Какая наука изучает ткани? Гистология — что это за наука.

Какая наука изучает многообразие организмов и объединяет их в группы на основе родства: 1) морфология; систематика; 3) экология; 4) ботаника. Способность

растений скрещиваться и давать плодовитое потомство – это основной признак: 1) рода; 2) отдела; 3) класса; 4) вида. Если на гаметофите развиваются только архегонии, то он называется: 1) обоеполым; 2) мужским; 3) женским; 4) спорофитом. Что представляет взрослое растение у голосеменных: 1) спорофит; 2) гаметофит; 3) слоевище; 4) архегоний. Назовите структурные компоненты клеток зелёных водорослей, в которых происходит фотосинтез: 1) вакуоли; 2) хлоропласты; 3) хромотафоры; ; 4) ядра. Назовите зелёную водоросль, у которой имеется красный «глазок» для восприятия света: 1) хлорелла; 2) хламидомонада; 3) спирогира; 4) улотрикс. Что можно сказать о наличии жгутиков у хламидомонады: 1) отсутствуют; 2) есть 2 жгутика; 3) есть 4 жгутика; 4) имеются реснички. Как называется тело ламинарии: 1) корпус; 2) хроматофор; 3) слоевище; 4)эндосперм. Назовите способ размножения хламидомоныды, при котором образуются зигота: 1) бесполое; 2) половое. Что из перечисленного характерно для кукушкина льна: 1) имеет корни; 2) многолетнее растение; 3) однодомное растение; 4) относится к покрытосеменным. Назовите особенность, характерную для сфагнума: 1) каждый лист состоит из клеток двух разных типов – зелёных живых и бесцветных мертвых; 2) хорошо развиты ризоиды; 3) крупные широкие листья; 4) споры не образуются. Что образуется из проросшей споры у кукушкина льна: 1) зигота; 2) зародыш; 3) протонема; 4) зрелое растение. Какие растения относят к семенным: 1) моховидные; 2) плауновидные; 3) хвощевидные; 4) папоротниковидные; 5)хвойные. Назовите стадию развития папоротника, из которой формируется заросток: 1) спора; 2) зигота; 3) зародыш; 4) яйцеклетка. Назовите растение, у которого развиваются весенние спороносные и летние фотосинтезирующие побеги: 1) папоротник щитовник мужской; 2) плаун булавовидный; 3) хвощ полевой; 4) кукушкин лён. Как называют орган, в котором у папоротника развиваются сперматозоиды: 1) архегоний; 2) антеридий; 3) спорангий; 4) семенник. Где у хвоща полевого в основном происходит фотосинтез: 1) в стеблях; 2) в листьях; 3) в корневище; 4) в спороносных колосках. Назовите особенность расположения хвоинок сосны обыкновенной: 1) отходят непосредственно от молодых ветвей; 2) отходят от мелких чешуйчатых бурых листочков; 3) отходят от укороченных побегов; 4) отходят крупным пучком. Где у сосны образуются яйцеклетки и питательная ткань – эндосперм: 1) на чешуйках мужских шишек; 2) в спорангиях; 3) в семязачатках; 4) на заростке. Сколько лет живут хвоинки лиственницы: 1) менее 1 года; 2) 2-3 года; 3) 4-5 лет; 4) 5-7 лет. Назовите значение хвоинок сосны: 1) увеличивают фотосинтезирующую поверхность; 2) защищают от поедания животными; 3) позволяют экономить воду и легко переносить засуху; 4) не затеняют ближайшие хвоинки. Назовите структуру у сосны обыкновенной, оболочка которой формирует два пузырька, наполненные воздухом: 1) семязачаток; 2) пылинка; 3) чешуя женских шишек; 4) семя.

Что из перечисленного ниже для хвойных не характерно: 1) образование семян; 2) образование смолы; 3) образование мужских и женских шишек; 4) настоящие сосуды, обеспечивающие быстрое перемещение воды.

10) в поджелудочной железе вырабатываются гормоны какие? 11) какая наука изучает химический состав, строение и процессы

ГИСТОЛОГИЯ
(наука о тканях)
ТКАНЬ - общность гистологических
элементов (клеток, волокон,
межклеточного вещества), объединенных
общностью происхождения, строения и
выполняемой функции

Классификация тканей

Эпителиальные ткани
характеризуются пограничным положением в организме
(обычно на границе с внешней средой), сомкнутым
расположением клеток, образующих пласты, практическим
отсутствием межклеточного вещества, полярностью клеток.
Производные мезенхимы
обширная группа тканей, развивающихся из эмбриональной
соединительной ткани, в которых преобладает
межклеточное вещество (ткани внутренней среды (кровь и
лимфа), соединительные и скелетные ткани).
Мышечные ткани
обладают сократительной способностью, благодаря
которой выполняют свою основную функцию перемещение организма или его частей в пространстве.
Нервная ткань
характеризуется способностью к возбудимости и
проведению нервного импульса, благодаря чему
осуществляет взаимосвязь организма с внешней средой,
интеграцию отдельных частей организма между собой.

Эпителиальные ткани

Типы эпителия
Покровный
занимает в организме
пограничное
положение, отделяя
внутреннюю среду от
внешней и вместе с
тем участвует в
обмене веществ
между организмом и
средой
Железистый
осуществляет
секреторную функцию,
т.е. образующие его
эпителиальные клетки
синтезируют и
выделяют веществасекреты, участвующие
в различных
процессах

ФУНКЦИИ ЭПИТЕЛИЕВ:
Разграничительная
Защитная
(барьерная)
Экскреторная
Транспортная
Секреторная
Всасывающая
Сенсорная
(рецепторная)

Локализация различных типов
эпителия
Однослойный плоский
(мезотелий)
Однослойный
кубический
Однослойный
цилиндрический
– Железистый
– Каемчатый
– Мерцательный
Многослойный плоский
– Неороговевающий
– Ороговевающий
Многослойный
переходный
Плевра, брюшина,
сердечная сумка
Яичник, извитые
канальцы нефрона
– Желудок
– Кишечник, желчный пузырь
– Воздухоносные пути, маточные
трубы
– Роговица глаза, ротовая
полость, пищевод
– Кожа
Мочевой пузырь,
мочеточник

Железы

многоклеточные
одноклеточные
внешней
секреции
внутренней
секреции
Внешняя секреция
Простая
Простая
неразветвленная
разветвленная
Простая
трубчатая
трубчатая
неразветвленная
железа
железа
альвеолярная
железа
Сложная
разветвленная
Простая
разветвленная альвеолярнотрубчатая
альвеолярная
железа
железа

Производные мезенхимы

Мезенхима - (от греч. mesenchio - изливаю на средину) –
эмбриональный зачаток соединительной ткани, заполняющий
промежутки между зародышевыми листками.

Клетки мезенхимы имеют веретенообразную или звездчатую форму, отростки которых образуют сетчатый остов. Между клетками расположено межкл

Клетки мезенхимы имеют веретенообразную или
звездчатую форму, отростки которых образуют сетчатый
остов. Между клетками расположено межклеточное
вещество, имеющее студенистую консистенцию.

Из мезенхимы развиваются ткани внутренней среды (кровь, лимфа), соединительные ткани, скелетные (костная, хрящевая) ткани. Это ткани опорно-

Из мезенхимы развиваются ткани внутренней
среды (кровь, лимфа), соединительные ткани,
скелетные (костная, хрящевая) ткани. Это ткани
опорно-трофической функции.

Соединительные ткани

Соединительная ткань по своей значимости занимает в организме
особое место. Она участвует в формировании стромы органов,
прослоек между другими тканями, дермы кожи, скелета, как бы
соединяет разнородные ткани или части этих органов.
Полифункциональный характер соединительных тканей
определяется сложностью их состава и организации
Состав соединительной ткани
Клеточные элементы
Неклеточные элементы
Фибробласты
Макрофаги
Основное аморфное
вещество
Плазмоциты
Тучные клетки
Адвентициальные клетки
Адипоциты
Эндотелиальные клетки
Перициты
Пигментоциты
Волокнистые
структуры

Функции соединительной ткани
Трофическая
Защитная
Пластическая
Опорная
Морфогенетическая

Ткани внутренней среды

Кровь и лимфа являются
основными
разновидностями тканей
мезенхемального
происхождения,
образующими вместе с
рыхлой волокнистой
соединительной тканью
внутреннюю среду
организма.

Функции крови:

Транспортная – перенос различных веществ.
Дыхательная – перенос кислорода и углекислого газа.
Трофическая – перенос питательных веществ.
Экскреторная – выведение из организма различных шлаков,
образующихся в процессе его жизнедеятельности.
Гуморальная – транспорт гормонов и других биологически
активных веществ.
Гомеостатическая – поддержание постоянства внутренней
среды организма.
Теплорегулирующая – перенос тепла из глубоколежащих
органов к поверхности для его рассеяния (что существенно для
крупных животных с высокой интенсивностью обмена веществ).
Защитная – обеспечение гуморального и клеточного иммунитета,
способность к свертыванию.
Передача механической силы (например, для локомоции у
дождевых червей; для разрыва кутикулы при линьке у ракообразных;
для движения таких органов, как сифон двустворчатых моллюсков и
т.п.; для разгибания ног у пауков; для ультрафильтрации в
капиллярах почек).

Состав крови

Кровь
Плазма
Клеточные элементы
Эритроциты
Лейкоциты
Тромбоциты

Эритроциты

Количество эритроцитов у взрослого мужчины составляет
3,95,5 1012/л, а у женщин - 3,7-4,9 1012/л крови. Однако число
эритроцитов у здоровых людей может варьировать в зависимости от
возраста, эмоциональной и мышечной нагрузки, действия
экологических факторов и др.
микрофотография.
Эритроциты в
мазке крови
человек (х 1200)
сканирующая
электронная
микроскопия
(х 3300)
сканирующая
электронная
микроскопия
(х 4000)
монетные столбики
(х 900)

эритроциты в поврежденном сосуде (х 2400)

Лейкоциты

Лейкоциты, или белые кровяные клетки, в свежей крови бесцветны, что
отличает их от окрашенных эритроцитов. Число их составляет в среднем
4-9 109/л.
Увеличение числа лейкоцитов – лейкоцитоз, уменьшение – лейкопения.
Лейкоциты
Зернистые
(гранулоциты)
Нейтрофилы
49-79 %
Эозинофилы
0,5-5 %
Незернистые
(агранулоциты)
Базофилы
0-1 %
Лимфоциты
19-37 %
Моноциты
3-11 %

Скелетные соединительные ткани

Хрящевая
ткань
Костная
ткань

Типы хрящевой ткани

Гиалиновый
хрящ
Волокнистый
хрящ
Эластический
хрящ

Костная ткань

Клеточные
элементы
Обызвествленное
межклеточное
вещество
минерализованный матрикс:
остеобласты
остеоциты
остеокласты
неорганическая часть (50%)
органическая часть (25%)
вода (25%)
органический матрикс:
коллаген
неколлагеновые белки
гликозаминогликаны

Классификация костной ткани

Пластинчатая
ткань
Грубоволокнистая
ткань

Компактное вещество

Б
А
В
Световая микроскопия (А – х 600, Б – х 80, В – х 150)

Мышечные ткани

Классификация:
Поперечнополосатые мышечные
ткани
(образованы волокнами, которые обладают
поперечной исчерченностью – скелетная
мышечная ткань)
Гладкие мышечные ткани
(состоят из клеток, не обладающих поперечной
исчерченностью – стенки бронхов, желудка, кишки,
мочевого пузыря и сосудов)
Сердечная мышечная ткань
(мышечная оболочка сердца - миокард)

Скелетная (соматическая) мышечная ткань

(мышцы, обеспечивающие перемещение тела и его частей в пространстве,
поддержание позы, глазодвигательные мышцы, мышцы стенки полости
рта, языка, глотки, гортани, верхней трети пищевода, мимические мышцы)
Микрофотография (х 300)

Гладкая мышечная ткань

продольный срез гладкой
мышечной ткани.
Микрофотография (х 480)
Структурно-функциональной
единицей гладкой мышечной
ткани мезенхимного типа
служит гладкий миоцит
(гладкая мышечная клетка).
Гладкие миоциты –
одноядерные клетки
преимущественно
веретеновидной формы, не
обладающие поперечной
исчерченностью и
образующие
многочисленные
соединения друг с другом.

Сердечная мышечная ткань

А
Б
Продольный срез миокарда.
Микрофотография (А – х 198, Б – х 640).

Нервная ткань

Состоит из нейронов
(нейроцитов), обладающих
способностью к выработке
и проведению нервных
импульсов, и клеток
нейроглии, выполняющей
ряд вспомогательных
функций (опорную,
трофическую, барьерную,
защитную и др.) и
обеспечивающей
деятельность нейронов.

Структура дендритов (D) и аксона (А) в мультиполярном нейроне, имперегнация азотнокислым серебром (х 320)

Микрофотография нейрона (х 1200)

Биполярные нейроны периферического ганглия, окрашенные солями золота (х 320)

Классификация нейронов

Нейроглия

гетерогенная группа элементов нервной ткани,
обеспечивающая деятельность нейронов и выполняющая
неспецифические функции: опорную, трофическую,
разграничительную, барьерную, секреторную и
защитную функции.
Классификация
Макроглия
астроцитарная глия
(астроглия),
олигодендроглия
эпендимная глия
Микроглия
микроглиоциты

Классификация нервных волокон

Волокна типа А - толстые, миелиновые, с далеко
отстоящими узловыми перехватами. Проводят
импульсы с высокой скоростью (15-120 м/с);
подразделяются на 4 подтипа (α, β, γ, δ) с
уменьшающимися диаметром и скоростью проведения
импульса.
Волокна типа В - средней толщины, миелиновые,
меньшего диаметра, чем волокна тина А, с более тонкой
миелиновой оболочкой и более низкой скоростью
проведения нервных импульсов (5-15 м/с).
Волокна типа С - тонкие, безмиелиновые, проводят
импульсы со сравнительно малой скоростью (0,5-2 м/с).

Межнейронные контакты (синапсы)

Синапс состоит из З-х
компонентов:
пресинаптической части,
постсинаптической части
и синаптической щели.

Шлейден и Шванн открыли первоначальный элемент всех органов, всех тканей - клетку; усовершенствован­ные микроскопы дали им возможность увидеть и разли­чить ее. Адвокат Маттиас Якоб Шлейден, занявшийся естественными науками, обнаружил в 1838 г. клетку как элемент формы растения. Он считал, что клетка сама по себе - это самостоятельный организм и что все расте­ния состоят из клеток. Годом позже Теодор Шванн за­ложил основы учения о клетках животного. Согласно его взглядам, у самых различных элементарных частей организма принцип развития общий, то же относится и к животному организму; этот принцип - образование кле­ток. Шванн указал, что по своему строению и функции клетки животных можно сравнить с клетками растении и что все животные ткани происходят и длительное вре­мя состоят из клеток. Его труд «Микроскопические ис­следования о сходстве в строении и росте животных и растений», вышедший в свет в 1839 г., сыграл огромную роль в дальнейшем развитии естествознания.

С открытием клетки были найдены те строительные камни, которые наподобие кирпичей составляют отдель­ные органы и части органов и которые можно обнару­жить под микроскопом в характерном для каждого орга­на сочетании. Ни один медик не спутает клетки, лежащие друг возле друга наподобие пластинок и образующие наружный слой кожи, с клетками, образующими внут­реннюю стенку какой-либо слизистой оболочки или же вещество печени, или какого-либо другого органа. Это открытие - огромный шаг в истории развития: учение о тканях получило новую основу.

Уже довольно давно было известно, что тело состоит не из единой массы, а из различной материи, из различ­ных тканей. К концу XVIII века анатомия была изучена неплохо, органы были известны, знали также, что они являются местом локализации болезней. Этому учил Морганьи. Не хватало лишь одного, и это последнее об­наружил на рубеже двух столетий француз М. Ф. Биша, фанатический труженик секционного зала: исследуя орган за органом, он подтвердил, что все они состоят из определенных веществ - из тканей, и сделал вывод, что именно в тканях и локализуются болезни. С этой точки зрения он исследовал трупы, объединив при этом ана­томию, физиологию и патологию.

Биша рассматривал ткань как нечто наиболее суще­ственное, поэтому его можно считать основателем гисто­логии - учения о тканях, создателем одной из важней­ших основ современной медицины. До него ученые представляли себе любой орган, например, печень или сердце, как нечто целое, как некую компактную массу. Биша же учил, что каждый орган следует рассматривать как образование из клеток и что ткань каждого отдель­ного органа характерна именно для него, т. е., как стали говорить позднее, специфична. Ясно, что после такого открытия возник совершенно новый взгляд на явления медицины.

Биша считал, что микроскоп ведет к субъективным воззрениям и поэтому нередко вводит в заблуждение. Но именно исследования и теории Биша требовали все более совершенных микроскопов, которые в свою очередь зна­чительно способствовали развитию гистологии. Наряду с макроскопией - наблюдением невооруженным глазом - распространялась микроскопия - наблюдение с помощью системы луп, микроскопа. Одновременно развивалась техника окраски тканей, необходимой для того, чтобы лучше рассмотреть клетки и их составные части.

Современный студент, сдающий экзамен по гистоло­гии, получает для определения препараты двух родов. Один из них - так называемый расчленяемый препарат, какая-нибудь органическая частица, которую студент должен расчленить с помощью двух игл и после этого рассмотреть под микроскопом в ее естественном виде, т. е. без окраски. Другой препарат представляет собой тонкий срез какого-либо органа, полученный с помощью микротома. Этот срез студент обязан окрасить, а затем определить с помощью микроскопа. В таких окрашен­ных тонких срезах чрезвычайно много интересного. Предпосылкой всех успехов гистологии, всех работ в области учения о тканях и решения многих биологиче­ских проблем в значительной степени послужила микро­скопическая техника окраски.

Окраску частиц ткани предложил Иозеф Герлах. Он принадлежал к числу нередких в то время врачей, кото­рые вначале работали одновременно как практики и как ученые до тех пор, пока на них, наконец, не обратили внимания и не предложили им кафедру. Руководство по учению о тканях Герлах написал еще до того, как стал профессором. В сообщении о своем изобретении он гово­рит, что случай указал ему правильный путь. В 1854 г. он при одном исследовании путем инъекции вводил в кровеносные сосуды карминовый раствор. Красящее ве­щество вышло из кровяного русла и окрасило клетки по соседству с кровеносными сосудами, но не полностью, а лишь их специфическую составную часть - клеточные ядра. Возможность отделить с помощью окраски ядро от остального тела клетки сыграла чрезвычайно большую роль в науке. В биологии это помогло впоследствии особенно тщательно заняться ядрами клеток.

Герлаху удалось также окрасить срезы головного мозга. И здесь помог случай. С помощью обычного рас­твора кармина ничего полезного получить не удалось: в окрашенных им препаратах невозможно было разли­чить детали. Однажды Герлах случайно оставил на ночь в воде кусочек мозга, загрязненный небольшим количе­ством кармина. На следующее утро этот кусочек пре­вратился в препарат, на котором чрезвычайно тонко, но совершенно явственно обозначались нервные клетки и волокна. Таким образом открылась возможность загля­нуть в столь сложное вещество мозга с его волокнами и стволами.

Конечно, принцип окраски не был нов - уже Левен­гук окрашивал тонкие срезы мышц спиртовым раствором шафрана, но теперь техника окраски достигла огромных успехов. Изготовление в 1856 г. В. X. Перкином первых анилиновых красителей было новым крупным шагом вперед. Постепенно научились заполнять хорошими красителями кровеносные сосуды и делать более заметным их распределение в тканях. Это пытались сделать еще в XVI веке с помощью окрашенной воды; Сваммердам пользовался для того же крашеным воском, голландец Рюиш - крашеным жиром; применяя этот способ, он составил великолепную анатомическую коллекцию, о которой уже рассказано выше.

Из анатомов и гистологов, изобретших новые методы техники окраски и обнаруживших с их помощью много нового, особого упоминания заслуживает испанец Сантьяго Рамони-Кахал, который в 1906 г. совместно с анатомом Камилло Гольджи был удостоен нобелевской премии. Профессор Гольджи, служивший в Павии, ра­ботая с солями серебра, открыл в 1873 г. «черную реакцию», которая значительно помогла выяснить строе­ние клеток головного и спинного мозга. Кахал на осно­вании этой реакции создал метод исследования цент­ральной нервной системы и потом только и занимался ее изучением. Ему принадлежит идея использовать для микроскопических исследований головной и спинной мозг зародышей и юношей, который гораздо легче воспри­нимает красящие вещества. Благодаря этому Кахалу удалось доказать, - всю огромную подготовительную работу выполнил Гольджи, - что от нервных волокон отходят боковые веточки, связывающие их с соседними волокнами, т. е. что здесь можно провести аналогию с кровеносными сосудами, которые, как уже давно извест­но, связаны между собой так называемыми коллатералями.

Такая связь между кровеносными сосудами обуслов­ливает стойкость организма: если какой-нибудь крове­носный сосуд выйдет из строя, например, вследствие закупорки (или же вследствие перевязки при операции), то благодаря наличию боковых ветвей его функция передается одному из соседних сосудов, и этот последний начинает снабжать кровью тот участок, который раньше снабжался выключенным сосудом. Примыкание нервных волокон к соседним необходимо, повидимому, для того, чтобы сделать возможной передачи раздражения от одного нервного волокна другим. Наличие такого рода нервных коллатералей в сером веществе спинного мозга предполагали уже и раньше на основании изучения функции спинного мозга, но теперь это было доказано точно, так как соответствующие ответвления и перепле­тения были обнаружены под микроскопом.

Рамони-Кахал пришел к медицине не прямым путем. Его отец - врач, влюбленный в свою профессию, желал видеть сына медиком, а сын не хотел и слышать об этом, мечтая стать художником. Будущий лауреат нобелевской премии, как он сам рассказывает в автобиографии, был одним из необузданнейших юношей во всей Испании. Отец, потеряв уверенность в успехе даль­нейшего обучения сына в средней школе, взял его оттуда и отдал в обучение сапожнику. Рамон стал отличным сапожником. Отец попытался отдать его снова в сред­нюю школу, разрешив ему посещать и школу рисования. Вначале все было хорошо, но несколько каррикатур на учителей, нарисованных юным художником на стене дома, все испортили: юношу провалили на заключитель­ных экзаменах.

Тогда отец Кахала решил испробовать другой путь: он начал сам преподавать сыну анатомию. Они ходили вдвоем на кладбище и, следуя традиции, выкрадывали части трупов, на которых отец разъяснял сыну детали человеческого скелета, строение тела и тайны жизни. Это, безусловно, был учитель-энтузиаст, сумевший во­одушевить своего ученика. Оказалось, что его метод был правилен: Рамон загорелся страстью к медицине, а ос­тальное было уже делом времени.

Для того чтобы хорошо изучать ткани, потребовался известный технический прогресс. Микротом был значи­тельно усовершенствован, но все же часто приходилось исследовать мельчайшие частицы ткани, которые нелегко было резать даже самым тонким ножом, - таким спосо­бом их можно было только расплющить. В конце кон­цов придумали заделывать частицы ткани в парафин или сходное с ним вещество; подкладывая под микротом такой сильно увеличивающийся кусок, получали срезы, которые можно было окрашивать и исследовать под ми­кроскопом. Это был значительный сдвиг вперед. К се­редине XIX века голландец Петер Хартинг предложил для данной цели быстро твердеющий слизистый раствор. Венский физиолог С. Штрикер в 1871 г. пользовался смесью воска и масла, Эдвин Клебс в 1864 г. - парафи­ном. Конечно, соответствующие поиски велись и в даль­нейшем.

От большого пришли к малому, от «грубой» анато­мии - к тонкой и тончайшей, постоянно убеждаясь в том, что чудеса не убавляются, а прибавляются. И ныне число «чудес» продолжает увеличиваться.

Похожие материалы:

), строение, функции и взаимодействие у многоклеточных животных и человека. Основной предмет изучения Г. - комплексы клеток, составляющие ткани, в их взаимодействии друг с другом и с межуточными средами. Являясь частью морфологии, Г. тесно связана с цитологией, анатомией (Анатомия), эмбриологией (Эмбриология). Методологическую основу Г. составляют и эволюционное учение. Г. принято разделять на общую (изучает общие закономерности развития, строения и функции тканей) и частную (изучает микроскопическое строение отдельных органов и систем организма). Специальными разделами Г. являются (химия тканей) и гистофизиология (механизмы деятельности тканей).

В зависимости объекта изучения в медицине Г. подразделяют на нормальную (изучает ткани здорового организма) и патологическую (патогистологию), которая исследует изменения тканей при заболеваниях и повреждениях (ее обычно рассматривают как раздел патологической анатомии (Патологическая анатомия)). В силу специфики объекта и методов исследования выделяют нейрогистологию, а также учение о крови и кроветворении (Кроветворение), ставшее теоретической основой гематологии (Гематология). Кроме того, различают ряд направлений в Г. - описательную Г. (описание тканей), сравнительную Г. (сравнение тканей различных видов животных), эволюционную Г. (закономерности развития тканей в филогенезе), экологическую Г. (изучает ткани в связи с воздействием условий обитания), экспериментальную Г. В гистологии используют многочисленные методы исследования - экспериментальный, тканевых культур, микроскопию и др. (см. Гистологические методы исследования , Гистохимические методы исследования, Цитологическое исследование).

II Гистоло́гия (histologia, LNH; гисто- (Гист-) + греч. logos наука, учение)

медико-биологическая наука, изучающая закономерности развития, строения и функции тканей многоклеточных животных и человека.

Гистоло́гия о́бщая - раздел Г., исследующий общие закономерности развития, строения и функции тканей, разрабатывающий их классификацию и методы исследования.

Гистоло́гия описа́тельная - направление в Г., основным методом которого является описание строения тканей.

Гистоло́гия сравни́тельная - направление в Г., основным методом которого является сравнение развития, строения и функции тканей у различно организованных животных.

Гистоло́гия ча́стная ( . анатомия микроскопическая) - раздел Г., посвященный изучению микроскопического строения отдельных органов и систем организма.

Гистоло́гия эволюцио́нная - направление в Г., изучающее закономерности развития тканей в процессе филогенеза.

Гистоло́гия экологи́ческая - направление в Г., изучающее особенности развития и строения тканей в связи с воздействием условий обитания и адаптацией к окружающей среде.

Гистоло́гия эксперимента́льная - направление в Г., изучающее изменения тканей в результате экспериментальных воздействий.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Синонимы :

Смотреть что такое "Гистология" в других словарях:

    Гистология … Орфографический словарь-справочник

    ГИСТОЛОГИЯ - ГИСТОЛОГИЯ. Содержание: Отделы Г......................26 0 Историческое развитие Г.............260 Современная Г...................265 Развитие русской Г................26 7 Гистологическая лаборатория..........269 Преподавание Г … Большая медицинская энциклопедия

    - (гр., от histos ткань, и logos слово). Учение о микроскопическом строении тканей. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГИСТОЛОГИЯ греч., от histos, ткань, и logos, слово. Учение о тканях человеческого и… … Словарь иностранных слов русского языка

    Гистология - Гистология. Эластичное волокно в кровеносных сосудах человека. ГИСТОЛОГИЯ (от гисто... и...логия), наука о тканях многоклеточных животных и человека. Изучает закономерности организации и развития тканей, взаимодействия клеток в пределах одной… … Иллюстрированный энциклопедический словарь

    - (от гисто... и...логия), наука о тканях многоклеточных животных и человека. Изучает закономерности организации и развития тканей, взаимодействия клеток в пределах одной Ткани и между клетками разных тканей. В самостоятельную науку гистология… … Современная энциклопедия

    - (от гисто... и...логия) наука о тканях многоклеточных животных и человека. Задачи гистологии: выяснение эволюции тканей, развития их в организме (гистогенез), строения и функций (гистофизиология), взаимодействия клеток в пределах одной ткани и… … Большой Энциклопедический словарь

    ГИСТОЛОГИЯ, наука о биологическом, особенно микроскопическом, строении тканей и структур в живых организмах … Научно-технический энциклопедический словарь

    ГИСТОЛОГИЯ, гистологии, мн. нет, жен. (от греч. histos ткань и logos учение). Наука о микроскопическом строении тканей организма. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    ГИСТОЛОГИЯ, и, жен. Наука о строении и развитии тканей человека и многоклеточных животных. | прил. гистологический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    - (от греч. histos ткань и...логия), раздел морфологии, изучающий ткани многоклеточных животных. Ткани растений изучает анатомия растений. Становление Г. как самостоят, науки в 20 х гг. 19 в. связано с развитием микроскопии. Методологич. основу Г … Биологический энциклопедический словарь

Современная медицина состоит из множества направлений, ведь тело человека – это комплекс чрезвычайно сложных биологических систем.


Одно из медицинских направлений носит название гистологии. Что это за наука, какие органы находятся в сфере её внимания?

Что такое гистология?

Открыв любой медицинский справочник, мы без труда узнаем, что гистологией называют медицинскую дисциплину, которая занимается исследованиями тканей человеческого тела и организмов животных, их изменениями, наступающими в ходе болезней, а также воздействия различных препаратов и химических соединений. Тело человека состоит из пяти основных типов тканей:

— мышечной;

— соединительной;

— эпителиальной (покровной);

— нервной;

У каждой из этих тканей имеются характерные лишь для неё особенности строения, жизнедеятельности, обмена веществ на клеточном и межклеточном уровне. Зная нормальное состояние тканей и признаки патологических изменений, легко диагностировать болезни, которые никак не проявляют себя на ранних стадиях – например, начальные фазы онкологического заболевания.

Чтобы провести гистологическое исследование, необходимо взять образец интересующей врача ткани хирургическим способом, методом биопсии либо аутопсии. Эту науку нередко называют клеточной анатомией, так как она изучает строение клеток разных видов тканей.

Подготовка к гистологическому исследованию

Изучение взятого образца ткани происходит , но перед этим материал необходимо обработать, чтобы предотвратить его естественный распад и привести в удобный для исследования вид. Обработка включает ряд обязательных этапов:

— фиксацию при помощи формалина, спирта или пикриновой кислоты путём погружения образца в жидкость либо введения жидкости в сосуды;

— проводку, в ходе которой образец избавляется от воды и пропитывается парафином;

— заливку расплавленным парафином со специальными добавками, улучшающими эластичность материала, для получения твёрдого бруска, пригодного для дальнейшей работы;

— микротомирование, т.е. изготовление ряда тончайших срезов при помощи специального инструмента – микротома;

— окрашивание срезов специальными красителями, чтобы облегчить выявление структуры ткани;

— заключение каждого среза между двумя лабораторными стёклами, предметным и покровным, после чего их можно хранить в течение нескольких лет, не опасаясь порчи препарата.


После обработки проводится исследование взятого образца ткани различными способами при помощи микроскопа и прочих специальных приборов.

Методы гистологических исследований

На сегодняшний день существует ряд методов, позволяющих изучить различные аспекты жизнедеятельности клеток исследуемой ткани:

— оптическая микроскопия, т.е. осмотр тканевых срезов при помощи обычного микроскопа в естественном либо искусственном видимом свете;

— темнопольная микроскопия, т.е. изучение образца в наклонном световом луче;

— фазово-контрастное исследование;

— люминесцентное и флуоресцентное микроскопическое исследование с окрашиванием образца специальными веществами;

— интерференционное исследование при помощи специального интерференционного микроскопа, облегчающего количественную оценку ткани;

— изучение при помощи электронного микроскопа;

— исследование образцов в ультрафиолетовом свете;

— исследование в поляризованном свете;

— радиоавтографическое исследование;

— цитоспектрофотометрическое исследование;

— применение иммуноцитохимических методик;

— метод культуры клеток;

— микрохирургическое исследование.

Совокупность нескольких методов даёт достаточно полную картину состояния обследуемого органа, что позволяет точно диагностировать заболевание и назначить соразмерное лечение. Это особенно важно при подозрении на онкологическое заболевание, когда от своевременности начала лечения нередко зависит жизнь больного.

Что можно обнаружить при гистологическом исследовании?

Современная медицина широко использует гистологические исследования для диагностики заболеваний, так как они дают чрезвычайно много информации о состоянии исследуемого органа. Изучение образца ткани позволяет выявить:

— воспалительный процесс в острой либо хронической фазе;

— расстройства кровообращения – наличие тромбов, кровоизлияний и т.д.;

— новообразования, с определением их характера – доброкачественности либо злокачественности, а также выявить степень развития опухоли;

Информация, полученная путём гистологического исследования, позволяет достоверно диагностировать заболевания на любых стадиях, устанавливать с самой высокой точностью, насколько далеко зашел патологический процесс либо насколько эффективным было назначенное лечение.


Помимо изучения образцов, взятых у больных, проходящих лечение, гистологи исследуют ткани умерших людей, особенно в случаях, когда есть причины сомневаться в поставленном при жизни диагнозе, либо когда нужно точно установить причину смерти.