зеркало. На рисунке буквой С отмечен центр сферической зеркальной поверхности, точка О — вершина зеркала. Прямая линия СО, проходящая через центр зеркальной поверхности С и вершину зеркала О, называется оптической осью зеркала.

Пустим от фонаря на зеркало пучок лучей света, параллельных оптической оси зеркала. После отражения от зеркала лучи этого пучка соберутся в одной точке F, лежащей на оптической оси зеркала. Эта точка называется фокусом зеркала. Если источник света поместить в фокусе зеркала, то лучи отразятся от зеркала, как показано на рисунке.

Расстояние OF от вершины зеркала до фокуса называется фокусным расстоянием зеркала, оно равно половине радиуса ОС сферической поверхности зеркала, то есть OF = 0,5 ОС.

Приблизим к вогнутому зеркалу источник света (зажжённую свечу или электрическую лампу) настолько, чтобы в зеркале было видно его изображение. Это изображение— мнимое — расположено за зеркалом. По сравнению с предметом оно увеличенное и прямое.Станем постепенно удалять источник света от зеркала. При этом будет удаляться от зеркала и его изображение, размеры его будут увеличиваться, а затем мнимое изображение исчезнет. Но теперь изображение источника света можно получить на экране, расположенном перед зеркалом, то есть можно получить действительное изображение источника света.Чем дальше будем отодвигать источник света от зеркала, тем ближе к зеркалу придётся располагать экран, чтобы получить на нём изображение источника. Размеры изображения при этом будут уменьшаться.Все действительные изображения по отношению к предмету оказываются обратными (перевёрнутыми). Их размеры в зависимости от расстояния предмета до зеркала могут быть большими, меньшими, чем предмет, или равными размерам предмета (источника света).

Таким образом, расположение и размеры изображения, получаемого с помощью вогнутого зеркала, зависят от положения предмета относительно зеркала.

2.3.3. Изображение в сферическом вогнутом зеркале.

вогнутым , если отражающей поверхностью служит внутренняя сторона сферического сегмента, т. е. если центр зеркала находится от наблюдателя дальше его краёв.

Если размеры вогнутого зеркала малы в сравнении с его радиусом кривизны, то есть на вогнутое сферическое зеркало падает пучок лучей, параллельный главной оптической оси, после отражения от зеркала лучи пересекутся в одной точке, которая называется главным фокусом зеркала F . Расстояние от фокуса до полюса зеркала называют фокусным расстоянием и обозначают той же буквой F . У вогнутого сферического зеркала главный фокус действительный. Он расположен посередине между центром и полюсом зеркала (центром сферической поверхности), значит фокусное расстояние: ОF = СF = R/2.

Пользуясь законами отражения света, можно геометрически построить изображение предмета в зеркале. На рисунке светящаяся точка S расположена перед вогнутым зеркалом. Проведём от неё к зеркалу три луча и построим отражённые лучи. Эти отражённые лучи пересекутся в точке S1. Так как мы взяли три произвольных луча, исходящих из точки S, то и все другие лучи, падающие из этой точки на зеркало, после отражения пересекутся в точке S1 Следовательно, точка S1 является изображением точки S. Для геометрического построения изображения точки достаточно знать направление распространения двух лучей, выходящих из этой точки. Лучи эти могут быть выбраны совершенно произвольно. Однако удобнее пользоваться лучами, ход которых после отражения от зеркала заранее известен.

Построим изображение точки S в вогнутом зеркале. Для этого проведём из точки S два луча. Луч SA параллелен оптической оси зеркала; после отражения он пройдёт через фокус зеркала F. Другой луч SB проведём через фокус зеркала; отразившись от зеркала, он пойдёт параллельно оптической оси. В точке S1 оба отражённых луча пересекутся. Эта точка и будет изображением точки S, в ней пересекутся все отражённые зеркалом лучи, идущие из точки S.Изображение предмета складывается из изображений множества отдельных точек этого предмета. Чтобы построить изображение предмета в вогнутом зеркале, достаточно построить изображение двух крайних точек этого предмета. Изображения остальных точек расположатся между ними. На рисунке предмет изображён в виде стрелки АВ. Построив указанным выше способом изображения точек А и В, получим изображение всего предмета А1В1. Предмет АВ находится за центром шаровой поверхности зеркала (за точкой С). Его изображение А1В1 оказалось между фокусом F и центром шаровой поверхности зеркала С. По отношению к предмету оно уменьшенное и перевёрнутое. Изображение А1В1 действительное, так как отражённые от зеркала лучи действительно пересекаются в точках А1 и В1. Такое изображение можно получить на экране.

2.3.4. Изображение в сферическом выпуклом зеркале.

Сферическое зеркало называетсявыпуклым , еслиотражение происходит от внешней поверхности сферического сегмента, т. е. если центр зеркаланаходится к наблюдателю ближе, чем края зеркала.

Если параллельный пучок лучей падает навыпуклоезеркало, то отраженные лучи рассеиваются, но их продолжение (пунктир) пересекаются у главном фокусе выпуклого зеркала. То есть главный фокус выпуклого зеркала является мнимым.

Фокусным расстояниям сферических зеркал приписывается определенный знак, для выпуклого где R - радиус кривизны зеркала: OF=CF=-R/2.

Свойство вогнутых зеркал фокусировать параллельный их оси пучок света используется в телескопах-рефлекторах. На обратном явлении — преобразовании в зеркале пучка света от источника, находящегося в фокусе, в параллельный пучок — основано действие прожектора. Зеркала, применяемые в сочетании с линзами, образуют обширную группу зеркально-линзовых систем. В лазерах зеркалах применяют в качестве элементов оптических резонаторов. Отсутствие хроматических аберраций обусловило использование зеркал в монохроматорах (особенно инфракрасного излучения) и многих др. приборах.

Помимо измерительных и оптических приборов, зеркала применяют и в др. областях техники, например в гелиоконцентраторах, гелиоустановках и установках для зонной плавки (действие этих устройств основано на свойстве вогнутых зеркал концентрировать в небольшом объёме энергию излучения). В медицине из зеркал наиболее распространён лобный рефлектор — вогнутое зеркало с отверстием посередине, предназначенное для направления узкого пучка света внутрь глаза, уха, носа, глотки и гортани. Зеркала многообразных конструкций и форм применяют также для исследований в стоматологии, хирургии, гинекологии и т.д.

Вогнутые зеркала используют для изготовления прожекторов: источник света помещают в фокусе зеркала, отраженные лучи идут от зеркала параллельным пучком. Если взять вогнутое зеркало больших размеров, то в фокусе можно получить очень высокую температуру. Тут можно разместить резервуар с водой для получения горячей воды,например, для бытовых нужд за счёт энергии Солнца.

С помощью вогнутых зеркал можно направить большую часть света, излучаемого источником, в нужном направлении. Для этого вблизи источника света помещается вогнутое зеркало, или, как его называют, рефлектор. Так устраиваются автомобильные фары, проекционные и карманные фонари, прожекторы.

Прожектор состоит из двух главных частей: мощного источника света и большого вогнутого зеркала. При указанном на рисунке расположении источника и зеркала отражённые от зеркала лучи света идут почти параллельным пучком.

Крупный прожектор может освещать предметы, находящиеся на расстоянии 10—12 км от него. Такой прожектор виден с очень больших расстояний, если глаз окажется в области посылаемого прожектором светового пучка. Мощные прожекторы используются при устройстве маяков. Кроме того, вогнутые зеркала применяются в телескопах-рефлекторах, с помощью которых наблюдают небесные тела.

Практическая часть

1. Исследование параллельных лучей.

Цель: Показать, что параллельные лучи сходятся в фокусе F и точечный источник света, помещенный в F, создает в вогнутом зеркале параллельный пучок света.

Приборы и материалы: вогнутое зеркало, источник света, собирающая линза,

Ход работы:

При помощи проектора с тремя щелями направьте три параллельных луча на вогнутое зеркало (рис., а).

Измерить линейкой расстояние FP, чтобы получить фокусное расстояние. Для иллюстрации принципа обратимости света поместите «точечный» источник света в F, фокус зеркала (см. рис., б). Образуется параллельный пучок света.

Если на зеркало падают параллельные лучи, которые не параллельны главной оптической оси, то они сфокусируются в точке F1, которая лежит прямо под F.

Вывод: лучи, идущие параллельно оптической оси пересекаются в фокусе.

Фокус вогнутого зеркала.

Цель: измерить фокусное расстояние вогнутого зеркала

Приборы и материалы: вогнутое зеркало, источник света(окно в солнечный день), белая картонка,

Ход работы:

1.Направьте вогнутое зеркало на ярко освещенное окно в солнечный день. Держите белую картонку между зеркалом и окном, как показано на рисунке.

2. Перемещайте картонку (или зеркало), пока на ней не образуется четкое перевернутое изображение окна. Это изображение появится на картонке, когда она окажется в фокальной плоскости. Измерьте линейкой расстояние от зеркала до картонки.

3. Повторите несколько раз фокусирование изображения окна, чтобы получить различные значения.

4. Подсчитайте среднее значение фокусного расстояния вогнутого зеркала.

5.На главной оптической оси существует точка С, все лучи, исходящие из нее, падают на зеркало нормально (перпендикулярно) и отражаются через эту же точку (рис., а). Эта точка называется центром кривизны С зеркала и является центром сферы, частью которой является это зеркало. Расстояние от полюса Р зеркала до центра кривизны С известно как радиус кривизны вогнутого зеркала (рис., б).

6.Увеличить интенсивность света, идущего направо от источника, возможно помещением источника света в точку С, поскольку свет слева от лампы после падения на зеркало будет отражен обратно через С.

Вывод: Мы показали теоретически и экспериментально, что r = 2ƒ, это означает, что фокусное расстояние вогнутого зеркала также может быть подсчитано по формуле ƒ = r/2.

Создание прожектора.

Цель: практическое создание прожектора

Приборы и материалы: мощный источник света, большое вогнутое зеркало,

Ход работы:

Прожектор состоит из источника света (лампы, дающей ненаправленный, или направленный под широким углом свет) ирефлектора и/или линзы, концентрирующих свет в нужном направлении. В качестве рефлектора обычно используетсяпараболическое, либо гиперболическое (в случае использования совместно с линзой) зеркало. В качестве линзы обычно используется линза Френеля, что позволяет достичь меньших габаритов и массы, чем при использовании обычных линз. Прожекторы, предназначенные для освещения открытых пространств, требуют обязательной защиты от пыли и влаги.

Для освещения железнодорожных и автомобильных развязок, перронов аэровокзалов, морских портов, бассейнов, футбольныхполей используются металлогалогенные прожекторы.

Прожектор состоит из источника света (лампы, дающей ненаправленный, или направленный под широким углом свет) и рефлектора и/или линзы, концентрирующих свет в нужном направлении. В качестве рефлектора обычно используется параболическое, либо гиперболическое (в случае использования совместно с линзой) зеркало.

Прожекторы применяются для освещения как внутри помещений, так и больших открытых пространств. Они предназначены для освещения стадионов, сцен, бассейнов и фасадов зданий. Мощность таких светильников подбирается в зависимости от площади и расчетной интенсивности освещения.

Принцип действия прожектора: в фокусе параболического зеркала помещается лампочка - на выходе получается хорошо сколлимированный пучок света. для большей эффективности лампочка прикрывается зеркалом с внешней стороны.

Hа картинке нарисован ход лучей в этой системе: красным - лучи, напрямую отраженные от параболического зеркала, синим - отраженные сначала от сферического зеркала, центр которoго совпадает с центром лампочки: такое зeркало точно возвращает луч тогда, откуда он пришел - но запускает в обратном направлении.

Радиус кривизны r вогнутого зеркала.

Цель: Измерение радиуса кривизны r вогнутого зеркала.

Приборы и материалы: вогнутое зеркало, источник света, линейка

Ход работы:

Маленький освещенный объект, помещенный в центр кривизны С вогнутого зеркала, посылает лучи света к зеркалу, которое затем отражает их обратно к точке С и образует перевернутое изображение рядом с объектом. Установите прибор и вогнутое зеркало, как показано на рисунке а. Необходимо слегка наклонить зеркало на его подставке так, чтобы пятно света оказалось на «экране» рядом с объектом.

Двигайте источник света по направлению к зеркалу (или от него), пока не образуется четкое перевернутое изображение рядом с объектом. Измерительной линейкой отмерьте расстояние от полюса Р зеркала до объекта, который теперь находится в точке С.

Запишите значение r в таблицу результатов. Повторите эксперимент, но на этот раз оставьте источник света неподвижным и двигайте зеркало на подставке, пока изображение снова точно не сфокусируется. Измерьте и запишите второе значение r. Подсчитайте среднее значение радиуса кривизны r.

3.5 Применение сферических, цилиндрических и параболических зеркал

С помощью выпуклого зеркала можно заглянуть за угол.

С помощью очень длинного вогнутого зеркала можно нагревать воду в трубке, расположенной в его фокусе.

С помощью системы из двух вогнутых зеркал на ветровое стекло машины можно выводить различные параметры. В своей работе, приоткрыв тайну кривых зеркал, я погрузился в волшебный мир.

Литература:

Учебники Физика - 11 кл. (раздел геометрическая оптика) В.А. Касьянов.

Справочник фельдшера, А. Шабанов, издательство «Медицина», Москва, 1976г.

Электронное пособие «Открытая физика 1.1» под редакцией профессора МФТИ С.М. Козела.

Справочник по физике, А.С. Енухович, Москва «Просвещение». 1978г.

Справочник по физике и технике, А.С. Енухович, Москва, «Просвещение», 1989г.

Ландсберг Г.С. Элементарный учебник физики. — 13-е изд. — М.: Физматлит, 2003. — Т. 3. Колебания и волны. Оптика. Атомная и ядерная физика. — С. 249-266. — 656 с.

Гершун А. Л.,. Электрический прожектор // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Прожектор в Большой советской энциклопедии

Карякин Н. А. Световые приборы прожекторного и проекторного типов, М.: 1966.

Трембач В. В. Световые приборы, М.: 1972.

Применение сферических зеркал http://kaf-fiz-1586.narod.ru/11bf/dop_uchebnik/curved_mirrors.htm

История возникновения зеркал http://www.klintsy.ru/music/istorija-vozniknovenija-zerkal_2538.html

На этом уроке вы узнаете об отражении света и мы сформулируем основные законы отражения света. Ознакомимся с этими понятиями не только с точки зрения геометрической оптики, но и с точки зрения волновой природы света.

Как мы видим подавляющее большинство предметов вокруг нас, ведь они не являются источниками света? Ответ вам хорошо знаком, вы его получили еще в курсе физики 8 класса. Мы видим окружающий нас мир за счет отражения света.

Для начала вспомним определение.

Когда световой луч падает на границу раздела двух сред, он испытывает отражение, то есть возвращается в исходную среду.

Обратите внимание на следующее: отражение света - это далеко не единственный возможный исход дальнейшего поведения падающего луча, частично он проникает в другую среду, то есть поглощается.

Поглощение света (абсорбция) - явление потери энергии световой волной, проходящей через вещество.

Построим падающий луч , отраженный луч и перпендикуляр в точку падения (рис. 1.).

Рис. 1. Падающий луч

Углом падения называется угол между падающим лучом и перпендикуляром (),

Угол скольжения.

Эти законы впервые были сформулированы Евклидом в его труде «Катоптрика». И с ними мы уже ознакомились в рамках программы физики 8 класса.

Законы отражения света

1. Падающий луч, отраженный луч и перпендикуляр в точку падения лежат в одной плоскости.

2. Угол падения равен углу отражения.

Из закона отражения света следует обратимость световых лучей. То есть если мы поменяем местами падающий луч и отраженный, то ничего не изменится с точки зрения траектории распространения светового потока.

Спектр применения закона отражения света весьма широк. Это и тот факт, с которого мы начали урок, что большинство предметов вокруг нас мы видим именно в отраженном свете (луну, дерево, стол). Еще одним хорошим примером использования отражения света являются зеркала и светоотражатели (катафоты).

Катафоты

Разберемся в принципе работы простого световозвращателя.

Катафот (от древнегреческого kata - приставка со значением усилия, fos - «свет»), световозвращатель, фликер (от англ. flick - «мигать») - устройство, предназначенное для отражения луча света в сторону источника с минимальным рассеиванием.

Каждый велосипедист знает, что передвижение в темное время суток без наличия катафотов может быть опасным.

Также фликеры используются в униформах дорожных рабочих, сотрудников ГИБДД.

Как ни удивительно, свойство катафота основано на простейших геометрических фактах, в частности на законе отражения.

Отражение луча от зеркальной поверхности происходит по закону: угол падения равен углу отражения. Рассмотрим плоский случай: два зеркала, образующих угол в 90 градусов. Луч, идущий в плоскости и попадающий на одно из зеркал, после отражения от второго зеркала уйдет ровно в том направлении, в котором пришел (см. рис. 2).

Рис. 2. Принцип действия углового катафота

Для получения такого эффекта в обычном трехмерном пространстве необходимо расположить три зеркала во взаимно перпендикулярных плоскостях. Возьмем уголок куба с краем в виде правильного треугольника. Луч, попавший на такую систему зеркал, после отражения от трех плоскостей уйдет параллельно пришедшему лучу в обратном направлении (см. рис. 3.).

Рис. 3. Уголковый отражатель

Произойдет световозвращение. Именно это простое устройство с его свойствами и называют уголковым отражателем.

Рассмотрим отражение плоской волны (волна называется плоской, если поверхности равной фазы представляют собой плоскости) (рис. 1.)

Рис. 4. Отражение плоской волны

На рисунке - поверхность, и - два луча падающей плоской волны, они параллельны друг другу, а плоскость - волновая поверхность. Волновую поверхность отраженной волны можно получить, если провести огибающую вторичных волн, центры которых лежат на границе раздела сред.

Различные участки волновой поверхности достигают отражающей границы не одновременно. Возбуждение колебаний в точке начнется раньше, чем в точке на промежуток времени . В момент когда волна достигнет точки и в этой точке начнется возбуждение колебаний, вторичная волна с центром в точке (отраженный луч ) уже будет представлять собой полусферу радиусом . Исходя из того, что мы только что записали, этот радиус так же будет равен отрезку .

Теперь мы видим: , треугольники и - прямоугольные, а значит, . А в свою очередь, и есть угол падения . А - угол отражения . Следовательно, мы получаем, что угол падения равен углу отражения .

Итак, при помощи принципа Гюйгенса ми доказали закон отражения света. Получить это же доказательство можно, пользуясь принципом Ферма.

В качестве примера (рис. 5.) изображено отражение от волнообразной, шероховатой поверхности.

Рис. 5. Отражение от шероховатой, волнообразной поверхности

На рисунке видно, что отраженные лучи идут в самых различных направлениях, Ведь направление перпендикуляра к точке падения для разного луча будет разным, соответственно, и угол падения, и угол отражения тоже будут разными.

Поверхность считается неровной, если размеры ее неровностей не меньше длины световых волн.

Поверхность, которая будет отражать лучи во все стороны равномерно, называется матовой. Таким образом, матовая поверхность гарантирует нам рассеянное или диффузное отражение, которое возникает вследствие неровностей, шероховатостей, царапин.

Поверхность, которая равномерно рассевает свет во все стороны, называется абсолютно матовой. В природе абсолютно матовую поверхность вы не встретите, тем не менее к ним очень близки поверхность снега, бумаги и фарфора.

Если же размер неровностей поверхности меньше длинны световой волны, то такая поверхность будет называться зеркальной.

При отражении от зеркальной поверхности параллельность пучка сохраняется (рис. 6.).

Рис. 6. Отражение от зеркальной поверхности

Приблизительно зеркальной является гладкая поверхность воды, стекла и полированного металла. Даже матовая поверхность может оказаться зеркальной, если изменить угол падения лучей.

В начале урока мы говорили о том, что часть падающего луча отражается, а часть поглощается. В физике есть величина, которая характеризует, какая доля энергии падающего луча отразилась, а какая поглотилась.

Альбедо

Альбедо - коэффициент, который показывает, какая доля энергии падающего луча отражается от поверхности, (от латинского albedo - «белизна») - характеристика диффузной отражательной способности поверхности.

Или иначе - это доля, выраженная в процентах отраженной радиации энергии от поступающей на поверхность.

Чем ближе альбедо к ста, тем больше энергия отражается от поверхности. Несложно догадаться, что коэффициент альбедо зависит от цвета поверхности, в частности, от белой поверхности энергия будет значительно лучше отражаться, чем от черной.

Самое большое альбедо для веществ у снега. Оно составляет порядка 70-90 %, в зависимости от его новизны и сорта. Именно поэтому снег медленно тает, пока он свежий, а точнее белый. Значения альбедо для других веществ, поверхностей указаны на рисунке 7.

Рис. 7. Значение альбедо для некоторых поверхностей

Очень важным примером применения закона отражения света являются плоские зеркала - плоская поверхность, которая зеркально отражает свет. Такие зеркала есть у вас в доме.

Разберемся, как строить изображение предметов в плоском зеркале (рис. 8.).

Рис. 8. Построение изображения предмета в плоском зеркале

Точечный источник света, испускающий лучи в разные направления, возьмем два близких луча, падающих на плоское зеркало. Отраженные лучи пойдут так, будто они исходят из точки , которая симметрична точке относительно плоскости зеркала. Самое интересное начнется, когда отраженные лучи попадут нам в глаз: наш мозг сам достраивает расходящийся пучок, продолжая его за зеркало до точки

Нам кажется, что отраженные лучи исходят из точки .

Эта точка и служит изображением источника света . Конечно же, в реальности за зеркалом ничего не светится, это всего лишь иллюзия, поэтому эту точку называют мнимым изображением.

От расположения источника и размеров зеркала зависит область видения - область пространства, из которой видно изображение источника. Область видения задается краями зеркала и .

Например, в зеркало в ванной можно смотреться под определенным углом, если отойти от него вбок, то вы себя или предмет, который хотите рассмотреть, не увидите.

Для того чтобы построить изображение произвольного предмета в плоском зеркале, необходимо построить изображение каждой его точки. Но если мы знаем, что изображение точки симметрично относительно плоскости зеркала, то и изображение предмета будет симметричным относительно плоскости зеркала (рис. 9.)