Как решать дробные неравенства методом интервалов примеры. Дробно-рациональные неравенства


Метод интервалов (или как его еще иногда называют метод промежутков) – это универсальный метод решения неравенств. Он подходит для решения разнообразных неравенств, однако наиболее удобен в решении рациональных неравенств с одной переменной. Поэтому в школьном курсе алгебры метод интервалов вплотную привязывают именно к рациональным неравенствам, а решению других неравенств с его помощью практически не уделяют внимания.

В этой статье мы детально разберем метод интервалов и затронем все тонкости решения неравенств с одной переменной с его помощью. Начнем с того, что приведем алгоритм решения неравенств методом интервалов. Дальше поясним, на каких теоретических аспектах он базируется, и разберем шаги алгоритма, в частности, подробно остановимся на определении знаков на интервалах. После этого перейдем к практике и покажем решения нескольких типовых примеров. А в заключение рассмотрим метод интервалов в общем виде (то есть, без привязки к рациональным неравенствам), другими словами, обобщенный метод интервалов.

Навигация по странице.

Алгоритм

Знакомство с методом интервалов в школе начинается при решении неравенств вида f(x)<0 (знак неравенства может быть и другим ≤, > или ≥), где f(x) – это либо , представленный в виде произведения линейных двучленов с 1 при переменной x и/или квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом и их степеней, либо отношение таких многочленов. Для наглядности приведем примеры подобных неравенств: (x−5)·(x+5)≤0 , (x+3)·(x 2 −x+1)·(x+2) 3 ≥0 , .

Чтобы сделать дальнейший разговор предметным, сразу запишем алгоритм решения неравенств указанного выше вида методом интервалов, а потом разберемся, что да как да почему. Итак, по методу интервалов:

  • Сначала находятся нули числителя и нули знаменателя. Для этого числитель и знаменатель выражения в левой части неравенства приравниваются к нулю, и решаются полученные уравнения.
  • После этого точки, соответствующие найденным нулям, отмечаются черточками на . Достаточно схематического чертежа, на котором не обязательно соблюдать масштаб, главное придерживаться расположения точек относительно друг друга: точка с меньшей координатой находится левее точки с большей координатой. После этого выясняется, какими следует их изобразить: обычными или выколотыми (с пустым центром). При решении строгого неравенства (со знаком < или >) все точки изображаются выколотыми. При решении нестрогого неравенства (со знаком ≤ или ≥) точки, отвечающие нулям знаменателя, делаются выколотыми, а оставшиеся отмеченные черточками точки – обычными. Эти точки разбивают координатную прямую на несколько числовых промежутков .
  • Дальше определяются знаки выражения f(x) из левой части решаемого неравенства на каждом промежутке (как это делается, подробно расскажем в одном из следующих пунктов), и над ними проставляются + или − в соответствии с определенными на них знаками.
  • Наконец, при решении неравенства со знаком < или ≤ изображается штриховка над промежутками, отмеченными знаком −, а при решении неравенства со знаком > или ≥ - над промежутками, отмеченными знаком +. В результате получается , которое и является искомым решением неравенства.

Заметим, что приведенный алгоритм согласован с описанием метода интервалов в школьных учебниках .

На чем базируется метод?

Подход, лежащий в основе метода интервалов, имеет место в силу следующего свойства непрерывной функции : если на интервале (a, b) функция f непрерывна и не обращается в нуль, то она на этом интервале сохраняет постоянный знак (от себя добавим, что аналогичное свойство справедливо и для числовых лучей (−∞, a) и (a, +∞) ). А это свойство в свою очередь следует из теоремы Больцано-Коши (ее рассмотрение выходит за рамки школьной программы), формулировку и доказательство которой при необходимости можно найти, например, в книге .

Для выражений f(x) , имеющих указанный в предыдущем пункте вид, постоянство знака на промежутках можно обосновать и иначе, отталкиваясь от свойств числовых неравенств и учитывая правила умножения и деления чисел с одинаковыми знаками и разными знаками.

В качестве примера рассмотрим неравенство . Нули его числителя и знаменателя разбивают числовую прямую на три промежутка (−∞, −1) , (−1, 5) и (5, +∞) . Покажем, что на промежутке (−∞, −1) выражение из левой части неравенства имеет постоянный знак (можно взять и другой промежуток, рассуждения будут аналогичными). Возьмем любое число t из этого промежутка. Оно, очевидно, будет удовлетворять неравенству t<−1 , и так как −1<5 , то по свойству транзитивности, оно же будет удовлетворять и неравенству t<5 . Из этих неравенств в силу свойств числовых неравенств следует, что t+1<0 и t−5<0. То есть, t+1 и t−5 – отрицательные числа, не зависимо от того, какое конкретно число t мы возьмем из промежутка (−∞, −1) . Тогда позволяет констатировать, что значение выражения будет положительным, откуда следует, что значение выражения будет положительным при любом значении x из промежутка (−∞, −1) . Итак, на указанном промежутке выражение имеет постоянный знак, причем, это знак +.

Так мы плавно подошли к вопросу определения знаков на промежутках, но не будем перескакивать через первый шаг метода интервалов, подразумевающий нахождение нулей числителя и знаменателя.

Как находить нули числителя и знаменателя?

С нахождением нулей числителя и знаменателя дроби указанного в первом пункте вида обычно не возникает никаких проблем. Для этого выражения из числителя и знаменателя приравниваются к нулю, и решаются полученные уравнения. Принцип решения уравнений такого вида подробно изложен в статье решение уравнений методом разложения на множители . Здесь лишь ограничимся примером.

Рассмотрим дробь и найдем нули ее числителя и знаменателя. Начнем с нулей числителя. Приравниваем числитель к нулю, получаем уравнение x·(x−0,6)=0 , от которого переходим к совокупности двух уравнений x=0 и x−0,6=0 , откуда находим два корня 0 и 0,6 . Это искомые нули числителя. Теперь находим нули знаменателя. Составляем уравнение x 7 ·(x 2 +2·x+7) 2 ·(x+5) 3 =0 , оно равносильно совокупности трех уравнений x 7 =0 , (x 2 +2·x+7) 2 =0 , (x+5) 3 =0 , и дальше x=0 , x 2 +2·x+7=0 , x+5=0 . Корень первого из этих уравнений очевиден, это 0 , второе уравнение корней не имеет, так как его дискриминант отрицательный, а корень третьего уравнения есть −5 . Итак, мы нашли нули знаменателя, их оказалось два: 0 и −5 . Заметим, что 0 оказался как нулем числителя, так и нулем знаменателя.

Для нахождения нулей числителя и знаменателя в общем случае, когда в левой части неравенства дробь, но не обязательно рациональная, также числитель и знаменатель приравниваются к нулю, и решаются соответствующие уравнения.

Как определять знаки на интервалах?

Самый надежный способ определения знака выражения из левой части неравенства на каждом промежутке состоит в вычислении значения этого выражения в какой-либо одной точке из каждого промежутка. При этом искомый знак на промежутке совпадает со знаком значения выражения в любой точке этого промежутка. Поясним это на примере.

Возьмем неравенство . Выражение из его левой части не имеет нулей числителя, а нулем знаменателя является число −3. Оно делит числовую прямую на два промежутка (−∞, −3) и (−3, +∞) . Определим знаки на них. Для этого возьмем по одной точке из этих промежутков, и вычислим значения выражения в них. Сразу заметим, что целесообразно брать такие точки, чтобы проводить вычисления было легко. Например, из первого промежутка (−∞, −3) можно взять −4 . При x=−4 имеем , получили значение со знаком минус (отрицательное), поэтому, на этом интервале будет знак минус. Переходим к определению знака на втором промежутке (−3, +∞) . Из него удобно взять 0 (если 0 входит в промежуток, то целесообразно всегда брать его, так как при x=0 вычисления оказываются наиболее простыми). При x=0 имеем . Это значение со знаком плюс (положительное), поэтому, на этом интервале будет знак плюс.

Существует и другой подход к определению знаков, состоящий в нахождении знака на одном из интервалов и его сохранении или изменении при переходе к соседнему интервалу через нуль. Нужно придерживаться следующего правила. При переходе через нуль числителя, но не знаменателя, или через нуль знаменателя, но не числителя, знак изменяется, если степень выражения, дающего этот нуль, нечетная, и не изменяется, если четная. А при переходе через точку, являющуюся одновременно и нулем числителя, и нулем знаменателя, знак изменяется, если сумма степеней выражений, дающих этот нуль, нечетная, и не изменяется, если четная.

Кстати, если выражение в правой части неравенства имеет вид, указанный в начале первого пункта этой статьи, то на крайнем правом промежутке будет знак плюс.

Чтобы все стало понятно, рассмотрим пример.

Пусть перед нами неравенство , и мы его решаем методом интервалов. Для этого находим нули числителя 2 , 3 , 4 и нули знаменателя 1 , 3 , 4 , отмечаем их на координатной прямой сначала черточками

затем нули знаменателя заменяем изображениями выколотых точек

и так как решаем нестрогое неравенство, то оставшиеся черточки заменяем обыкновенными точками

А дальше наступает момент определения знаков на промежутках. Как мы заметили перед этим примером, на крайнем правом промежутке (4, +∞) будет знак +:

Определим остальные знаки, при этом будем продвигаться от промежутка к промежутку справа налево. Переходя к следующему интервалу (3, 4) , мы переходим через точку с координатой 4 . Это нуль как числителя, так и знаменателя, эти нули дают выражения (x−4) 2 и x−4 , сумма их степеней равна 2+1=3 , а это нечетное число, значит, при переходе через эту точку нужно изменить знак. Поэтому, на интервале (3, 4) будет знак минус:

Идем дальше к интервалу (2, 3) , при этом переходим через точку с координатой 3 . Это нуль также как числителя, так и знаменателя, его дают выражения (x−3) 3 и (x−3) 5 , сумма их степеней равна 3+5=8 , а это четное число, поэтому, знак останется неизменным:

Продвигаемся дальше к интервалу (1, 2) . Путь к нему нам преграждает точка с координатой 2 . Это нуль числителя, его дает выражение x−2 , его степень равна 1 , то есть она нечетная, следовательно, при переходе через эту точку знак изменится:

Наконец, осталось определить знак на последнем интервале (−∞, 1) . Чтобы попасть на него, нам необходимо преодолеть точку с координатой 1 . Это нуль знаменателя, его дает выражение (x−1) 4 , его степень равна 4 , то есть, она четная, следовательно, знак при переходе через эту точку изменяться не будет. Так мы определили все знаки, и рисунок приобретает такой вид:

Понятно, что применение рассмотренного метода особенно оправдано, когда вычисление значения выражения связано с большим объемом работы. К примеру, вычислите-ка значение выражения в любой точке интервала .

Примеры решения неравенств методом интервалов

Теперь можно собрать воедино всю представленную информацию, достаточную для решения неравенств методом интервалов, и разобрать решения нескольких примеров.

Пример.

Решите неравенство .

Решение.

Проведем решение этого неравенства методом интервалов. Очевидно, нули числителя это 1 и −5 , а нули знаменателя и 1 . Отмечаем их на числовой прямой, при этом точки с координатами и 1 выколотые как нули знаменателя, а оставшийся нуль числителя −5 изобразим обычной точкой, так как решаем нестрогое неравенство:

Теперь проставляем знаки на промежутках, придерживаясь правила сохранения или изменения знака при переходе через нули. Над крайним справа промежутком будет знак + (это можно проверить, вычислив значение выражения в левой части неравенства в какой-либо точке этого промежутка, например, при x=3 ). При переходе через знак изменяем, при переходе через 1 – оставляем таким же, и при переходе через −5 опять оставляем знак без изменения:

Так как мы решаем неравенство со знаком ≤, то осталось изобразить штриховку над промежутками, отмеченными знаком −, и по полученному изображению записать ответ.

Итак, искомое решение таково: .

Ответ:

.

Справедливости ради обратим внимание на то, что в подавляющем большинстве случаев при решении рациональных неравенств их предварительно приходится преобразовывать к нужному виду, чтобы стало возможным их решение методом интервалов. Как проводить такие преобразования мы подробно обсудим в статье решение рациональных неравенств , а сейчас приведем пример, иллюстрирующий один важный момент, касающийся квадратных трехчленов в записи неравенств.

Пример.

Найдите решение неравенства .

Решение.

С первого взгляда на данное неравенство кажется, что его вид подходит для применения метода интервалов. Но не помешает проверить, действительно ли дискриминанты квадратных трехчленов в его записи отрицательны. Вычислим их для успокоения совести. Для трехчлена x 2 +3·x+3 имеем D=3 2 −4·1·3=−3<0 , а для трехчлена x 2 +2·x−8 получаем D’=1 2 −1·(−8)=9>0 . Это означает, что для придания этому неравенству нужного вида требуются преобразования. В данном случае достаточно трехчлен x 2 +2·x−8 представить как (x+4)·(x−2) , и дальше решать методом интервалов неравенство .

Ответ:

.

Обобщенный метод интервалов

Обобщенный метод интервалов позволяет решать неравенства вида f(x)<0 (≤, >, ≥), где f(x) – произвольное с одной переменной x . Запишем алгоритм решения неравенств обобщенным методом интервалов :

  • Сначала надо f и нули этой функции.
  • На числовой прямой отмечаются граничные, в том числе и отдельные точки области определения. Например, если областью определения функции служит множество (−5, 1]∪{3}∪ (на интервале (−6, 4) знак не определяем, так как он не является частью области определения функции). Для этого возьмем по одной точке из каждого промежутка, например, 16 , 8 , 6 и −8 , и вычислим в них значение функции f :

    Если возникли вопросы как было выяснено, какими являются вычисленные значения функции, положительными или отрицательными, то изучите материал статьи сравнение чисел .

    Расставляем только что определенные знаки, и наносим штриховку над промежутками со знаком минус:

    В ответ записываем объединение двух промежутков со знаком −, имеем (−∞, −6]∪(7, 12) . Обратите внимание, что −6 включено в ответ (соответствующая точка сплошная, а не выколотая). Дело в том, что это не нуль функции (который при решении строгого неравенства мы бы не включили в ответ), а граничная точка области определения (она цветная, а не черная), при этом входящая в область определения. Значение функции в этой точке отрицательно (о чем свидетельствует знак минус над соответствующим промежутком), то есть, она удовлетворяет неравенству. А вот 4 включать в ответ не нужно (как и весь промежуток ∪(7, 12) .

    Список литературы.

    1. Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
    2. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
    3. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
    4. Кудрявцев Л. Д. Курс математического анализа (в двух томах): Учебник для студентов университетов и втузов. – М.: Высш. школа, 1981, т. 1. – 687 с., ил.

    Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

    1. Рассмотрим, например, такое неравенство

    Метод интервалов позволяет решить его за пару минут.

    В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

    Метод интервалов основан на следующем свойстве дробно-рациональной функции.

    Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

    Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

    Где и - корни квадратного уравнения .

    Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

    Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

    Эти точки разбивают ось на промежутков.

    Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

    И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
    . Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

    Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

    Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

    При левая часть неравенства отрицательна.

    И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

    Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

    Ответ: .

    Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

    Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

    Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

    (в левой части - дробно-рациональная функция, в правой - нуль).

    Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
    Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
    Остается только выяснить ее знак на каждом промежутке.
    Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

    Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

    2. Рассмотрим еще одно неравенство.

    Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

    Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

    При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

    При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

    При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

    Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

    Ответ: .

    Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

    Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

    3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

    Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

    Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

    Ответ: .

    В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

    4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

    Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

    И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

    Которое легко решается методом интервалов.

    Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

    5 . Рассмотрим еще одно неравенство, на вид совсем простое:

    Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

    Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

    Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

    И после этого - применим метод интервалов .

    На этом уроке мы продолжим решение рациональных неравенств методом интервалов для более сложных неравенств. Рассмотрим решение дробно-линейных и дробно-квадратичных неравенств и сопутствующие задачи.

    Теперь возвращаемся к неравенству

    Рассмотрим некоторые сопутствующие задачи.

    Найти наименьшее решение неравенства.

    Найти число натуральных решений неравенства

    Найти длину интервалов, составляющих множество решений неравенства.

    2. Портал Естественных Наук ().

    3. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

    5. Центр образования «Технология обучения» ().

    6. Раздел College.ru по математике ().

    1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 28(б,в); 29(б,в); 35(а,б); 37(б,в); 38(а).

    Начальный уровень

    Метод интервалов. Исчерпывающее руководство (2019)

    Этот метод тебе просто необходимо понять и знать его как свои пять пальцев! Хотя бы потому, что он применяется для решения рациональных неравенств и потому, что, зная этот метод как следует, решать эти неравенства на удивление просто. Чуть позже раскрою тебе пару секретов, как сэкономить время на решении этих неравенств. Ну что, заинтриговал? Тогда поехали!

    Суть метода в разложении неравенства на множители (повтори тему ) и определении ОДЗ и знака сомножителей, сейчас все поясню. Возьмем самый простенький пример: .

    Области допустимых значений () здесь писать не надо, поскольку деления на переменную нет, и радикалов (корней) здесь не наблюдается. На множители здесь все и так разложено за нас. Но не расслабляйся, это все, чтоб напомнить азы и понять суть!

    Допустим, ты не знаешь метода интервалов, как бы ты стал решать это неравенство? Подойди логически и опирайся на то, что уже знаешь. Во-первых, левая часть будет больше нуля если оба выражения в скобках либо больше нуля, либо меньше нуля, т.к. «плюс» на «плюс» дает «плюс» и «минус» на «минус» дает «плюс», так? А если знаки у выражений в скобках разные, то в итоге левая часть будет меньше нуля. А что же нам нужно, чтоб узнать те значения, при которых выражения в скобках будут отрицательными или положительными?

    Нам нужно решить уравнение, оно точно такое же как неравенство, только вместо знака будет знак, корни этого уравнения и позволят определить те пограничные значения, при отступлении от которых множители и будут больше или меньше нуля.

    А теперь сами интервалы. Что такое интервал? Это некий промежуток числовой прямой, то есть все возможные числа, заключенные между двумя какими-то числами - концами интервала. Эти промежуткив голове представить не так просто, поэтому интервалы принято рисовать, сейчас научу.

    Рисуем ось, на ней располагается весь числовой ряд от и до. На ось наносятся точки, те самые так называемые нули функции, значения, при которых выражение равняется нулю. Эти точки «выкалываются» что означает, что они не относятся к числу тех значений, при которых неравенство верно. В данном случае, они выкалываются т.к. знак в неравенстве а не, то есть строго больше а не больше или равно.

    Хочу сказать, что ноль отмечать не обязательно, он без кружочков тут, а так, для понимания и ориентации по оси. Ладно, ось нарисовали, точки (точнее кружочки) поставили, дальше что, как мне это поможет в решении? - спросишь ты. Теперь просто возьми значение для икса из интервалов по порядку и подставь их в свое неравенство и смотри, какой знак будет в результате умножения.

    Короче, просто берем например, подставляем его сюда, получится, а, значит на всем промежутке (на всем интервале) от до, из которого мы брали, неравенство будет справедливо. Иными словами если икс от до, то неравенство верно.

    То же самое делаем и с интервалом от до, берем или, например, подставляем в, определяем знак, знак будет «минус». И так же делаем с последим, третьим интервалом от до, где знак получится «плюс». Такая куча текста вышла, а наглядности мало, правда?

    Взгляни еще раз на неравенство.

    Теперь все на ту же ось наносим еще и знаки, которые получатся в результате. Ломаной линией, в моем примере,обозначаем положительные и отрицательные участки оси.

    Смотри на неравенство - на рисунок, опять на неравенство - и снова на рисунок , что-нибудь понятно? Постарайся теперь сказать на каких промежутках икса, неравенство будет верно. Правильно, от до неравенство будет справедливо и от до, а на промежутке от до неравенство нуля и нас этот промежуток мало интересует, ведь у нас в неравенстве знак стоит.

    Ну, раз ты с этим разобрался, то дело за малым - записать ответ! В ответ пишем те промежутки, при которых левая часть больше нуля, что читается, как икс принадлежит промежутку от минус бесконечности до минус одного и от двух до плюс бесконечности. Стоит пояснить, что круглые скобки означают, что значения, которыми ограничен интервал не являются решениями неравенства, то есть они не включены в ответ, а лишь говорят о том, что до, например, но не есть решение.

    Теперь пример, в котором тебе придется не только интервал рисовать:

    Как думаешь, что надо сделать, прежде, чем точки на ось наносить? Ага, на множители разложить:

    Рисуем интервалы и расставляем знаки, заметь точки у нас выколотые, потому, что знак строго меньше нуля:

    Пришло время раскрыть тебе один секрет, который я обещал еще в начале этой темы! А что если я скажу тебе, что можно не подставлять значения из каждого интервала для определения знака, а можно определить знак в одном из интервалов, а в остальных просто чередовать знаки!

    Таким образом, мы сэкономили немного времени на проставлении знаков - думаю, это выигранное время на ЕГЭ не помешает!

    Пишем ответ:

    Теперь рассмотрим пример дробно-рационального неравенства - неравенство, обе части которого являются рациональными выражениями (см. ).

    Что можешь сказать про это неравенство? А ты взгляни на него как на дробно-рациональное уравнение, что делаем в первую очередь? Сразу видим, что корней нет, значит точно рациональное, но тут же дробь, да еще и с неизвестным в знаменателе!

    Верно, ОДЗ надо!

    Так, дальше поехали, здесь все множители кроме одного имеют переменную первой степени, но есть множитель, где икс имеет вторую степень. Обычно знак у нас менялся после перехода через одну из точек, в которой левая часть неравенства принимает нулевое значение, для чего мы определяли чему должен быть равен икс в каждом множителе. А тут, так оно же всегда положительно, т.к. любое число в квадрате > нуля и положительное слагаемое.

    Как думаешь, повлияет на значение неравенства? Правильно - не повлияет! Смело можем поделить на обе части неравенства и тем самым убрать этот множитель, чтоб глаза не мозолил.

    пришло время интервалы рисовать, для этого нужно определить те пограничные значения, при отступлении от которых множители и будут больше и меньше нуля. Но обрати внимание, что здесь знак, значит точку, в которой левая часть неравенства принимает нулевое значение, выкалывать не будем, она ведь входит в число решений, такая точка у нас одна, это точка, где икс равен одному. А точку где знаменатель отрицателен закрасим? - Конечно, нет!

    Знаменатель не должен быть равен нулю, поэтому интервал будет выглядеть так:

    По этой схеме ты уже без труда сможешь написать ответ, скажу только, что теперь у тебя в распоряжении есть новый тип скобки - квадратный! Вот такая скобка [ говорит, что значение входит в интервал решений, т.е. является частью ответа, эта скобка соответствует закрашенной (не выколотой) точке на оси.

    Вот, - у тебя такой же ответ получился?

    Раскладываем на множители и переносим все в одну сторону, нам ведь справа только ноль надо оставить, чтоб с ним сравнивать:

    Обращаю твое внимание, что в последнем преобразовании, дабы получить в числителе как и в знаменателе, умножаю обе части неравенства на. Помни, что при умножении обеих частей неравенства на, знак неравенства меняется на противоположный!!!

    Пишем ОДЗ:

    Иначе знаменатель обратится в ноль, а на ноль, как ты помнишь, делить нельзя!

    Согласись, в получившемся неравенства так и подмывает сократить в числителе и знаменателе! Этого делать нельзя, можно потерять часть решений или ОДЗ!

    Теперь попробуй сам нанести точки на ось. Замечу лишь, что при нанесении точек надо обратить внимание на то, что точка со значением, которая исходя из знака, казалось бы, должна быть нанесена на ось как закрашенная, закрашенной не будет, она будет выколота! Почему спросишь ты? А ты ОДЗ вспомни, не собираешься же ты на ноль делить так?

    Запомни, ОДЗ превыше всего! Если все неравенство и знаки равенства говорят одно, а ОДЗ - другое, доверяй ОДЗ, великой и могучей! Ну что, ты построил интервалы, я уверен, что ты воспользовался моей подсказкой по поводу чередования и у тебя получилось вот так (см. рисунок ниже) А теперь зачеркни, и не повторяй эту ошибку больше! Какую ошибку? - спросишь ты.

    Дело в том, что в данном неравенстве множитель повторялся дважды (помнишь, как ты его еще сократить порывался?). Так вот, если какой-то множитель повторяется в неравенстве четное количество раз, то при переходе через точку на оси, которая обращает этот множитель в ноль (в данном случае точка), знак меняться не будет, если нечетное, то знак меняется!

    Верным будет следующая ось с интервалами и знаками:

    И, обрати внимание, что знак нас интересует не тот, который был в начале (когда мы только увидели неравенство, знак был), после преобразований, знак сменился на, значит, нас интересуют промежутки со знаком.

    Ответ:

    Скажу так же, что бывают ситуации, когда есть корни неравенства, которые не входят в какой-либо промежуток, в ответ они записываются в фигурных скобках, вот так, например: . Подробнее о таких ситуациях можешь прочитать в статье средний уровень.

    Давай подведем итоги того, как решать неравенства методом интервала:

    1. Переносим все в левую часть, справа оставляем только ноль;
    2. Находим ОДЗ;
    3. Наносим на ось все корни неравенства;
    4. Берем произвольный из одного из промежутков и определяем знак в интервале к которому относится корень, чередуем знаки, обращая внимание на корни, повторяющиеся в неравенстве несколько раз, от четности или нечетности количества раз их повторения зависит, меняется знак при прохождении через них или нет;
    5. В ответ пишем интервалы, соблюдая выколотые и не выколотые точки (смотри ОДЗ), ставя необходимые виды скобок между ними.

    Ну и наконец, наша любимая рубрика, «сделай сам»!

    Примеры:

    Ответы:

    МЕТОД ИНТЕРВАЛОВ. СРЕДНИЙ УРОВЕНЬ

    Линейная функция

    Линейной называется функция вида. Рассмотрим для примера функцию. Она положительна при и отрицательна при. Точка - нуль функции (). Покажем знаки этой функции на числовой оси:

    Говорим, что «функция меняет знак при переходе через точку ».

    Видно, что знаки функции соответствуют положению графика функции: если график выше оси, знак « », если ниже - « ».

    Если обобщить полученное правило на произвольную линейную функцию, получим такой алгоритм:

    • Находим нуль функции;
    • Отмечаем его на числовой оси;
    • Определяем знак функции по разные стороны от нуля.

    Квадратичная функция

    Надеюсь, ты помнишь, как решаются квадратные неравенства? Если нет, прочти тему . Напомню общий вид квадратичной функции: .

    Теперь вспомним, какие знаки принимает квадратичная функция. Ее график - парабола, и функция принимает знак « » при таких, при которых парабола выше оси, и « » - если парабола ниже оси:

    Если у функции есть нули (значения, при которых), парабола пересекает ось в двух точках - корнях соответствующего квадратного уравнения. Таким образом ось разбивается на три интервала, а знаки функции попеременно меняются при переходе через каждый корень.

    А можно ли как-нибудь определить знаки, не рисуя каждый раз параболу?

    Вспомним, что квадратный трехчлен можно разложить на множители:

    Например: .

    Отметим корни на оси:

    Мы помним, что знак функции может меняться только при переходе через корень. Используем этот факт: для каждого из трех интервалов, на которые ось разбивается корнями, достаточно определить знак функции только в одной произвольно выбранной точке: в остальных точках интервала знак будет таким же.

    В нашем примере: при оба выражения в скобках положительны (подставим, например:). Ставим на оси знак « »:

    Ну и, при (подставь, например,) обе скобки отрицательны, значит, произведение положительно:

    Это и есть метод интервалов : зная знаки сомножителей на каждом интервале, определяем знак всего произведения.

    Рассмотрим также случаи, когда нулей у функции нет, или он всего один.

    Если их нет, то и корней нет. А значит, не будет и «перехода через корень». А значит, функция на всей числовой оси принимает только один знак. Его легко определить, подставив в функцию.

    Если корень только один, парабола касается оси, поэтому знак функции не меняется при переходе через корень. Какое правило придумаем для таких ситуаций?

    Если разложить такую функцию на множители, получатся два одинаковых множителя:

    А любое выражение в квадрате неотрицательно! Поэтому знак функции и не меняется. В таких случаях будем выделять корень, при переходе через который знак не меняется, обведя его квадратиком:

    Такой корень будем называть кратным .

    Метод интервалов в неравенствах

    Теперь любое квадратное неравенство можно решать без рисования параболы. Достаточно только расставить на оси знаки квадратичной функции, и выбрать интервалы в зависимости от знака неравенства. Например:

    Отмерим корни на оси и расставим знаки:

    Нам нужна часть оси со знаком « »; так как неравенство нестрогое, сами корни тоже включаются в решение:

    Теперь рассмотрим рациональное неравенство - неравенство, обе части которого являются рациональными выражениями (см. ).

    Пример:

    Все множители кроме одного - - здесь «линейные», то есть, содержат переменную только в первой степени. Такие линейные множители нам и нужны для применения метода интервалов - знак при переходе через их корни меняется. А вот множитель вообще не имеет корней. Это значит, что он всегда положительный (проверь это сам), и поэтому не влияет на знак всего неравенства. Значит, на него можно поделить левую и правую часть неравенства, и таким образом избавиться от него:

    Теперь все так же, как было с квадратными неравенствами: определяем, в каких точках каждый из множителей обращается в нуль, отмечаем эти точки на оси и расставляем знаки. Обращаю внимание очень важный факт:


    Ответ: . Пример: .

    Для применения метода интервалов нужно, чтобы в одной из частей неравенства был. Поэтому перенесем правую часть налево:

    В числителе и знаменателе одинаковый множитель, но не торопимся его сокращать! Ведь тогда мы можем забыть выколоть эту точку. Лучше отметить этот корень как кратный, то есть при переходе через него знак не поменяется:

    Ответ: .

    И еще один очень показательный пример:

    Опять же, мы не сокращаем одинаковые множители числителя и знаменателя, так как если сократим, нам придется специально запоминать, что нужно выколоть точку.

    • : повторяется раза;
    • : раза;
    • : раза (в числителе и один в знаменателе).

    В случае четного количества поступаем так же, как и раньше: обводим точку квадратиком и не меняем знак при переходе через корень. А вот в случае нечетного количества это правило не выполняется: знак все-равно поменяется при переходе через корень. Поэтому с таким корнем ничего дополнительно не делаем, как будто он у нас не кратный. Вышеописанные правила относятся ко всем четным и нечетным степеням.

    Что запишем в ответе?

    При нарушении чередования знаков нужно быть очень внимательным, ведь при нестрогом неравенстве в ответ должны войти все закрашенные точки . Но некоторые из нах часто стоят особняком, то есть не входят в закрашенную область. В этом случае мы добавляем их к ответу как изолированные точки (в фигурных скобках):

    Примеры (реши сам):

    Ответы:

    1. Если среди множителей просто - это корень, ведь его можно представить как.
      .

    МЕТОД ИНТЕРВАЛОВ. КОРОТКО О ГЛАВНОМ

    Метод интервалов применяется для решения рациональных неравенств. Он заключается в определении знака произведения по знакам сомножителей на различных промежутках.

    Алгоритм решения рациональных неравенств методом интервалов.

    • Переносим все в левую часть, справа оставляем только ноль;
    • Находим ОДЗ;
    • Наносим на ось все корни неравенства;
    • Берем произвольный из одного из промежутков и определяем знак в интервале к которому относится корень, чередуем знаки, обращая внимание на корни, повторяющиеся в неравенстве несколько раз, от четности или нечетности количества раз их повторения зависит, меняется знак при прохождении через них или нет;
    • В ответ пишем интервалы, соблюдая выколотые и не выколотые точки (смотри ОДЗ), ставя необходимые виды скобок между ними.

    Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

    Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

    Теперь самое главное.

    Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

    Проблема в том, что этого может не хватить…

    Для чего?

    Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

    Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

    Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

    Но и это - не главное.

    Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

    Но, думай сам...

    Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

    НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

    На экзамене у тебя не будут спрашивать теорию.

    Тебе нужно будет решать задачи на время .

    И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

    Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

    Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

    Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

    Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

    Как? Есть два варианта:

    1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
    2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

    Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

    Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

    На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

    Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

    И в заключение...

    Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

    “Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

    Найди задачи и решай!

    Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

    1. Рассмотрим, например, такое неравенство

    Метод интервалов позволяет решить его за пару минут.

    В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

    Метод интервалов основан на следующем свойстве дробно-рациональной функции.

    Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

    Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

    Где и - корни квадратного уравнения .

    Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

    Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

    Эти точки разбивают ось на промежутков.

    Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

    И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
    . Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

    Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

    Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

    При левая часть неравенства отрицательна.

    И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

    Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

    Ответ: .

    Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

    Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

    Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

    (в левой части - дробно-рациональная функция, в правой - нуль).

    Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
    Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
    Остается только выяснить ее знак на каждом промежутке.
    Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

    Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

    2. Рассмотрим еще одно неравенство.

    Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

    Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

    При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

    При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

    При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

    Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

    Ответ: .

    Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

    Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

    3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

    Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

    Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

    Ответ: .

    В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

    4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

    Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

    И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

    Которое легко решается методом интервалов.

    Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

    5 . Рассмотрим еще одно неравенство, на вид совсем простое:

    Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

    Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

    Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

    И после этого - применим метод интервалов .