Какие бывают постоянные магниты. Постоянные магниты, их описание и принцип действия

Что такое постоянный магнит

Ферромагнитное изделие, способное сохранять значительную остаточную намагниченность после снятия внешнего магнитного поля, называется постоянным магнитом. Постоянные магниты изготавливают из различных металлов, таких как: кобальт, железо, никель, сплавы редкоземельных металлов (для неодимовых магнитов), а также из естественных минералов типа магнетитов.

Сфера применения постоянных магнитов сегодня очень широка, однако назначение их принципиально везде одно и то же - как источник постоянного магнитного поля без подвода электроэнергии. Таким образом, магнит - это тело, обладающее своим собственным .

Само же слово «магнит» происходит от греческого словосочетания, которое переводится как «камень из Магнесии», по названию азиатского города, где были в древности открыты залежи магнетита - магнитного железняка. С физической точки зрения элементарным магнитом является электрон, а магнитные свойства магнитов вообще обуславливаются магнитными моментами электронов, входящих в состав намагниченного материала.


Характеристики размагничивающего участка материала, из которого изготовлен постоянный магнит, определяют свойства того или иного постоянного магнита: чем выше коэрцитивная сила Нс, и чем выше остаточная магнитная индукция Вr – тем сильнее и стабильнее магнит.

Коэрцитивная сила (буквально в переводе с латинского - «удерживающая сила») - это , необходимого для полного размагничивания ферро- или ферримагнитного вещества. Таким образом, чем большей коэрцитивной силой обладает конкретный магнит, тем он устойчивее к размагничивающим факторам.

Единица измерения коэрцитивной силы - Ампер/метр. А , как известно, - это векторная величина, являющаяся силовой характеристикой магнитного поля. Характерное значение остаточной магнитной индукции постоянных магнитов - порядка 1 Тесла.

Виды и свойства постоянных магнитов

Ферритовые

Ферритовые магниты хоть и отличаются хрупкостью, но обладают хорошей коррозийной стойкостью, что при невысокой цене делает их наиболее распространенными. Такие магниты изготавливают из сплава оксида железа с ферритом бария или стронция. Данный состав позволяет материалу сохранять свои магнитные свойства в широком температурном диапазоне - от -30°C до +270°C.


Магнитные изделия в форме ферритовых колец, брусков и подков широко используются как в промышленности, так и в быту, в технике и электронике. Их используют в акустических системах, в генераторах, в . В автомобилестроении ферритовые магниты устанавливают в стартеры, в стеклоподъемники, в системы охлаждения и в вентиляторы.

Ферритовые магниты отличаются коэрцитивной силой порядка 200 кА/м и остаточной магнитной индукцией порядка 0,4 Тесла. В среднем, ферритовый магнит может прослужить от 10 до 30 лет.

Альнико (алюминий-никель-кобальт)

Постоянные магниты на основе сплава из алюминия, никеля и кобальта отличаются непревзойденной температурной устойчивостью и стабильностью: они способны сохранять свои магнитные свойства при температурах до +550°C, хотя коэрцитивная сила, характерная для них, относительно мала. Под действием относительно небольшого магнитного поля, такие магниты потеряют исходные магнитные свойства.

Посудите сами: типичная коэрцитивная сила порядка 50 кА/м при остаточной намагниченности порядка 0,7 Тесла. Однако несмотря на эту особенность, магниты альнико незаменимы для некоторых научных исследований.

Типичное содержание компонентов в сплавах альнико с высокими магнитными свойствами изменяется в следующих пределах: алюминий - от 7 до 10%, никель - от 12 до 15%, кобальт - от 18 до 40%, и от 3 до 4% меди.

Чем больше кобальта, тем выше индукция насыщения и магнитная энергия сплава. Добавки в виде от 2 до 8% титана и всего 1% ниобия способствуют получению большей коэрцитивной силы - до 145 кА/м. Добавка от 0,5 до 1% кремния обеспечивает изотропию магнитных свойств.

Самариевые

Если нужна исключительная устойчивость к коррозии, окислению и температуре до +350°C, то магнитный сплав самария с кобальтом - то что надо.

По стоимости самарий-кобальтовые магниты дороже неодимовых за счёт более дефицитного и дорогого металла - кобальта. Тем не менее, именно их целесообразно применять в случае необходимости иметь минимальные размеры и вес конечных изделий.

Наиболее целесообразно это в космических аппаратах, авиационной и компьютерной технике, миниатюрных электродвигателях и магнитных муфтах, в носимых приборах и устройствах (часах, наушниках, мобильных телефонах и т.д.)

Благодаря особой коррозийной стойкости, именно самариевые магниты применяются в стратегических разработках и военных приложениях. Электродвигатели, генераторы, подъемные системы, мототехника – сильный магнит из сплава самария-кобальта идеально подходит для агрессивных сред и сложных условий эксплуатации. Коэрцитивная сила порядка 700 кА/м при остаточной магнитной индукции порядка 1 Тесла.

Неодимовые

Неодимовые магниты на сегодняшний день очень востребованы и представляются наиболее перспективными. Сплав неодим-железо-бор позволяет создавать супермагниты для различных сфер, начиная с защелок и игрушек, заканчивая и мощными подъемными машинами.


Высокая коэрцитивная сила порядка 1000 кА/м и остаточная намагниченность порядка 1,1 Тесла, позволяют магниту сохраняться на протяжении многих лет, за 10 лет неодимовый магнит теряет лишь 1% своей намагниченности, если температура его в условиях эксплуатации не превышает +80°C (для некоторых марок до +200°C). Таким образом, лишь два недостатка есть у неодимовых магнитов - хрупкость и низкая рабочая температура.

Магнитный порошок вместе со связующим компонентом образует мягкий, гибкий и легкий магнит. Связующие компоненты, такие как винил, каучук, пластик или акрил позволяют получать магниты различных форм и размеров.

Магнитная сила, конечно, уступает чистому магнитному материалу, но иногда такие решения необходимы для достижения определенных необычных для магнитов целей: в производстве рекламной продукции, при изготовлении съемных наклеек на авто, а также в изготовлении различных канцелярских и сувенирных товаров.

Одноименные полюса магнитов отталкиваются, а разноименные полюса притягиваются. Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. В чем, например, причина намагничивания железа?

Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси.

При движении электронов возникают элементарные магнитные поля. И если кусок железа внести во внешнее магнитное поле, то все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле куска железа. Так, если приложенное внешнее магнитное поле было достаточно сильным, то после его отключения кусок железа станет постоянным магнитом.


Знание формы и намагниченности постоянного магнита позволяет для расчетов заменить его эквивалентной системой электрических токов намагничивания. Такая замена возможна как при расчете характеристик магнитного поля, так и при расчетах сил, действующих на магнит со стороны внешнего поля. Для примера проведем расчет силы взаимодействия двух постоянных магнитов.

Пусть магниты имеют форму тонких цилиндров, их радиусы обозначим r1 и r2, толщины h1, h2 , оси магнитов совпадают, расстояние между магнитами обозначим z, будем считать, что оно значительно больше размеров магнитов.

Возникновение силы взаимодействия между магнитами объясняется традиционным способом: один магнит создает магнитное поле, которое воздействует на второй магнит.

Для расчета силы взаимодействия мысленно заменим магниты с однородной намагниченностью J1 и J2 круговыми токами, текущими по боковой поверхности цилиндров. Силы этих токов выразим через намагниченности магнитов, а их радиусы будем считать равными радиусам магнитов.

Разложим вектор индукции B магнитного поля, создаваемого первым магнитом в месте расположения второго на две составляющие: осевую, направленную вдоль оси магнита, и радиальную - перпендикулярную ей.

Для вычисления суммарной силы, действующей на кольцо, необходимо мысленно разбить его на малые элементы IΔl и просуммировать , действующие на каждые такой элемент.

Используя правило левой руки, легко показать, что осевая составляющая магнитного поля приводит к появлению сил Ампера, стремящихся растянуть (или сжать) кольцо – векторная сумма этих сил равна нулю.

Наличие радиальной составляющей поля приводит к возникновению сил Ампера, направленных вдоль оси магнитов, то есть к их притяжению или отталкиванию. Останется вычислить силы Ампера - это и будут силы взаимодействия между двумя магнитами.

Неодимовые и ферритовые магниты
Множество металлов обладает магнитными качествами, что позволяет использовать их во многих сферах промышленности и в быту. Еще недавно были широко распространены ферритовые магниты, сейчас же они все более вытесняются магнитами из сплава редкоземельного металла неодима, железа и бора. Последние приобретают все большую популярность. Какой магнит лучше – ферритовый или неодимовый, попробуем разобраться в этой статье.

Неодимовый магнит
Многие из нас слышали о неодимовых магнитах. Что это такое? Уникальные качества магнита обусловлены присутствием в сплаве неодима – химического элемента из группы лантаноидов таблицы Менделеева. Кроме основной составляющей, в состав неодимового магнита входят железо и бор, либо кобальт и иттрий. Изготавливается магнит из неодима способом нагрева порошковидной массы из действующих компонентов. Самая отличительная характеристика неодимового магнита – его мощность при достаточно малых размерах. Такой магнит обладает силой сцепления, в 10 и более раз превосходящей силу ферритовых магнитов.

Чтобы неодимовый магнит прослужил как можно дольше, на его поверхность наносят особый состав из никеля. Если же магнит планируется использовать в агрессивных либо высокотемпературных средах, то рекомендуется выбирать покрытие из цинка.

Применяются неодимовые магниты очень широко:
В качестве тисков или струбцины – мощность неодима обеспечивает равномерный зажим размещенного между магнитами материала.
Для развлечений – и детям, и взрослым одинаково интересно наблюдать за фокусами, поставленными при помощи данного магнита.
Для поиска предметов из стали и железа.
Для намагничивания металлических предметов. К вещам, что магнитит неодимовый магнит, относятся отвертки, иголки, ножи и другие изделия.
Для надежного закрепления на поверхности различных предметов.

Виды неодимовых магнитов
Неодимовые магниты выпускаются в различных конфигурациях и имеют разную массу. Даже небольшой магнит, размером 25*5 мм, способен выдержать вес до девяти килограмм и при неосторожном обращении может повредить кожу. А при использовании магнитов большей массы тем более нужно соблюдать определенные меры безопасности, чтобы исключить возможные травмы.

Ферритовый магнит – что это такое
Самыми распространенными среди обычных являются ферритовые магниты, представляющие собой сплав оксида железа с оксидами иных металлов. Простые магниты чаще всего изготавливаются в виде подковы. Среди основных характеристик ферромагнитов значатся:
Хорошая термостойкость.
Высокая магнитная проницаемость.
Низкая себестоимость.
На поверхность ферритовых магнитов обычно наносится маркировка полюсов красным и синим цветом.

Сравнение магнитов
Так чем отличается неодимовый магнит от обычного и как визуально можно определить эти различия? Неодимовые магниты стали очень популярны не так давно (технологии их производства всего около 30 лет), но уже применяются практически во всех сферах жизни. Как уже говорилось, самое главное отличие неодимового магнита от обычного – это его сила сцепления и основные магнитные характеристики: магнитная энергия, остаточная магнитная индукция и коэрцитивная сила. Значения этих характеристик во много раз превышают показатели ферромагнитов. Самый простой способ определить тип магнита – попробовать снять его с железной поверхности. Если он легко отделяется, то это ферромагнит, если же снять магнит удается только после приложения определенных усилий, то перед нами неодимовый магнит. Кроме данной особенности, магниты различаются еще по ряду признаков.

Срок службы
Если ферромагниты служат около 10 лет при правильном использовании и потом полностью размагничиваются, то срок службы неодимового магнита практически не ограничен. За человеческий век сила неодимовых магнитов теряется лишь на 1%.

Сила притяжения
Сила притяжения неодимового магнита при одинаковых размерах выше силы ферромагнита примерно в 10 раз. Поэтому маленький, но очень мощный магнит может использоваться в компьютерах и акустических системах, а также для изготовления различных сувениров и украшений.

Форма
Ферромагниты в основном производят в виде подковы с красной и синей лапками, показывающими отрицательный и положительный полюса. Подковообразная форма позволяет замкнуть линии магнитного поля для увеличения срока службы ферромагнита. Неодимовые магниты выпускаются самых различных форм и конфигураций – параллелепипед, кольцо, диск и другие. На их поверхности можно разместить несколько полюсов, то есть сделать их «мультиполярными».

Цена
Неодимовый магнит стоит дороже ферритового, что оправдывается его характеристиками и сроком службы. Купив магнит из неодима, вы получаете практически «вечный» магнит, по крайней мере, за вашу жизнь его качества почти не изменятся.

Преимущества и применение неодимового магнита
Таким образом, неодимовый магнит, несмотря на более высокую цену, обладает неоспоримыми преимуществами по сравнению с обычным ферритовым. Увеличенная мощность, долгий срок службы, различная форма изготовления обеспечили магниту из сплава «неодим-железо-бор» высокий спрос среди потребителей.

Зачем нужен неодимовый магнит
Что значит неодимовый магнит для современного человека в повседневной жизни? Кроме вышеперечисленных способов применения, популярный материал используется для:
Очистки аквариумов и других емкостей, а также моторного и трансмиссионного масла, применяемого в автотехнике.
Аккуратного выравнивания металлических поверхностей.
Размагничивания дисков, пленок и для многих других действий.
Конечно, все перечисленные в статье характеристики неодимовых магнитов имеют значение только при приобретении качественных материалов. Каждый, кто отдельно покупал неодимы в Мире Магнитов , знает, что интернет-магазин предоставляет все необходимые гарантии и сертификаты качества, а также обеспечивает каждого покупателя грамотной консультацией.

Ещё в Древнем Китае обратили внимание на свойство некоторых металлов притягивать. Это физическое явление получило название магнетизм, а материалы, обладающие этой способностью, назвали магнитами. Сейчас это свойство активно используется в радиолектронике и промышленности, а особо мощные магниты используют, в том числе и для поднятия и транспортировки больших объёмов металла. Применяются свойства этих материалов и в быту – многим известны магнитные открытки и буквы для обучения детей. Какие магниты бывают, где их используют, что такое неодимовый, об этом расскажет этот текст.

Виды магнитов

В современном мире их классифицируют по трём основным категориям по типу создаваемого ими магнитного поля:

  • постоянные, состоящие из природного материала, обладающего этими физическими свойствами, например, неодимовые;
  • временные, обладающие этими свойствами во время нахождения в поле действия магнитного поля;
  • электромагниты – это витки провода на сердечнике, создающие электромагнитное поле при прохождении энергии по проводнику.

В свою очередь, наиболее распространённые постоянные магниты подразделяются на пять основных классов, по своему химическому составу:

  • ферромагниты на основе железа и его сплавов с барием и стронцием;
  • неодимовые магниты, имеющие в своём составе редкоземельный металл неодим, в сплаве с железом и бором (Nd-Fe-B, NdFeB, NIB);
  • самариево-кобальтовые сплавы, имеющие сравнимые с неодимовым магнитные характеристики, но в тоже время более широкий температурный диапазон применения (SmCo);
  • сплав Альнико, он же ЮНДК, этот сплав отличается высокой коррозионной устойчивостью и высоким температурным пределом;
  • магнитопласты, представляющие собой смесь магнитного сплава со связующим, это позволяет создать изделия различных форм и размеров.

Сплавы магнитных металлов хрупкие и достаточно дешёвые изделия, обладающие средними качествами. Обычно это сплав оксида железа с ферритами стронция и бария. Температурный диапазон стабильной работы магнита не выше 250-270°C. Технические характеристики:

  • коэрцитивная сила – около 200 кА/м;
  • остаточная индукция – до 0,4 Тесла;
  • средний срок службы – 20-30 лет.

Что такое неодимовые магниты

Это наиболее мощные из постоянных, но в тоже время достаточно хрупкие и нестойкие к коррозии, в основе этих сплавов лежит редкоземельный минерал – неодим. Это самый сильный магнит из постоянных.

Характеристики:

  • коэрцитивная сила – около 1000 кА/м;
  • остаточная индукция – до 1,1 Тесла;
  • средний срок службы – до 50 лет.

Их применение ограничивает только низкий предел температурного диапазона, для наиболее термостойких марок неодимового магнита это 140°C, в то время как менее стойкие разрушаются при температуре свыше 80 градусов.

Самариевокобальтовые сплавы

Обладающие высокими техническими характеристиками, но в тоже время очень дорогие сплавы.

Характеристики:

  • коэрцитивная сила – около 700 кА/м;
  • остаточная индукция – до 0,8-1,0 Тесла;
  • средний срок службы – 15-20 лет.

Они используются для сложных условий работы: высокие температуры, агрессивные среды и большая нагрузка. Из-за сравнительно высокой стоимости их применение несколько ограничено.

Альнико

Порошковый сплав из кобальта (37-40%) с добавлением алюминия и никеля также обладает хорошими эксплуатационными характеристиками, кроме того способностью сохранять свои магнитные свойства при температурах до 550°C. Их технические характеристики ниже, чем у ферромагнитных сплавов и составляют:

  • коэрцитивная сила – около 50 кА/м;
  • остаточная индукция – до 0,7 Тесла;
  • средний срок службы – 10-20 лет.

Но, несмотря на это, именно этот сплав наиболее интересен для применения в научной сфере. Кроме того, добавление в сплав титана и ниобия способствует повышению коэрцетивной силы сплава до 145-150 кА/м.

Магнитопласты

Используются в основном в быту для изготовления магнитных открыток, календарей и прочих мелочей, характеристики магнитного поля незначительно падают из-за меньшей концентрации магнитного состава.

Это основные типы постоянных магнитов. Электромагнит по принципу действия и применению несколько отличается от таких сплавов.

Интересно. Неодимовые магниты используются практически повсеместно, в том числе и в дизайне для создания парящих конструкций, и в культуре для этих же целей.

Электромагнит и демагнитизатор

Если электромагнит создаёт поле при прохождении через витки обмотки электроэнергии, то демагнитизатор, наоборот, снимает остаточное магнитное поле. Применять этот эффект можно в разных целях. Например, что можно сделать демагнитизатором? Ранее демагнитизатор использовался для размагничивания воспроизводящих головок магнитофонов, кинескопов телевизоров и выполнения иных функций подобного рода. Сегодня его зачастую применяют в несколько незаконных целях, для размагничивания счётчиков после применения на них магнитов. Кроме того это устройство можно и нужно применять для снятия остаточного магнитного поля с инструментов.

Состоит демагнитизатор обычно из обычной катушки, иначе говоря, по устройству этот прибор полностью повторяет собой электромагнит. На катушку подаётся переменное напряжение, после чего устройство, с которого мы снимаем остаточное поле, убирается из зоны действия демагнитизатора, после чего он отключается

Важно! Использование магнита для «подкрутки» счётчика незаконно и влечёт за собой штраф. Неправильное использование демагнитизатора может привести к полному размагничиванию прибора и его выходу из строя.

Самостоятельное изготовление магнита

Для этого достаточно найти металлический брусок из стали или другого ферросплава, можно использовать составной сердечник трансформатора, после чего сделать обмотку. Намотать на сердечник несколько витков медной обмоточной проволоки. Для безопасности стоит включить в схему плавкий предохранитель. Как сделать мощный магнит? Для этого нужно увеличивать силу тока в обмотке, чем она выше, тем больше магнитная сила устройства.

При включении устройства в сеть и подаче электроэнергии на обмотку, устройство будет притягивать металл, то есть фактически это самый настоящий электромагнит, пусть и несколько упрощённой конструкции.

Магниты - это объекты, имеющие магнитное поле, которое привлекает или отталкивает некоторые материалы. Магниты были признаны очень полезными за свойство притягивать металлы. Магниты имеют широкое применение как в нашей повседневной жизни, так и в различных отраслях промышленности.


Они используются в игрушках, бытовой технике и сотнях вещей, которые есть дома. Основное применение магниты нашли в таких отраслях, как: добыча и горнодобывающая промышленность, при производстве керамики, пластмассы и стекла и многих других.

Магниты бывают различных форм, размеров и прочности. Они делятся два основных типа магнитов:

  • Магниты, созданные человеком
  • Природные магниты.
Природные магниты называются магнетит. Они богаты железом и минералами.

Люди создали синтетические магниты, которые сильнее, чем природные, их изготавливают из металлических сплавов. Искусственные магниты используются для тысяч целей и различаются по силе и магнитным свойствам.

Ниже приведены три типа искусственных магнитов:

  • Постоянные магниты
  • Временные магниты
Постоянные магниты

Постоянные магниты очень сильные и наиболее часто используемыми. Эти магниты называются так потому, что как только они получают намагничивание, то сохраняют свой магнетизм надолго или навсегда.

Причина этого в том, что магниты выполнены из веществ, содержащих атомы и молекулы, имеющие магнитные поля, которые усиливают друг друга. Однако при определенных, предусмотренных условиях эти магниты могут потерять свои магнитные свойства, например, в шоке.

Постоянные магниты имеют большое применение, начиная с магнитиков на холодильник до крупных промышленных предприятий. Они бывают разных размеров и форм и различаются по своему составу.

Некоторые распространенные типы постоянных магнитов:

  • Керамические
  • Алнико магниты
  • Самарий-кобальт
  • Неодим, железо и бор
Из них самарий-кобальтовые и неодимовые магниты относятся к категории редкоземельных магнитов.

Керамические

Керамические магниты также называют ферриты, они состоят из оксида железа и бария или карбоната стронция. Это действительно сильные магниты и широко используется в научных лабораториях. Они являются наиболее часто используемыми для экспериментальных целей.

Алнико магниты

Название состоит из первых букв химических элементов, из которых делаются магниты: ал(юминий), ни(кель), ко(бальт). Алнико-магниты очень сильные, их используют в качестве замены керамических магнитов для различных экспериментов, так как они более стабильны и более устойчивы к размагничиванию. Однако они дороже.

Самарий-кобальтовые магниты

Относятся к категории редкоземельных магнитов. Эти магниты имеют очень высокую магнитную силу и очень устойчивы к размагничиванию и окислению. Они очень дорогие и могут быть использованы для целей, требующих высокого магнетизма и устойчивости. Они впервые появились в 1970-х.

Неодим-железо-бор

Это еще один тип редкоземельных магнитов. Неодимовые магниты очень похожи на самарий-кобальтовые магниты, но менее устойчивы. Сантиметр этого магнита способен поднять металлическую пластину размером нескольких метров. Из-за их чрезвычайно высокого магнетизма они являются самыми дорогими магнитами в мире и из-за высокой стоимости они используются реже.

Гибкие магниты изготавливаются из плоских полос и листов. Эти магниты имеют наименьший магнетизм.

Временные магниты

Временные магниты действуют как магниты только тогда, когда помещаются в сильное магнитное поле от сильного магнита. Любые металлические предметы, такие как скрепки и гвозди после воздействия сильного магнитного поля могут действовать как магниты. Однако, как только удаляются с поля, они моментально теряют свой магнетизм. Временные магниты, несмотря на их временной магнетизм, приносят много пользы. В основном они используются в телефонах и электродвигателях.

Электромагниты очень сильные магниты, которые отличаются от указанных выше магнитов. Эти магниты работают по принципу, что провод, содержащий электрический ток, создает магнитное поле.

Он состоит из тяжелой металлической середины с проволочной катушкой. Когда ток проходит через провода - создается магнитное поле, которое в свою очередь намагничивает сердечник металла.

Полярность магнита может быть изменена путем регулирования протекающего количества тока, а также путем изменения своего направления. Они широко используются в телевизорах, радио, видеокассетах, компьютерах, мониторах и т.д.

Для создания элементов и устройств систем управления и автоматики используются магнитные материал ы, в которых, главным образом, выставляют такие требования:

1.Материал должен легко намагничиваться под действием постоянного поля или однополярного импульса поля и легко перемагничиваются в переменном поле, есть петля гистерезиса должна быть достаточно узкой с малым значением Н С и большим значением m. Такие требования позволяют повысить чувствительность электромагнитных элементов.

2.Материалы должен иметь большое значение индукции насыщения В S, т.е. обеспечивать проникновение большого магнитного потока в сердечник с соответствующим поперечным сечением. Выполнение такого требования позволяет получить наименьшие габариты и массу устройства, а если заданы габариты — то наибольшую мощность или напряжение на выходе устройства.

3.Пид работе в переменном магнитном поле в материале должны быть наименьшие затраты, которые образуют вихревые токи, магнитная вязкость и гистерезис, потому что они определяют рабочую температуру сердечника и устройства. Их снижение не только повышает КПД устройства, а также позволяет создать элементы, которые работают на повышенных частотах (400, 500, 1000 Гц и более) и имеют значительно большее быстродействие и меньшие габариты и массу, чем элементы, которые питаются напряжением промышленной частоты 50 Гц.



Кроме перечисленных основных требований к магнитных материалов, используемых в тех или других электромагнитных устройствах, выставляют специфические требования.

Так, для улучшения температурной стабильности (неизменности магнитных свойств при изменении температуры окружающей среды) важно, чтобы точка Кюри материала была как можно выше.

Чем ближе к единице коэффициент прямоугольности материала, тем линейная зависимость выходного сигнала от входного, тем легче распознаются сигналы в цифровых устройствах.

Ярко обнаружена магнитная анизотропия повышает качество устройств на тонких магнитных пленках, а высокая чистота кристаллической структуры материала является необходимым условием создания устройств на цилиндрических магнитных доменах.

Магнитные материалы можно разделить на магнитно-твердые , для которых напряженность Н с составляет десятки и сотни ампер на сантиметр и магнитно-мягкие с напряженностью Н с в десятые и сотые доли ампера на сантиметр. Магнитно-твердые материалы используются для изготовления постоянных магнитов, магнитно-мягкие — для изготовления элементов, в которых поле создается токами, проходящими по обмотках.

Для создания элементов и устройств СУА применяют, главным образом, магнитно-мягкие материалы . Магнитно-твердые порошковые материалы входят в феролакы, которыми покрывают магнитные ленты и диски.

Магнитно-мягкие материалы, можно разделить на три группы: электротехнические стали, сплавы на основе железа с другими металлами (никель, кобальт, алюминий) и ферриты (неметаллические ферромагнетики).

Электротехнические стали наиболее дешевые материалы, имеющие большие индукции насыщения (порядка 1,8 … 2,3 Тл), и это позволяет создавать из них компактные и дешевые электромагнитные элементы. Но из-за относительно большой (по сравнению с железоникелевых сплавами) коэрцитивная силу электротехнической стали (порядка 0,1 ¸ 0,5 А / см) чувствительность стальных элементов к изменениям внешнего поля, которое образуется обмотками, невелика.

Зализоникелевые сплавы (пермаллоя) дороже стальных в 15-20 раз, имеют меньшую индукцию насыщения, но позволяют получать высокочувствительные магнитные элементы за счет малой коэрцитивной силы и высокой начальной магнитной проницаемости. Зализоникелеви сплавы изготовляют в виде листов или лент. Толщина ленты иногда достигает нескольких микрометров.

Зализоалюминиевые сплавы 16ЮХ и 16ЮМ, которые содержат в своем составе 16% алюминия, по магнитным свойствам не уступают пермаллой, но имеют повышенную (10 … 20 раз больше, чем в пермаллой) износостойкость. Их широко применяют для изготовления магнитных головок в устройствах магнитной записи, где в процессе работы головка непрерывно трется о поверхность ленты.

Ферриты — это неметаллические магнитные материалы (твердые растворы), изготовленные из смеси оксидов железа с оксидами магния, меди, марганца, никеля и других металлов. Общая формула ферритов имеет вид МеO × Fе2 Оз, где Me — любой металл.

Оксиды измельчают на маленькие куски и смешивают в определенной пропорции. Магнитопроводы необходимых размеров и конфигураций прессуют из полученной смеси при давлении 10-30 кН / см 2 (1-3 т / см 2) и выжигают при температуре 1200-1400 ° С. Готовые магнитопроводы серо-черного цвета имеют высокую твердость, но довольно хрупкие. Обмотки обычно наматывают без непосредственно на ферритовые магнитопроводы без дополнительной изоляции последних. Удельный
электрическое сопротивление ферритов в миллионы раз больше чем у металлических ферромагнетиков, что практически устраняет вихревые токи. Это позволяет перемагничиные ферриты с частотой в сотни килогерц и обеспечивать высокую скорость выполнения операций современных управляющих и вычислительных машин. Наиболее распространенные магниево-марганцевые ферриты марок ВТ (1.3ВТ, 0,16 ВТ и др.).. Они имеют относительно низкую точку Кюри (140 — 300 ° С), что обусловливает значительную изменение их магнитных параметров при нагревании. Ферриты на базе лития, с точкой Кюри 630 ° С, имеют значительно лучшие температурные характеристики. Для магнитопроводов цифровых устройств широко применяют бифериты, есть ферриты с двумя металлами, например магниево-марганцевые или литий-натриевые ферриты, а также полифериты, которые являются твердыми растворами трех и более ферритов.

Магнитно-твердые материалы. Магнитно-твердые материалы, как уже отмечалось, применяют:

Для изготовления постоянных магнитов;

— Для записи информации (например, для звукозаписи).

При оценке свойств магнитно-твердых материалов могут оказаться существенными механические свойства (прочность), обрабатываемость материала в процессе производства, а также плотность, удельное электрическое сопротивление, и др.. Особенно важно в некоторых случаях стабильности магнитных свойств.

Важнейшими материалами для постоянных магнитов являются сплавы Fe-Ni-Al. Большую роль в образовании высококоэрцитивной состояния этих сплавов играет механизм дисперсионного твердения.

Такие материалы имеют большое значение коэрцитивной силы, потому что их намагничивания происходит в основном за счет процессов вращения.

Сплавы Fe-Ni-Al без легирующих элементов не применяют из-за их сравнительно низкие магнитные свойства. Наиболее распространенными являются сплавы, легированные медью и кобальтом. Висококобальтови сплавы, содержащие более 15% Co, как правило, используют с магнитной или с магнитной и кристаллической текстурой.

Магнитная текстура является результатом термомагнитного обработки, которая заключается в охлаждении в магнитном поле напряженностью 160-280 кА / м сплава от высоких температур (1250-1300 0 С) до примерно 500 0 С. При этом рост магнитных характеристик происходит только в направлении действия поля, т.е. материал становится магнитно-анизотропными.

Дальнейшее существенное повышение магнитных свойств сплавов Fe-Ni-Al-(Co) возможно созданием магнитов из макроструктурой в виде столбчатых кристаллов. Кристаллическую структуру получают в процессе особых условий охлаждения сплава.

Приведем краткие рекомендации по выбору марок сплавов. Безкобальтови сплавы (ЮНД и др.). Есть дешевые, их свойства относительно низкие. Сплавы ЮНДК15 и ЮНДК18 применяют, когда требуются относительно высокие магнитные свойства и материал не должен иметь магнитную анизотропию. Сплавы, содержащие 24% Со (ЮН13ДК24 и др.)., Имеют высокие магнитные свойства в направлении магнитной текстуры, хорошо технологически освоены и имеют широкое применение.

Сплавы с направленной кристаллизацией, например ЮН13ДК25БА, и др.., Имеющих наибольшую W max и, следовательно, могут обеспечить наименьшие массу и габариты магнитных систем.

В тех случаях, когда система разомкнутая, применяют сплавы с наиболее высокой Н с, например титанистий сплав ЮНДК35Т5.

Сплавы с монокристалевой структурой (ЮНДК35Т5АА и ЮНДК40Т8АА) по сравнению со сплавами с направленной кристаллизацией имеют следующие преимущества: более высокие магнитные свойства за счет дальнейшего совершенствования структуры, наличие трех взаимно перпендикулярных направлений, в которых свойства оптимальны; лучшие механические свойства.

Основные недостатки сплавов Fe-Ni-Al-(Co) — плохие механические свойства (высокие твердость и хрупкость), что значительно усложняет их механическую обработку.

Магниты из порошков. Магниты, которые получают методами порошковой металлургии, можно разделить на металлокерамические, металопластични и оксидные.

Для первых двух групп физические процессы образования высококоэрцитивной состояния зависят от тех же причин, что и для монолитных магнитов, для двух других групп необходимым условием получения высококоэрцитивной свойств является измельченный до определенной степени дисперсии состояние, которому соответствует однодоменна структура.

Металлокерамические магниты получают из металлических порошков прессованием их без материала, что их связывает, и спеканием при высокой температуре. По магнитным свойствам они лишь немного уступают литым магнитам, но дороже остальных.

Металопластичные магниты производят, как металлокерамические, из металлических порошков, но прессуют их вместе с изолирующей связкой и подвергают нагреву до невысокой температуры, необходимой для полимеризации вещества, что их связывает. По сравнению с отлитыми магнитами они снижены магнитные свойства, но имеют большой электрическое сопротивление, малый плотностью и относительно дешевы.

Среди окислительных магнитов практическое значение имеют магниты на основе ферритов бария и кобальта.

Бариевые магниты. Промышленность выпускает две группы бариевых магнитов: изотропные (БИ) и анизотропные (БА).

Бариевые магниты по сравнению с отлитыми имеют очень большую коэрцитивная силу и малый остаточную индукцию. Удельное электрическое сопротивление r бариевых магнитов в миллионы раз выше, чем r металлических материалов, что позволяет использовать бариевые магниты в магнитных цепях, которые подвергаются воздействию полей высокой частоты. Бариевые магниты не содержат дефицитных и дорогих материалов, они примерно в 10 раз дешевле чем магниты с ЮНДК24.

К недостаткам бариевых магнитов следует отнести плохие механические свойства (высокие хрупкость и твердость) и, самое главное, большую зависимость магнитных свойств от температуры. Температурный коэффициент остаточной магнитной индукции ТК В r бариевых магнитов примерно в 10 раз больше, чем ТК B r литых магнитов. Кроме того, бариевые магниты имеют необратимость свойств при охлаждении, т.е. имеют более высокую температурную стабильность, чем бариевые. Однако и они имеют температурный гистерезис, но он появляется не в области отрицательных температур, как в бариевых магнитов, а при положительных температурах (при нагревании свыше 80 ° С).

Другие материалы для постоянных магнитов.

Мартенситные стали. Мартенсит называют вид микроструктуры стали, получаемой при ее закалке. Образование мартенсита сопровождается значительными объемными изменениями, созданием большого внутреннего напряжения решетки и возникновением больших значений коэрцитивной силы.

Мартенситные стали начали применять для изготовления постоянных магнитов раньше других материалов. В данное их используют сравнительно мало из-за низких магнитные свойства. Однако полностью от них еще не отказались, потому что они недороги и допускают механическую обработку на металлорежущих станках.

Сплавы, пластически деформируются. Эти сплавы обладают высокими в отношении механической обработки свойства. Они хорошо штампуются, режутся ножницами, обрабатываются на металлорежущих станках. Из сплавов, пластически деформируются, можно изготовить ленты, пластины, листы, проволока. В отдельных случаях (при изготовлении мелких магнитов сложной конфигурации) целесообразно применение металлокерамической технологии. Марок сплавов, пластически деформируются много, и физические процессы, благодаря которым они имеют высокие магнитные свойства, разнообразны. Наиболее распространенные сплавы кунифе (Cu-Ni-Fe) и викалой (Co-V). Сплавы кунифе анизотропные, намагничиваются в направлении прокатки, часто применяются в виде проволоки малых толщин, а также штамповки. Викалой применяют для изготовления мельчайших магнитов сложной или ажурной конфигурации и как высокопрочные магнитные ленты или проволока.

Сплавы на основе благородных металлов. К ним относятся сплавы серебра с марганцем и алюминием (сильманал) и сплавы платины с железом (77,8% Pt; 22,2% Fe) или платины с кобальтом (76,7% Pt; 23,3 % Со). Материалы этой группы, особенно те, которые содержат платину, очень дорогие, поэтому их применяют только для сверхминиатюрных магнитов массой в несколько миллиграммов. При изготовлении магнитов из всех сплавов этой группы широко используют металлокерамическую технологию.

Эластичные магниты. Как отмечалось, важнейшим недостатком основных групп материалов для постоянных магнитов — литых сплавов и магнитотвердых ферритов — является их плохие механические свойства (высокие твердость и хрупкость). Применение же сплавов, пластически деформируются ограничено их высокой стоимостью. В последнее время появились магниты на резиновой основе. Они могут быть любой формы, что позволяет технология резины — в виде шнуров, длинных полос, листов и т.п. Такой материал легко режется ножницами, штампуется, сгибается, скручивается. Известно применение «магнитной резины» как писем магнитной памяти для вычислительных машин, магнитов для систем отклонения в телевидении, магнитов, корректируют, и др..

Эластичные магниты изготавливаются из резины и мелкого порошка магнитотвердых материалов (наполнитель). В качестве наполнителя чаще всего используют феррит бария.

Материалы для магнитных лент. Под магнитными лентами понимают носители магнитной записи информации. Наибольшее распространение имеют сплошные металлические ленты из нержавеющей стали, биметаллические ленты и ленты на пластмассовой основе с порошковым рабочим слоем. Сплошные металлические ленты используют, главным образом, в специальных целях и при работе в широком температурном диапазоне; ленты на пластмассовой основе имеют более широкое применение. Основное назначение носителя магнитной записи состоит в создании на поверхности воспроизведенной головки магнитного поля, напряженность которого меняется (при протяжке ленты) во времени так же, как и сигнал, что записывается. Свойства лент с покрытием магнитными порошками существенно зависят не только от свойств исходных материалов, но и от степени измельчения частиц, объемной плотности магнитного материала в рабочем слое, ориентации частиц при наличии у них анизотропии формы и т.п.

Рабочий слой (или толщина металлической ленты) должен быть как можно тоньше, а сама лента — гладкой и гибкой для обеспечения максимального взаимодействия (магнитного контакта) между магнитными материалами ленты и головки. Остаточная намагниченность материала должна быть возможно более высокой.

К коэрцитивной силы предъявляют противоречивые требования: для уменьшения саморозмагничування необходимо по возможности более высокое значение Н с (не менее 24 кА / м), а для облегчения процесса стирания записи желательна малая Н с. Требования высокой остаточной намагниченности и минимальной чувствительности к саморозмагничування наилучшим образом удовлетворяются при прямоугольной форме участка розмагничувальнои петли гистерезиса, т.е. желательно иметь максимальное значение коэффициента выпуклости. Температурные и другие изменения магнитных свойств материала ленты должны быть наименьшими.

Промышленность выпускает магнитофонные ленты из сплава, не ржавеет, ЭП-31А и биметалла ЕП-352/353. Ленты имеют толщину 0,005-0,01 мм, Н с = 24 — 40 кА / м; В r = 0,08 Тл.

Отечественные ленты на пластмассовой основе изготавливают преимущественно типов А2601-6 (тип 6 — для студийных магнитофонов) и А4402 — 6 (тип 10 — для бытовых и репортажных). В соответствии ГОСТу в обозначениях лент используют следующее: первый элемент — буквенный индекс означает назначение ленты: А — звукозапись, Т — видеозапись, В — вычислительная техника, И — точный запись: второй элемент — цифровой индекс (от 0 до 9), обозначает материал основы: 2 — диацетилцелюлоза, 3 — триацетилцелюлоза, 4 — полиетилентерефталаг (лавсан), третий элемент — цифровой индекс (от 0 до 9), означает толщину ленты:
2 — 18 мкм, 3 — 27 мкм, 4 — 36 мкм, 6 — 55 мкм, 9 — более 100 мкм, четвертый элемент — цифровой индекс (от 01 до 99), означает номер технологической разработки; пятый элемент — числовое значение номинальной ширины ленты в миллиметрах. После пятого элемента должен быть дополнительный буквенный индекс: П — для перфорированных лент; Р — для лент, используемых в радиовещании Б — для лент с бытовых магнитофонов.

В качестве материалов для магнитных порошков находят применение: феррит железа (магнетит), феррит кобальта, двуокись хрома и др.. Каждый из них имеет свои преимущества и недостатки. Наибольшее применение получил гамма-окись железа (g-Fe 2 O 3) игольчатой формы с длиной частиц около 0,4 мкм и отношением длины к диаметру, приблизительно равным трем. Получается порошок (g-Fe 2 O 3) за счет окисления магнетита (феррита железа) FeО × Fe 2 O 3 нагреванием его на воздухе при температуре около 150 о С.

Изготовление магнитных лент может быть разнообразным. Чаще рабочий слой (магнитный лак) наносят на готовую основу, например, поливом лака из фильеры. Магнитный лак готовится заранее и состоит из магнитного порошка, связующего, растворителя, пластификатора и различных добавок, способствующих смачиванию и разделения частиц порошка и уменьшению абразивности рабочего слоя.

При использовании порошков с анизотропией формы частиц (например, игольчатых g-Fe) в процессе производства ленты доли ориентируются определенным образом в результате воздействия на них магнитного поля. Окончательное обработки ленты состоит в каландрирования и полировке для улучшения качества ее поверхности.

Лента типа 6 обеспечивает высокое качество записи и воспроизведения звука при использовании в профессиональной аппаратуре на скорости 19,05 см / с и в бытовых магнитофонах на скорости 9,53 и 4,75 см / с.

Ленты необходимо хранить при температуре 10-25 ° С и относительной влажности воздуха 50-60%; недопустима температура выше 30 ° С, температура ниже 10 ° С не рекомендуется.

Помимо типов 6 и 10 отечественная промышленность производит и другие типы лент, например ленту Т4402-50 шириной 50,8 мм для поперечно-строчной записи черно-белого изображения.

Сплавы на основе редкоземельных металлов (РЗМ). Ряд соединений и сплавов с РЗМ имеет очень высокие значения коэрцитивной силы и максимальной удельной энергии. Из этой группы материалов наиболее интересные интерметаллических соединения типа RСо 5, где R — редкоземельный металл.

Кроме рассмотренных основных групп магнитных материалов в технике используют и некоторые другие, которые имеют ограниченную область применения.

Термомагнитные материалы. Термомагнитными называют материалы с существенной зависимостью магнитной индукции (точнее, намагниченности насыщения, потому что обычно термомагнитный материал работает в режиме насыщения) от температуры в определенном интервале (в большинстве случаев +60 ¸ -60 0 С). Термомагнитные материалы используют, главным образом, как магнитные шунты или дополнительные опоры. Включение таких элементов в магнитные цепи позволяет осуществить компенсацию температурной погрешности или обеспечить изменение магнитной индукции в воздушном зазоре по заданному закону (терморегулирования).

Магнитострикционные материалы. Магнитострикции имеет непосредственное техническое применение в магнитострикционных вибраторах (генераторах) звуковых и ультразвуковых колебаний, а также в некоторых радиотехнических схемах и устройствах (вместо кварца для стабилизации частоты, в электромеханических фильтрах и т.д.).

В качестве магнитострикционных материалов применяют никель, пермендюр (сплавы Fe-Co, отличающиеся высокой намагниченностью насыщения), Альфер (сплавы Fe-Al), никелевый и никелькобальтовий ферриты и др..

Никель имеет большое абсолютное значение коэффициента магнитострикции насыщения l S = D l / l = -35 × 10 -6 (l — длина пластины к воздействию поля, D l — изменение длины в результате воздействия поля; знак минус означает уменьшение длины). Обычно применяют никель марки Н толщиной 0,1 мм в виде жесткой необожженной ленты. После вырубки пластины оксидируют нагреванием на воздухе до 800 о С в течении 15-25 мин. Образованная таким образом оксидная пленка служит для электрической изоляции пластин при составлении пакета. Никель имеет высокие антикоррозийные свойства и малый температурный коэффициент модуля упругости.

В последнее время более широко применяют магнитострикционные ферриты, особенно в прецизионных фильтрах.

Сплавы с высокой индукцией насыщения. Из обычных материалов наивысшую индукцию имеет железо (»2,1 Тл).

В тех случаях, когда выдвигаются наиболее высокие требования к габаритам устройства, его массы и размера потока, применяют зализокобальтови сплавы, в которых индукция насыщения достигает 2,43 Тл, что позволяет получить экономию в массе и объеме по сравнению с железом на 15 — 20%. На практике используют сплавы, содержащие 30-51% Со и 1,5-2,0% V, улучшает технологические свойства сплавов, возможность обработки их в холодном состоянии. Эти сплавы называют пермендюр.

Индукция насыщения сплавов с большим и малым содержанием кобальта примерно одинакова. Висококобальтови сплавы в слабых и средних полях имеют большие значения магнитной проницаемости, чем низькокобальтови, однако последние дешевле.

Кроме большого значения индукции насыщения пермендюр имеет значительную обратимую проницаемость, что делает его особенно ценным как материал для телефонных мембран. Недостатки пермендюр: малый удельное электрическое сопротивление r, высокая стоимость и дефицитность кобальта и ванадия. Пермендюр применяют в постоянных магнитных полях или в слабых переменных полях с сильным подмагничиванием постоянным полем. Из материалов этой группы нормированный сплав 50 КФ (49,0-51% Со; 1,5-2,0% V). Сплав имеет индукцию насыщения не менее 2,35 Тл и q = 980 ° С.

Преимущество зализокобальтових сплавов перед технически чистым железом ощущается при магнитной индукции выше 1,0 Тл. Различие в значениях магнитной проницаемости достигает максимума при значении магнитной индукции около 1,8 Тл, при этом проницаемость кобальтовых сплавов больше проницаемости мягких сортов железа в десятки раз.

Васюра А.С. — Книга «Элементы и устройства систем управления автоматики»