Как выглядит касательная к окружности. Соблюдение вашей конфиденциальности на уровне компании

Вспомним случаи взаимного расположения прямой и окружности.

Задана окружность с центром О и радиусом r. Прямая Р, расстояние от центра до прямой, то есть перпендикуляр ОМ, равна d.

Случай 1 - расстояние от центра окружности до прямой меньше радиуса окружности:

Мы доказали, что в случае, когда расстояние d меньше радиуса окружности r, прямая и окружность имеют только две общие точки (рис. 1).

Рис. 1. Иллюстрация к случаю 1

Случай второй - расстояние от центра окружности до прямой равно радиусу окружности:

Мы доказали, что в данном случае общая точка единственная (рис. 2).

Рис. 2. Иллюстрация к случаю 2

Случай 3 - расстояние от центра окружности до прямой больше радиуса окружности:

Мы доказали, что в данном случае окружность и прямая не имеют общих точек (рис. 3).

Рис. 3. Иллюстрация к случаю 3

На данном уроке нас интересует второй случай, когда прямая и окружность имеют единственную общую точку.

Определение:

Прямая, имеющая с окружностью единственную общую точку, называется касательной к окружности, общая точка называется точкой касания прямой и окружности.

Прямая р - касательная, точка А - точка касания (рис. 4).

Рис. 4. Касательная

Теорема:

Касательная к окружности перпендикулярна радиусу, проведенному в точку касания (рис. 5).

Рис. 5. Иллюстрация к теореме

Доказательство:

От противного - пусть ОА не перпендикулярно прямой р. В таком случае, опустим из точки О перпендикуляр на прямую р, который будет расстоянием от центра окружности до прямой:

Из прямоугольного треугольника можем сказать, что гипотенуза ОН меньше катета ОА, то есть , прямая и окружность имеют две общие точки, прямая р является секущей. Таким образом, мы получили противоречие, а, значит, теорема доказана.

Рис. 6. Иллюстрация к теореме

Справедлива и обратная теорема.

Теорема:

Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна этому радиусу, то она является касательной.

Доказательство:

Поскольку прямая перпендикулярна радиусу, то расстояние ОА - это расстояние от прямой до центра окружности и оно равно радиусу: . То есть , а в этом случае, как мы ранее доказывали, у прямой и окружности единственная общая точка - это точка А, таким образом, прямая р является касательной к окружности по определению (рис. 7).

Рис. 7. Иллюстрация к теореме

Прямую и обратную теоремы можно объединить следующим образом (рис. 8):

Задана окружность с центром О, прямая р, радиус ОА

Рис. 8. Иллюстрация к теореме

Теорема:

Прямая является касательной к окружности тогда и только тогда, когда радиус, проведенный в точку касания, перпендикулярен ей.

Данная теорема означает, что если прямая является касательной, то радиус, проведенный в точку касания, перпендикулярен ей, и наоборот, из перпендикулярности ОА и р следует, что р - касательная, то есть, прямая и окружность имеют единственную общую точку.

Рассмотрим две касательные, проведенные из одной точки к окружности.

Теорема:

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проведенной через эту точку и центр окружности.

Задана окружность, центр О, точка А вне окружности. Из точки А проведены две касательные, точки В и С - точки касания. Требуется доказать, что и что равны углы 3 и 4.

Рис. 9. Иллюстрация к теореме

Доказательство:

Доказательство основано на равенстве треугольников . Объясним равенство треугольников. Они являются прямоугольными, так как радиус, проведенный в точку касания, перпендикулярен касательной. Значит, углы и прямые и равны по . Катеты ОВ и ОС равны, так как являются радиусом окружности. Гипотенуза АО - общая.

Таким образом, треугольники равны по равенству катета и гипотенузы. Отсюда очевидно, что катеты АВ и АС также равны. Также углы, лежащие напротив равных сторон, равны, значит, равны углы и , .

Теорема доказана.

Итак, мы познакомились с понятием касательной к окружности, на следующем уроке мы рассмотрим градусную меру дуги окружности.

Список литературы

  1. Александров А.Д. и др. Геометрия 8 класс. - М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия 8. - М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия 8 класс. - М.: ВЕНТАНА-ГРАФ, 2009.
  1. Univer.omsk.su ().
  2. Oldskola1.narod.ru ().
  3. School6.aviel.ru ().

Домашнее задание

  1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др., Геометрия 7-9, № 634-637, с. 168.

ОКРУЖНОСТЬ И КРУГ. ЦИЛИНДР.

§ 73. ВЗАИМНОЕ ПОЛОЖЕНИЕ ПРЯМОЙ И ОКРУЖНОСТИ.

1. Возможны следующие три случая взаимного положения прямой и окружности:

Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности.

3) Прямая имеет с окружностью две общие точки (черт. 319). Такая прямая называется секущей .

2. Теоремы о касательной к окружности.

Теорема 1. Прямая, перпендикулярная к радиусу в конечной его точке, лежащей на окружности, является касательной к окружности.

Пусть ОМ- радиус окружности, СD_|_OМ (черт. 318).

Требуется доказать, что СD- касательная к окружности.

Доказательство. Если ОМ _|_СD, то расстояние от центра О до любой другой точки прямой СD больше радиуса ОМ, следовательно, всякая точка прямой СD, кроме точки М, лежит вне круга. Поэтому точка М - единственная общая точка прямой СD и окружности, а это означает, что СD- касательная к окружности.

Теорема 2 (обратная). Касательная к окружности перпендикулярна к радиусу этой окружности, проведённому в точку касания.

Пусть прямая СD - касательная к окружности и М - точка касания.

Требуется доказать, что СD _|_ ОМ (черт. 318).

Доказательство. Если прямая СD касается окружности в точке М, то всякая другая точка прямой СD будет находиться вне круга, ограниченного этой окружностью, следовательно, расстояние от каждой точки прямой СD до центра, кроме точки М, будет больше расстояния ОМ - радиуса окружности. Значит, этот радиус есть наименьший из отрезков, соединяющих точку О с точками прямой СD, поэтому ОМ _|_ СD.

3. Свойство дуг, заключённых между касательной и параллельной ей хордой.

Теорема. Дуги, заключённые между касательной и параллельной ей хордой, равны.

Пусть касательная АВ и хорда СD параллельны. Точка Е - точка касания прямой АВ с окружностью О (черт. 320).

Требуется доказать, что СЕ = ЕD.

Для доказательства соединим точку касания Е с центром круга.

ОЕ _|_АВ, а так как СD || АВ, то ОЕ _|_ СD, а перпендикуляр к хорде, проведённый из центра той же окружности, делит стягиваемую ею дугу пополам.
Следовательно, СЕ = ЕD.

4. Построение касательной к окружности.

Задача. Построить прямую, касательную к окружности в данной её точке.

Дана окружность О, требуется провести прямую, касательную к этой окружности в точке М (черт. 321).

Проведём радиус ОМ и через конечную его точку М проведём прямую КМ, перпендикулярную к радиусу. По доказанному ранее прямая КМ будет касательной к окружности.

Прямая (MN ), имеющая с окружностью только одну общую точку (A ), называется касательной к окружности .

Общая точка называется в этом случае точкой касания.

Возможность существования касательной , и притом проведенной через любую точку окружности , как точку касания, доказывается следующей теоремой .

Пусть требуется провести к окружности с центром O касательную через точку A . Для этого из точки A, как из центра, описываем дугу радиусом AO , а из точки O , как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.

Проведя затем хорды OB и , соединим точку A с точками D и E , в которых эти хорды пересекаются с данной окружностью. Прямые AD и AE - касательные к окружности O . Действительно, из построения видно, что треугольники AOB и AOС равнобедренные (AO = AB =AС ) с основаниями OB и, равными диаметру круга O .

Так как OD и OE - радиусы, то D - середина OB , а E - середина , значит AD и AE - медианы , проведенные к основаниям равнобедренных треугольников, и потому перпендикулярны к этим основаниям. Если же прямые DA и EA перпендикулярны к радиусам OD и OE , то они - касательные .

Следствие.

Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром .

Так AD=AE и ∠OAD = ∠OAE потому, что прямоугольные треугольники AOD и AOE , имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны. Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной ” от данной точки до точки касания.