Какие выражения называются тождественно равными. Тождественные преобразования выражений

Тождественные преобразования представляют собой работу, которую мы проводим с числовыми и буквенными выражениями, а также с выражениями, которые содержат переменные. Все эти преобразования мы проводим для того, чтобы привести исходное выражение к такому виду, который будет удобен для решения задачи. Основные виды тождественных преобразований мы рассмотрим в этой теме.

Yandex.RTB R-A-339285-1

Тождественное преобразование выражения. Что это такое?

Впервые встречаемся с понятием тождественных преобразованный мы на уроках алгебры в 7 классе. Тогда же мы впервые знакомимся с понятием тождественно равных выражений. Давайте разберемся с понятиями и определениями, чтобы облегчить усвоение темы.

Определение 1

Тождественное преобразование выражения – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Часто это определение используется в сокращенном виде, в котором опускается слово «тождественное». Предполагается, что мы в любом случае проводим преобразование выражения таким образом, чтобы получить выражение, тождественное исходному, и это не требуется отдельно подчеркивать.

Проиллюстрируем данное определение примерами.

Пример 1

Если мы заменим выражение x + 3 − 2 на тождественно равное ему выражение x + 1 , то мы проведем при этом тождественное преобразование выражения x + 3 − 2 .

Пример 2

Замена выражения 2 · a 6 на выражение a 3 – это тождественное преобразование, тогда как замена выражения x на выражение x 2 не является тождественным преобразованием, так как выражения x и x 2 не являются тождественно равными.

Обращаем ваше внимание на форму записи выражений при проведении тождественных преобразований. Обычно мы записываем исходное и полученное в ходе преобразования выражения в виде равенства. Так, запись x + 1 + 2 = x + 3 означает, что выражение x + 1 + 2 было приведено к виду x + 3 .

Последовательное выполнение действий приводит нас к цепочке равенств, которая представляет собой несколько расположенных подряд тождественных преобразований. Так, запись x + 1 + 2 = x + 3 = 3 + x мы понимаем как последовательное проведение двух преобразований: сначала выражение x + 1 + 2 привели к виду x + 3 , а его – к виду 3 + x .

Тождественные преобразования и ОДЗ

Ряд выражений, которые мы начинаем изучать в 8 классе, имеют смысл не при любых значениях переменных. Проведение тождественных преобразований в этих случаях требует от нас внимания к области допустимых значений переменных (ОДЗ). Выполнение тождественных преобразований может оставлять ОДЗ неизменной или же сужать ее.

Пример 3

При выполнении перехода от выражения a + (− b) к выражению a − b область допустимых значений переменных a и b остается прежней.

Пример 4

Переход от выражения x к выражению x 2 x приводит к сужению области допустимых значений переменной x от множества всех действительных чисел до множества всех действительных чисел, из которого был исключен ноль.

Пример 5

Тождественное преобразование выражения x 2 x выражением х приводит к расширению области допустимых значений переменной x от множества всех действительных чисел за исключением нуля до множества всех действительных чисел.

Сужение или расширение области допустимых значений переменных при проведении тождественных преобразований имеет значение при решении задач, так как может повлиять на точность проведения вычислений и привести к появлению ошибок.

Основные тождественные преобразования

Давайте теперь посмотрим, какими бывают тождественные преобразования и как они выполняются. Выделим те виды тождественных преобразований, с которыми нам приходится иметь дело чаще всего, в группу основных.

Помимо основных тождественных преобразований существует ряд преобразований, которые относятся к выражениям конкретного вида. Для дробей это приемы сокращения и приведения к новому знаменателю. Для выражений с корнями и степенями все действия, которые выполняются на базе свойств корней и степеней. Для логарифмических выражений действия, которые проводятся на основе свойств логарифмов. Для тригонометрических выражений все действия с использованием тригонометрических формул. Все эти частные преобразования подробно разбираются в отдельных темах, которые можно найти на нашем ресурсе. В связи с этим в этой стстье мы на них останавливаться не будем.

Перейдем к рассмотрению основных тождественных преобразований.

Перестановка местами слагаемых, множителей

Начнем с перестановки слагаемых местами. С этим тождественным преобразованием мы имеем дело чаще всего. И основным правилом здесь можно считать следующее утверждение: в любой сумме перестановка слагаемых местами не отражается на результате.

Основано это правило на переместительном и сочетательном свойствах сложения. Эти свойства позволяют нам переставлять слагаемые местами и получать при этом выражения, которые тождественно равны исходным. Именно поэтому перестановка слагаемых местами в сумме является тождественным преобразованием.

Пример 6

У нас есть сумма трех слагаемых 3 + 5 + 7 . Если мы поменяем местами слагаемые 3 и 5 , то выражение примет вид 5 + 3 + 7 . Вариантов перестановки местами слагаемых в данном случае несколько. Все они приводят к получению выражений, тождественно равных исходному.

В качестве слагаемых в сумме могут выступать не только числа, но и выражения. Их точно так же, как и числа, можно переставлять местами, не влияя на конечный результат вычислений.

Пример 7

В сумме трех слагаемых 1 a + b , a 2 + 2 · a + 5 + a 7 · a 3 и - 12 · a вида 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 + (- 12) · a слагаемые можно переставить, например, так (- 12) · a + 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 . В свою очередь можно переставить местами слагаемые в знаменателе дроби 1 a + b , при этом дробь примет вид 1 b + a . А выражение под знаком корня a 2 + 2 · a + 5 тоже является суммой, в которой можно поменять местами слагаемые.

Точно так же, как и слагаемые, в исходных выражениях можно менять местами множители и получать тождественно верные уравнения. Проведение этого действия регулируется следующим правилом:

Определение 2

В произведении перестановка множителей местами не влияет на результат вычислений.

Основано это правило на переместительном и сочетательном свойствах умножения, которые подтверждают верность тождественного преобразования.

Пример 8

Произведение 3 · 5 · 7 перестановкой множителей можно представить в одном из следующих видов: 5 · 3 · 7 , 5 · 7 · 3 , 7 · 3 · 5 , 7 · 5 · 3 или 3 · 7 · 5 .

Пример 9

Перестановка множителей в произведении x + 1 · x 2 - x + 1 x даст x 2 - x + 1 x · x + 1

Раскрытие скобок

Скобки могут содержать записи числовых выражений и выражений с переменными. Эти выражения могут быть преобразованы в тождественно равные выражения, в которых скобок не будет вообще или их будет меньше, чем в исходных выражениях. Этот способ преобразования выражений называют раскрытием скобок.

Пример 10

Проведем действия со скобками в выражении вида 3 + x − 1 x для того, чтобы получить тождественно верное выражение 3 + x − 1 x .

Выражение 3 · x - 1 + - 1 + x 1 - x можно преобразовать в тождественно равное выражение без скобок 3 · x - 3 - 1 + x 1 - x .

Правила преобразования выражений со скобками мы подробно разобрали в теме «Раскрытие скобок», которая размещена на нашем ресурсе.

Группировка слагаемых, множителей

В случаях, когда мы имеем дело с тремя и большим количеством слагаемых, мы можем прибегнуть к такому виду тождественных преобразований как группировка слагаемых. Под этим способом преобразований подразумевают объединение нескольких слагаемых в группу путем их перестановки и заключения в скобки.

При проведении группировки слагаемые меняются местами таким образом, чтобы группируемые слагаемые оказались в записи выражения рядом. После этого их можно заключить в скобки.

Пример 11

Возьмем выражение 5 + 7 + 1 . Если мы сгруппируем первое слагаемое с третьим, то получим (5 + 1) + 7 .

Группировка множителей проводится аналогично группировке слагаемых.

Пример 12

В произведении 2 · 3 · 4 · 5 можно сгруппировать первый множитель с третьим, а второй – с четвертым, при этом придем к выражению (2 · 4) · (3 · 5) . А если бы мы сгруппировали первый, второй и четвертый множители, то получили бы выражение (2 · 3 · 5) · 4 .

Слагаемые и множители, которые группируются, могут быть представлены как простыми числами, так и выражениями. Правила группировки были подробно разобраны в теме «Группировка слагаемых и множителей».

Замена разностей суммами, частных произведениями и обратно

Замена разностей суммами стала возможна благодаря нашему знакомству с противоположными числами. Теперь вычитание из числа a числа b можно рассматривать как прибавление к числу a числа − b . Равенство a − b = a + (− b) можно считать справедливым и на его основе проводить замену разностей суммами.

Пример 13

Возьмем выражение 4 + 3 − 2 , в котором разность чисел 3 − 2 мы можем записать как сумму 3 + (− 2) . Получим 4 + 3 + (− 2) .

Пример 14

Все разности в выражении 5 + 2 · x − x 2 − 3 · x 3 − 0 , 2 можно заменить суммами как 5 + 2 · x + (− x 2) + (− 3 · x 3) + (− 0 , 2) .

Мы можем переходить к суммам от любых разностей. Аналогично мы можем произвести обратную замену.

Замена деления на умножение на число, обратное делителю, становится возможным благодаря понятию взаимно обратных чисел. Это преобразование можно записать равенством a: b = a · (b − 1) .

Это правило было положено в основу правила деления обыкновенных дробей.

Пример 15

Частное 1 2: 3 5 можно заменить произведением вида 1 2 · 5 3 .

Точно также по аналогии деление может быть заменено умножением.

Пример 16

В случае с выражением 1 + 5: x: (x + 3) заменить деление на x можно на умножение на 1 x . Деление на x + 3 мы можем заменить умножением на 1 x + 3 . Преобразование позволяет нам получить выражение, тождественное исходному: 1 + 5 · 1 x · 1 x + 3 .

Замена умножения делением поводится по схеме a · b = a: (b − 1) .

Пример 17

В выражении 5 · x x 2 + 1 - 3 умножение можно заменить делением как 5: x 2 + 1 x - 3 .

Выполнение действий с числами

Выполнение действий с числами подчиняется правилу порядка выполнения действий. Сначала проводятся действия со степенями чисел и корнями из чисел. После этого мы заменяем логарифмы, тригонометрические и прочие функции на их значения. Затем выполняются действия в скобках. И затем уже можно проводить все остальные действия слева направо. Важно помнить, что умножение и деление проводят до сложения и вычитания.

Действия с числами позволяют преобразовать исходное выражение в тождественное равное ему.

Пример 18

Преобразуем выражение 3 · 2 3 - 1 · a + 4 · x 2 + 5 · x ,выполнив все возможные действия с числами.

Решение

Первым делом обратим внимание на степень 2 3 и корень 4 и вычислим их значения: 2 3 = 8 и 4 = 2 2 = 2 .

Подставим полученные значения в исходное выражение и получим: 3 · (8 - 1) · a + 2 · (x 2 + 5 · x) .

Теперь проведем действия в скобках: 8 − 1 = 7 . И перейдем к выражению 3 · 7 · a + 2 · (x 2 + 5 · x) .

Нам осталось выполнить умножение чисел 3 и 7 . Получаем: 21 · a + 2 · (x 2 + 5 · x) .

Ответ: 3 · 2 3 - 1 · a + 4 · x 2 + 5 · x = 21 · a + 2 · (x 2 + 5 · x)

Действиям с числами могут предшествовать другие виды тождественных преобразований, таких, например, как группировка чисел или раскрытие скобок.

Пример 19

Возьмем выражение 3 + 2 · (6: 3) · x · (y 3 · 4) − 2 + 11 .

Решение

Первым делом проведем замену частного в скобках 6: 3 на его значение 2 . Получим: 3 + 2 · 2 · x · (y 3 · 4) − 2 + 11 .

Раскроем скобки: 3 + 2 · 2 · x · (y 3 · 4) − 2 + 11 = 3 + 2 · 2 · x · y 3 · 4 − 2 + 11 .

Сгруппируем числовые множители в произведении, а также слагаемые, являющиеся числами: (3 − 2 + 11) + (2 · 2 · 4) · x · y 3 .

Выполним действия в скобках: (3 − 2 + 11) + (2 · 2 · 4) · x · y 3 = 12 + 16 · x · y 3

Ответ: 3 + 2 · (6: 3) · x · (y 3 · 4) − 2 + 11 = 12 + 16 · x · y 3

Если мы работаем с числовыми выражениями, то целью нашей работы будет нахождение значения выражения. Если же мы преобразуем выражения с переменными, то целью наших действий будет упрощение выражения.

Вынесение за скобки общего множителя

В тех случаях, когда слагаемые в выражении имеют одинаковый множитель, то мы можем вынести этот общий множитель за скобки. Для этого нам сначала необходимо представить исходное выражение как произведение общего множителя и выражения в скобках, которое состоит из исходных слагаемых без общего множителя.

Пример 20

В числовом выражении 2 · 7 + 2 · 3 мы можем вынести общий множитель 2 за скобки и получить тождественно верное выражение вида 2 · (7 + 3) .

Освежить в памяти правил вынесения общего множителя за скобки вы можете в соответствующем разделе нашего ресурса. В материале подробно рассмотрены правила вынесения общего множителя за скобки и приведены многочисленные примеры.

Приведение подобных слагаемых

Теперь перейдем к суммам, которые содержат подобные слагаемые. Тут возможно два варианта: суммы, содержащие одинаковые слагаемые, и суммы, слагаемые которых отличаются числовым коэффициентом. Действия с суммами, содержащими подобные слагаемые, носит название приведения подобных слагаемых. Проводится оно следующим образом: мы выносим общую буквенную часть за скобки и проводим вычисление суммы числовых коэффициентов в скобках.

Пример 21

Рассмотрим выражение 1 + 4 · x − 2 · x . Мы можем вынести буквенную часть x за скобки и получить выражение 1 + x · (4 − 2) . Проведем вычисление значения выражения в скобках и получим сумму вида 1 + x · 2 .

Замена чисел и выражений тождественно равными им выражениями

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Пример 22 Пример 23

Рассмотрим выражение 1 + a 5 , в котором степень a 5 мы можем заменить тождественно равным ей произведением, например, вида a · a 4 . Это нам даст выражение 1 + a · a 4 .

Выполненное преобразование искусственное. Оно имеет смысл лишь при подготовке к проведению других преобразований.

Пример 24

Рассмотрим преобразование суммы 4 · x 3 + 2 · x 2 . Здесь слагаемое 4 · x 3 мы можем представить как произведение 2 · x 2 · 2 · x . В результате исходное выражение принимает вид 2 · x 2 · 2 · x + 2 · x 2 . Теперь мы можем выделить общий множитель 2 · x 2 и вынести его за скобки: 2 · x 2 · (2 · x + 1) .

Прибавление и вычитание одного и того же числа

Прибавление и одновременное вычитание одного и того же числа или выражения являетс искусственным приемом преобразования выражений.

Пример 25

Рассмотрим выражение x 2 + 2 · x . Мы можем прибавить или отнять от него единицу, что позволит нам в последующем провести еще одно тождественное преобразование - выделить квадрат двучлена: x 2 + 2 · x = x 2 + 2 · x + 1 − 1 = (x + 1) 2 − 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Рассмотрим две равенства:

1. a 12 *a 3 = a 7 *a 8

Это равенство будет выполняться при любых значениях переменной а. Областью допустимых значений для того равенства будет все множество вещественных чисел.

2. a 12: a 3 = a 2 *a 7 .

Это неравенство будет выполняться для всех значений переменной а, кроме а равного нулю. Областью допустимых значений для этого неравенства будет все множество вещественных чисел, кроме нуля.

О каждом из этих равенств можно утверждать, что оно будет верно при любых допустимых значениях переменных а. Такие равенства в математике называются тождествами .

Понятие тождества

Тождество - это равенство, верное при любых допустимых значениях переменных. Если в данное равенство подставить вместо переменных любые допустимые значения, то должно получиться верное числовое равенство.

Стоит отметить, что верные числовые равенства тоже являются тождествами. Тождествами, например, будут являться свойства действий над числами.

3. a + b = b + a;

4. a + (b + c) = (a + b) + c;

6. a*(b*c) = (a*b)*c;

7. a*(b + c) = a*b + a*c;

11. a*(-1) = -a.

Если два выражения при любых допустимых переменных соответственно равны, то такие выражения называют тождественно равными . Ниже представлены несколько примеров тождественно равных выражений:

1. (a 2) 4 и a 8 ;

2. a*b*(-a^2*b) и -a 3 *b 2 ;

3. ((x 3 *x 8)/x) и x 10 .

Мы всегда можем заменить одно выражение любым другим выражением, тождественно равным первому. Такая замена будет являться тождественным преобразованием.

Примеры тождеств

Пример 1: являются ли тождествами следующие равенства:

1. a + 5 = 5 + a;

2. a*(-b) = -a*b;

3. 3*a*3*b = 9*a*b;

Не все представленные выше выражения будут являться тождествами. Из этих равенств тождествами являются лишь 1,2 и 3 равенства. Какие бы числа мы в них не подставили, вместо переменных а и b у нас все равно получатся верные числовые равенства.

А вот 4 равенство уже не является тождеством. Потому что не при всех допустимых значениях это равенство будет выполняться. Например, при значениях a = 5 и b = 2 получится следующий результат:

Данное равенство не верно, так как число 3 не равняется числу -3.


Получив представление о тождествах , логично перейти к знакомству с . В этой статье мы ответим на вопрос, что такое тождественно равные выражения, а также на примерах разберемся, какие выражения являются тождественно равными, а какие – нет.

Навигация по странице.

Что такое тождественно равные выражения?

Определение тождественно равных выражений дается параллельно с определением тождества. Это происходит на уроках алгебры в 7 классе. В учебнике по алгебре для 7 классов автора Ю. Н. Макарычев приведена такая формулировка:

Определение.

– это выражения, значения которых равны при любых значениях входящих в них переменных. Числовые выражения, которым отвечают одинаковые значения, также называют тождественно равными.

Это определение используется вплоть до 8 класса, оно справедливо для целых выражений , так как они имеют смысл для любых значений входящих в них переменных. А в 8 классе определение тождественно равных выражений уточняется. Поясним, с чем это связано.

В 8 классе начинается изучение других видов выражений, которые, в отличие от целых выражений, при некоторых значениях переменных могут не иметь смысла. Это заставляет ввести определения допустимых и недопустимых значений переменных, а также области допустимых значений ОДЗ переменной, и как следствие - внести уточнение в определение тождественно равных выражений.

Определение.

Два выражения, значения которых равны при всех допустимых значениях входящих в них переменных, называются тождественно равными выражениями . Два числовых выражения, имеющие одинаковые значения, также называются тождественно равными.

В данном определении тождественно равных выражений стоит уточнить смысл фразы «при всех допустимых значениях входящих в них переменных». Она подразумевает все такие значения переменных, при которых одновременно имеют смысл оба тождественно равных выражения. Эту мысль разъясним в следующем пункте, рассмотрев примеры.

Определение тождественно равных выражений в учебнике Мордковича А. Г. дается немного иначе:

Определение.

Тождественно равные выражения – это выражения, стоящие в левой и правой частях тождества.

По смыслу это и предыдущее определения совпадают.

Примеры тождественно равных выражений

Введенные в предыдущем пункте определения позволяют привести примеры тождественно равных выражений .

Начнем с тождественно равных числовых выражений. Числовые выражения 1+2 и 2+1 являются тождественно равными, так как им соответствуют равные значения 3 и 3 . Также тождественно равны выражения 5 и 30:6 , как и выражения (2 2) 3 и 2 6 (значения последних выражений равны в силу ). А вот числовые выражения 3+2 и 3−2 не являются тождественно равными, так как им соответствуют значения 5 и 1 соответственно, а они не равны.

Теперь приведем примеры тождественно равных выражений с переменными. Таковыми являются выражения a+b и b+a . Действительно, при любых значениях переменных a и b записанные выражения принимают одинаковые значения (что следует из чисел). К примеру, при a=1 и b=2 имеем a+b=1+2=3 и b+a=2+1=3 . При любых других значениях переменных a и b мы также получим равные значения этих выражений. Выражения 0·x·y·z и 0 тоже тождественно равны при любых значениях переменных x , y и z . А вот выражения 2·x и 3·x не являются тождественно равными, так как, к примеру, при x=1 их значения не равны. Действительно, при x=1 выражение 2·x равно 2·1=2 , а выражение 3·x равно 3·1=3 .

Когда области допустимых значений переменных в выражениях совпадают, как, например, в выражениях a+1 и 1+a , или a·b·0 и 0 , или и , и значения этих выражений равны при всех значениях переменных из этих областей, то тут все понятно – эти выражения тождественно равны при всех допустимых значениях входящих в них переменных. Так a+1≡1+a при любых a , выражения a·b·0 и 0 тождественно равны при любых значениях переменных a и b , а выражения и тождественно равны при всех x из ; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • После того, как мы разобрались с понятием тождеств, можно переходить к изучению тождественно равных выражений. Цель данной статьи – объяснить, что это такое, и показать на примерах, какие выражения будут тождественно равными другим.

    Yandex.RTB R-A-339285-1

    Тождественно равные выражения: определение

    Понятие тождественно равных выражений обычно изучается вместе с самим понятием тождества в рамках школьного курса алгебры. Приведем основное определение, взятое из одного учебника:

    Определение 1

    Тождественно равными друг другу будут такие выражения, значения которых будут одинаковы при любых возможных значениях переменных, входящих в их состав.

    Также тождественно равными считаются такие числовые выражения, которым будут отвечать одни и те же значения.

    Это достаточно широкое определение, которое будет верным для всех целых выражений, смысл которых при изменении значений переменных не меняется. Однако позже возникает необходимость уточнения данного определения, поскольку помимо целых существуют и другие виды выражений, которые не будут иметь смысла при определенных переменных. Отсюда возникает понятие допустимости и недопустимости тех или иных значений переменных, а также необходимость определять область допустимых значений. Сформулируем уточненное определение.

    Определение 2

    Тождественно равные выражения – это те выражения, значения которых равны друг другу при любых допустимых значениях переменных, входящих в их состав. Числовые выражения будут тождественно равными друг другу при условии одинаковых значений.

    Фраза «при любых допустимых значениях переменных» указывает на все те значения переменных, при которых оба выражения будут иметь смысл. Это положение мы объясним позже, когда будем приводить примеры тождественно равных выражений.

    Можно указать еще и такое определение:

    Определение 3

    Тождественно равными выражениями называются выражения, расположенные в одном тождестве с левой и правой стороны.

    Примеры выражений, тождественно равных друг другу

    Используя определения, данные выше, рассмотрим несколько примеров таких выражений.

    Для начала возьмем числовые выражения.

    Пример 1

    Так, 2 + 4 и 4 + 2 будут тождественно равными друг другу, поскольку их результаты будут равны (6 и 6).

    Пример 2

    Точно так же тождественно равны выражения 3 и 30: 10 , (2 2) 3 и 2 6 (для вычисления значения последнего выражений нужно знать свойства степени).

    Пример 3

    А вот выражения 4 - 2 и 9 - 1 равными не будут, поскольку их значения разные.

    Перейдем к примерам буквенных выражений. Тождественно равными будут a + b и b + a , причем от значений переменных это не зависит (равенство выражений в данном случае определяется переместительным свойством сложения).

    Пример 4

    Например, если a будет равно 4 , а b – 5 , то результаты все равно будут одинаковы.

    Еще один пример тождественно равных выражений с буквами – 0 · x · y · z и 0 . Какими бы ни были значения переменных в этом случае, будучи умноженными на 0 , они дадут 0 . Неравные выражения – 6 · x и 8 · x , поскольку они не будут равны при любом x .

    В том случае, если области допустимых значений переменных будут совпадать, например, в выражениях a + 6 и 6 + a или a · b · 0 и 0 , или x 4 и x , и значения самих выражений будут равны при любых переменных, то такие выражения считаются тождественно равными. Так, a + 8 = 8 + a при любом значении a , и a · b · 0 = 0 тоже, поскольку умножение на 0 любого числа дает в итоге 0 . Выражения x 4 и x будут тождественно равными при любых x из промежутка [ 0 , + ∞) .

    Но область допустимого значения в одном выражении может отличаться от области другого.

    Пример 5

    Например, возьмем два выражения: x − 1 и x - 1 · x x . Для первого из них областью допустимых значений x будет все множество действительных чисел, а для второго – множество всех действующих чисел, за исключением нуля, ведь тогда мы получим 0 в знаменателе, а такое деление не определено. У этих двух выражений есть общая область значений, образованная пересечением двух отдельных областей. Можно сделать вывод, что оба выражения x - 1 · x x и x − 1 будут иметь смысл при любых действительных значениях переменных, за исключением 0 .

    Основное свойство дроби также позволяет нам заключить, что x - 1 · x x и x − 1 будут равными при любом x, которое не является 0 . Значит, на общей области допустимых значений эти выражения будут тождественно равны друг другу, а при любом действительном x говорить о тождественном равенстве нельзя.

    Если мы заменяем одно выражение на другое, которое является тождественно равным ему, то этот процесс называется тождественным преобразованием. Это понятие очень важно, и подробно о нем мы поговорим в отдельном материале.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter