Как посчитать дисперсию случайной величины. Дисперсия случайной величины

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3


        1. Пусть событие А={1,2,3},а событие В={1,2,3,4,5,6}. Укажите верное высказывание.

        2. Дисперсия случайной величины Х равна 5. Чему равно значение дисперсии D (-2X)

        3. При обследовании отдельного региона фирмой , предоставляющей интернет-услуг, выявлено, что (в среднем) из каждых 100 семей, 80 имеют компьютер, подключенный к интернет. Оценить вероятность того , что из 400 семей данного микрорайона, от 300 до 360 семей имеют компьютер, поключенный к интернет.

        4. Рассматриваются две случайные величины X и Y. Их математическое ожидание и дисперсия соответственно равны: М (X) =3; D (X) =2; M (Y) =2; D (Y) =1. Укажите верные соотношения.
        5. Какая из следующих формул используется для вычисления числа размещения?


        6. Дискретная случайная величина Х имеет биноминальный закон распределения с параметрами n и P. Укажите по какой формуле вычисляется дисперсия D (X).

        7. Дискретная случайная величина Х имеет биноминальный закон распределения с параметрами n и P. Укажите по какой формуле вычисляется математическое ожидание M (X)
        8. Брошены две игральные кости. Какая из следующих совокупностей полученного числа образует полную группу событий?

          Монета бросается 2 раза, какова вероятность P выпадения подряд двух гербов?


        9. На рисунке представлены графики нормальных распределений N1, N2, N3.Расположите эти распределения в порядке возрастания их математического ожидания.

        10. На рисунке представлены графики нормальных распределений N1, N2, N3.Расположите эти распределения в порядке возрастания их дисперсии.

        11. Найти математическое ожидание дискретной случайной величины Х, заданной следующим законом распределения
        12. Различаются ли понятия «перестановки из трех элементов» и «размещения из трех элементов по три»?



        13. Установить последовательность ответов

        14. Математическое ожидание и дисперсия случайной величины X, соответственно,равны М (Х) =3; D (X) =2. Расположите следующие выражения в порядке возрастания их значений.

        15. Дисперсия случайной величины Х равна 5. Чему равно значение дисперсии D (X-1)

        16. Чему равно математическое ожидание M (X-Y) разности двух случайных величин X и Y,а если известны значения математических ожиданий каждой из них: M (X) =3; M (Y) =4?

        17. Укажите названия вероятностей, входящих в формулу Байеса.

        18. Пусть событие А={1,2.3.4,5}, а событие В={5,4,3,2,1}. Укажите верное высказывание.


        19. Что значат записанные ниже формулы.

        20. Дисперсия случайной величины Х равна 5. Чему равно значение дисперсии D (3X+6)
        21. Математическое ожидание случайной величины Х равна 5: M (X) =5. Чему равно значение математического ожидания М (Х-1) ?

          Математическое ожидание случайной величины Х равна 5: M (X) =5. Чему равно значение математического ожидания М (-2Х) ?


        22. В серии из n независимых испытаний, проводимых по схеме Бернулли , наблюдается наступление события А. Что означают указанные ниже компоненты формулы Бернулли? Pm,n=Cmnpmqn-m, где q=1-p. Что означают в этой формуле: 1) Pm,n 2) Cmn 3) p

        23. Пусть А –случайное событие, вероятность которого отлична от нуля и 1; ? –достоверное и O – невозможное событие. События B, C, и D определены как: B=A+A; C=A+ ?; D=A* O
        24. Чему равно значение среднего квадратического отклонения числа 4?

          Дисперсия случайной величины X равна 5: D (X) =5. Чему равно значение дисперсии D (-2X) ?

          Математическое ожидание случайной величины Х равна 5: M (X) =5. Чему равно значение математического ожидания М (3Х+6) ?

          Понятие факториала. Какое из следующих выражений неверно?

          Сравните два числа и укажите правильный ответ. Сравните два числа. Какое из них больше? Какое из чисел больше 10! или 1010?


        25. Сравните два числа и укажите правильный ответ.

        26. Охарактеризуйте событие: 2х2=5
        27. Чему равна сумма противоположных событий?

          Чему равно произведение противоположных событий?

          Брошены две игральные кости. Какая из следующих совокупностей полученного числа очков образует полную группу событий?


        28. События образуют полную группу если они:
        29. Чему равна сумма случайных событий, образующих полную группу?


        30. Пусть событие А=1, 2, 3, а событие B=1, 2, 3, 4, 5, 6. Укажите верное высказывание.

        31. Пусть событие А=1,2,3,4,5, а событие B=5,4,3,2,1. Укажите верное высказывание.
        32. Сколько элементов содержит множество элементарных событий, описывающих результат бросания игрального кубика?

          Какая из следующих формул используется для вычисления числа размещений?


        33. Размещения и перестановки. Пусть P – число возможных перестановок из n элементов, и А- число размещений из n элементов по m (n>m). Каково соотношение между величинами P и А? Укажите верный ответ:
        34. Различаются ли понятия "перестановки из трех элементов" и "размещения из трех элементов по три" ?


        35. Свойства сочетаний. Пусть C – число сочетаний из n элементов по m
        36. Монета бросается два раза. Какова вероятность P выпадения подряд двух гербов?

          Монета бросается три раза. Какова вероятность P выпадения подряд трех гербов?


        37. Пусть А и В - случайные события. Сравните величины P (A+B) и Р (А) +Р (В) и укажите правильный ответ.
        38. Чему равна вероятность суммы противоположных событий?

          Чему равна вероятность произведения противоположных событий?

          Пусть А - случайное событие, вероятность которого - Р (А) =0,3. Чему равна вероятность события Р (А+А) ?

          Пусть А - случайное событие, вероятность которого - Р (А) =0,3. Чему равна вероятность произведения событий Р (А*А) ?


        39. Вероятность произведения достоверного и случайного событий. Пусть

        40. Вероятность суммы невозможного и случайного событий. Пусть

        41. Вероятность произведения невозможного и случайного событий. Пусть
        42. Чему равна вероятность Р суммы событий , образующих полную группу?


        43. Вероятность суммы достоверного и случайного событий. Пусть

        44. Формула Бернулли. Формула Бернулли имеет вид:
        45. Каковы причины использования асимптотических приближений формулы Бернулли?


        46. Дискретная случайная величина Х имеет биноминальный закон распределения с параметрами n и P. Укажите, по какой формуле вычисляется дисперсия D (X):

        47. Дискретная случайная величина Х имеет биноминальный закон распределения с параметрами n и P. Укажите, по какой формуле вычисляется математическое ожидание M (X):
        48. Что означает в этой формуле P?


        49. Законом редких явлений называют:
        50. Что означает в этой формуле P?


        51. Укажите свойство функции Гаусса. (см. ниже):

        52. Укажите критерий использования интегральной теоремы (формулы) Муавра-Лапласа. Интегральная формула Муавра-Лапласа имеет вид:

        53. Свойства функции Лапласа (см. ниже):
        54. Какая характеристика случайной величины имеет смысл ее среднего значения?


        55. Чему равно математическое ожидание M (X+Y) суммы двух случайных величин X и Y, если известны значения математических ожиданий каждой из них: M (X) = 3 и M (Y) = 4 ?

        56. Чему равно математическое ожидание M (X-Y) разности двух случайных величин X и Y, если известны значения математических ожиданий каждой из них: M (X) = 3 и M (Y) = 4 ?
        57. Математическое ожидание случайной величины X равна 5: М (X) = 5. Чему равно значение математического ожидания М (X-1) ?

          Математическое ожидание случайной величины X равна 5: М (X) = 5. Чему равно значение математического ожидания М (-2X) ?

          Математическое ожидание случайной величины X равна 5: М (X) = 5. Чему равно значение математического ожидания М (3X+6) ?

          Какая характеристика случайной величины определяет степень ее рассеяния?


        58. Чему равна дисперсия суммы D (X+Y) двух независимых случайных величин X и Y, если известны значения дисперсий каждой из них: D (X) =3 и D (Y) =4?
        59. Дисперсия случайной величины X равна 5: D (X) = 5. Чему равно значение дисперсии D (X-1) ?

          Дисперсия случайной величины X равна 5: D (X) = 5. Чему равно значение дисперсии D (-2X) ?

          Дисперсия случайной величины X равна 5: D (X) = 5. Чему равно значение дисперсии D (3X+6) ?

          Чему равно значение дисперсии числа 5: D (5) = ?


        60. Среднее квадратическое отклонение равно:

        61. Охарактеризуйте множество значений дискретной случайной величины (укажите наиболее полный ответ):

        62. Задача: Случайная величина X принимает три возможных значения x=2; x=5; x=8. Известны вероятности первых двух возможных значений: p=0,4 и p=0,15. Найти вероятность значения x; p=?

        63. Множество значений непрерывной случайной величины является:
        64. Какое значение непрерывной случайной величины Х определяет ее медиана Ме (Х) ?


        65. Мода Mo (X) случайной величины Х характеризует (укажите верный ответ):
        66. Функция распределения. Вероятность какого события определяет функция распределения F (X) cлучайной величины X?


        67. Наименьшее значение функции распределения. Непрерывная случайная величина X определена на всей числовой оси. Чему равно предельное значение ее функции распределения F (x) при x->

        68. Наибольшее значение функции распределения. Непрерывная случайная величина X определена на всей числовой оси. Чему равно предельное значение ее функции распределения F (x) при x->-? (укажите верный ответ среди ниже перечисленных) ?
        69. Каким из перечисленных ниже свойств обладает функция распределения случайной величины?


        70. Какие значения может принимать биномиально распределенная случайная величина Х? P (X=m) =Cpq, где: 0

        71. Чему равно математическое ожидание M (X) случайной величины Х, распределенной по биномиальному закону: P (X=m) =Cpq, где: 0

        72. Чему равна дисперсия D (X) случайной величины Х, распределенной по биномиальному закону: P (X=m) =Cpq, где: 0
        73. Какие значения может принимать случайная величина Х, описываемая законом распределения Пуассона?


        74. Математическое ожидание случайной величины X, имеющей Пуассоновский закон распределения, равно 4: M (X) = 4. Чему равна дисперсия D (X) этой случайной величины?

        75. Геометрическое распределение дискретной случайной величины. Согласно распределению: случайная дискретная величина X, имеет геометрическое распределение с параметром p, принимает бесконечное (но счетное) множество значений 1,2, …, m, … с вероятностями: P (X=m) =pq, где 0

        76. Равномерное распределение. Охарактеризуйте плотность вероятности случайной величины, равномерно распределенной на отрезке :

        77. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в произвольный момент времени. Какова вероятность - P того, что ждать пассажиру придется не больше полминуты?

        78. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в произвольный момент времени. Определить математическое ожидание M (X) случайной величины X - времени ожидания поезда.

        79. Непрерывная случайная величина X имеет равномерный закон распределения на отрезке . Чему равно ее математическое ожидание M (X) ?

        80. Смысловое значение параметра "a" нормального закона распределения случайной величины (см. ниже) это:

        81. Смысловое значение параметра "сигма квадрат" нормального распределения (закона Гаусса).

        82. Влияние математического ожидания (параметра "a") на график плотности вероятности нормального закона (закона Гаусса) распределения случайной величины (см. ниже) характеризуется:

        83. Сравнение математических ожиданий. M (X) и М (Х) нормально распределенных случайных величин Х и Х (см. рисунок ниже).

        84. Уменьшение дисперсии (параметра "сигма квадрат") нормального закона (закона Гаусса) распределения случайной величины (см. ниже) приводит к следующему изменению графика кривой распределения:

        85. Сравнение дисперсий D (X) и D (X) нормально распределенных случайных величин X и X (см. рисунок ниже).

        86. Стандартным (нормированным) законом распределения N (0; 1) называется:

        87. Правило трех сигм.

        88. Значение закона больших чисел.

        89. Значение несобственного интеграла от плотности вероятности. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен:
        90. К чему стремится частость наблюдаемого события при неограниченном увеличении числа испытаний в схеме Бернулли?


        91. Из генеральной совокупности отобраны десять элементов по принципу: брался каждый восьмой по порядку элемент генеральной совокупности. Как называется такой способ отбора?
        92. Как называется варианта, характеризующая наибольшую частоту в выборке?

          Уровень значимости при проверке статистической гипотезы задан в 10%. Какова возможность ошибки первого рода?

          Какая из следующих числовых характеристик выборки является смещенной оценкой?

          К каким соединениям относится свойство симметрии?


        93. Укажите, какое из перечисленных ниже свойств числовых характеристик случайной величины записано неправильно (предполагая, что X и Y - независимые случайные величины) ?
        94. Чему равно значение математического ожидания числа 5: M (5) = ?


        95. Найти математическое ожидание дискретной случайной величины X, заданной следующим законом распределения:

        96. Чему равна дисперсия разности D (X-Y) двух независимых случайных величин X и Y, если известны значения дисперсий каждой из них: D (X) =3 и D (Y) =4?

        97. Распределение Пуассона. Математическое ожидание. Чему равно математическое ожидание M (X) случайной величины X

        98. распределенной по закону Пуассона:

        99. Распределение Пуассона. Дисперсия. Чему равно D (X) случайной величины X распределенной по закону Пуассона:

        100. Укажите какова смысловая интерпретация такой случайной величины Х:

        101. Найти моду для генеральной совокупности заданной вариационным рядом:

        102. Найти генеральную среднюю генеральной совокупности , заданной следующим вариационным рядом:

        103. Найти медиану для генеральной совокупности заданной вариационным рядом:

        104. Определить выборочную среднюю для следующей выборки:

        105. Найти выборочную среднюю следующей выборки из генеральной совокупности:

Урок передачи-усвоения новых знаний, умений и навыков.

Тема: Дисперсия. Её свойства.

Цели урока:

  • Познавательная: 1) передача учащимся определенной системы математических знаний, умений, навыков; 2) выработка у учащихся умения
    решать основные типы задач теории вероятности и применять теорию в конкретных различных ситуациях; 3) формирование представлений об идеях и методах высшей математики; 4) формирование у учащихся на материале учебного предмета высшей математики способов учебно-познавательной деятельности.
  • Развивающая: 1) развитие мышления; 2) развитие памяти; 3) развитие элементов творческой деятельности, как качеств мышления; 4) развитие речи, заключающееся в овладении математической терминологией, а также приемами построения определений, понятий и оперирование ними.
  • Воспитывающая: 1) воспитать у учеников любовь к выбранной профессии и данному предмету.

Задача: заключается в определении свойств дисперсии случайной величины и в выводе формулы для ее расчета.

Ход урока.

  1. Организационный момент.
  2. Повторение старого и изучение нового материала.
  3. Закрепление нового материала.
  4. Домашнее задание.

1. Проверка присутствующих учеников на уроке.

2. Математика – королева всех наук!
Без нее не летят корабли,
Без нее не поделишь ни акра земли,
Даже хлеба не купишь, рубля не сочтешь,
Что по не узнаешь, а узнав не поймешь!

Учитель : “Итак, математическое ожидание не полностью характеризует случайную величину”

Ученик 1: “О как же так выходит я совсем пустяк”.

Ученик 2: “Да, ты право, правду говоришь”.

Ученик 1: “Но кто заменит вдруг меня, ведь моя формула, то всем нужна”.

Ученик 2: “Да, ты сначала про себя все вспомни”.

Ученик 1: “Без проблем, вот эти формулы, они известны всем. И если множество значений бесконечно, то ожидание находится как ряд, точнее его сумма:

А, если величина вдруг непрерывна, то рассмотреть имеем право мы предельный случай, и вот в итоге что получим:

Ученик 2: “Но это все смешно ведь ожидание не существует. Нет его!”.

Ученик 1: “Нет, ожидание существует, когда является абсолютно сходящимся и интеграл и сумма”.

Ученик 2: “И все же я твержу одно, нам ожидание не нужно”.

Ученик 1: “Ах как же так? Да это просто ”.

Учитель: “Стоп, стоп, закончим спор. Возьмите ручку и тетрадь, и в путь мы будем с вами спор решать. Но прежде чем начать, давайте вспомним лишь одно, чему отклонение от математического ожидания равно”.

Ученик 3: “О, это могу вспомнить я”.

Учитель: “Пожалуйста, вот мел, доска”.

Ученик 4: “Разность X – М(Х) называется отклонением случайной величины X от ее математического ожидания М(Х). Отклонение является случайной величиной. Так как математическое ожидание случайной величины -величина постоянная и математическое ожидание постоянной равно этой

постоянной, то М(Х – М(Х)) = М(Х) – М(М(Х)) = М (X) – М(Х) = 0. т, е, М(Х – М(Х)) =0.”.

Учитель: “Да, все верно, но друзья за меру рассеяния отклонения случайной величины от ее математического это принять нельзя. И из этого последует, что рассматривают модули или квадраты отклонений. А вот теперь послушайте определение: X случайной величины – дисперсия или рассеяние – это математическое ожидание квадрата ее отклонения. Обозначается как D(X), а формула имеет вид: D(X) = М((Х – М(Х)) 2). (1) Теперь давайте, определим, какой же знак величине присвоим мы?”.

Ученик 5: “Из свойств и определения математического ожидания можем получить, лишь одно, что как величина дисперсия неотрицательна D(X) > 0” (2).

Учитель: “Учитывая равенство один получим формулу для нахождения дисперсии: D(X) = М(Х 2) – (М(Х)) 2 . Которую быть может кто – нибудь докажет”.

Ученик 6: “Давайте я попробую. D(X)=M((X – М(Х)) 2) = М(Х 2 - 2ХМ(Х)+(М(Х)) 2)=М(Х 2) – 2М(ХМ(Х)+М((М(Х)) 2)=М(Х 2) – 2М(Х)М(Х)+(М(Х)) 2 =М(Х 2) – (М(Х)) 2 ”. (3)

Учитель: “Рассмотрим свойства случайной величины:

1. Дисперсия С – как постоянной величины равна нулю: D(C) - 0 (С – const). (4)

2. Постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат: D(CX)=C 2 D(X). (5)

3. Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий: D(X+Y) = D(X) + D(Y). (6)

4. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий: D(X – Y) = D(X) + D(Y). (7)

Докажем эти свойства принимая во внимание свойства ожидания:

D(C) = М((С – М(С)) 2) = М((С – С 2)) = М(0) = 0. Первое свойство доказано оно означает, что постоянная величина не имеет рассеяния так как принимает одно и тоже значение.

А теперь докажем второе свойство: D(CX) – М((СХ – М(СХ)) 2) = М((СХ

СМ(Х)) 2) = М(С 2 (Х – М(Х)) 2) = С 2 М((Х – М(Х)) 2) = C 2 D(X).

Для доказательства третьего свойства используем формулу три:

D(X+Y) = M((X+Y) 2) – (M(X+Y)) 2 = M(X 2 +2XY+Y 2) – (M(X)+M(Y)) 2 = M(X 2)+M(2XY)+M(Y 2) – ((M(X)) 2 +2M(X)M(Y)+(M(Y)) 2) = M(X 2)+2M(X)M(Y)+M(Y 2) – (M(X)) 2 – 2M(X)M(Y) – (M(Y)) 2 = M(X 2) - (M(X)) 2 +M(Y 2) – (M(Y)) 2 = D(X) – D(Y).

Третье свойство распространяется на любое число попарно-независимых случайных величин.

Доказательство четвертого свойства следует из формул (5) и (6).

D(X – Y) = D(X +(- Y)) – D(X) +D(– Y)=D(X)+(-l) 2 D(Y) = D(X)+D(Y).

Если случайная величина является X является дискретной и задан ее закон распределения Р(Х=х k) = p k (k= 1,2,3,n).

Таким образом случайная величина (X - М(Х)) 2 имеет следующий закон распределения: (к=1,2,3,n), =l.

Исходя из определения математического ожидания, получаем формулу

Дисперсия непрерывной случайной величины X, все возможные значения корой принадлежат отрезку [а,Ь] , определяется формулой:

D(X)=(x-M(X)) 2 p(x)dx (8)

где р(х) – плотность распределения этой величины. Дисперсию можно вычислять по формуле:

Для учеников, имеющих оценку “4” и “5” необходимо дома доказать формулу (9).

3. Закрепление нового материала в виде тестовой работы.

1) Тестовая работа по теме “Дисперсия и ее свойства”.

1. Продолжить определение: дисперсия – это.

2. Выберите правильную формулу для расчета дисперсии:

а) D(X)=D(X) 2 – (D(X)) 2 ;
б) D(X)=M(X – D(X 2));
в)D(X)=M((X-M(X)) 2);
г) D(X)=M(X) 2 – (M(X)) 2 ;

Это разность математического ожидания квадрата случайной величины и квадрата ее мат ожидания.

D(X)=M(X^2)-M^2(X)

Дисперсия характеризует степень рассеяния значение случайной величины относительно ее мат ожидания. Если все значения тесно сконцентрированы около ее мат ожидания и больше отклонения от мат ожид, то такая случайная величина имеет малую дисперсию, а если рассеяны и велика вероятность больших отклонений от М, то случ величина имеет большую дисперсию.

Свойства:

1.Дисперсия постоянно равна 0 D(C)=0

2.Дисперсия произведения случ величины на постоянную С равна произ десперсии случ велич Х на квадрат постоянной D(CX)=C^2D(X)

3.Если случ велич X and Y независимы, дисперсия их суммы (разности) равна сумме дисперсий

D(X Y)=D(X)+D(Y)

4.Дисперсия случ велич не изменится если к ней прибавить постоянную

Теорема:

Дисперсия числа появление соб А в n независимых испытаниях в каждом из которых вероятность появления соб постоянна и равна p, равна произведению числа испытания на вероятность появления и вероятности непоявления соб в одном испытании

Среднее квадратичское отклонение.

Средним квадрат отклонением случайной величины Х называется арифметический корень из дисперсия

Непрерывные случайные величины. Функция распределения вероятностей и ее свойства.

Случайная величина, значение которой заполняет некоторый промежуток, называется непрерывной .

Промежутки могут быть конечными, полубесконечными или бесконечными.

Функция распред св.

Способы задания ДСВ неприменимы для непрерывной. В этой связи вводиться понятие функции распределение вероятностей.

Функция распределения называют функцию F(x) определяющую для каждого значения х вероятность того что случ велич Х примет значение меньшее х т.е

Функция распределения ДСВ принимающие значение (x1,x2,x3) с вероятностью (p1,p2,p3) определяется

Так, например функция распределения биномиального распределения определяется формулой:

Случайную величину называют непрерывной, если ее функция распределения есть непрерывная, частично-дифференцируемая функция с непрерывной производной.

Свойства:

1.значение функции принадлежит

2. функция распределения есть неубывающая функция F(x2)

3.Вероятность того что случайная величина X примет значение заключенное в интервале (α,β) равна приращению функции распределения на этом интервале P(α

Следствие. Вероятность того что случ велич примет одно значение равно 0.

4.Если все возможные значение случ велич Х принадлежит (a,b) то F(x)=0 при x a и F(x)=1 при x b


5.Вероятность того, что случ велич Х примет значение большее чем x равно разности между единицей и функцией распределения

Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от своего математического ожидания (если последнее существует):

D(x) = M((x-M(x)) 2).

Для дискретной случайной величины:

Если дискретная случайная величина может принимать бесконечное число значений, сумма в правой части будет представлять собой ряд.

Для чего подсчитывают дисперсию? Математическое ожидание само по себе не дает нам верного представления о характере исследуемого явления, о том, как может изменяться случайная величина. Мы узнаем только ее среднее значение при большом числе экспериментов, но не можем судить о том, каков в среднем разброс ее значений вокруг этого числа. Судить об этом позволяет дисперсия. Отклонения при ее вычислении берутся в квадрате, так как в противном случае отклонения в разные стороны (значения больше и меньше среднего) компенсировали бы друг друга. Выбор для избавления от знака именно возведения в квадрат, а не какого-либо другого действия (например, взятия по модулю) объясняется тем, что на этом факте основывается доказательство некоторых важных свойств дисперсии, изучаемых математической статистикой.

Приведенное выше выражение для дисперсии является неудобным при проведении практических вычислений, поэтому выведем другое.

Приведем без доказательства некоторые свойства дисперсии:

1) Дисперсия неотрицательна (по определению):

2) Дисперсия постоянной равна нулю:

с – const D(c) = 0

Например, если работник получает постоянную зарплату х = 30 (тыс. руб.), то ее дисперсия будет равна нулю (в самом деле, характеристика рассеяния нулевая).

3) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

с – const D(cx) = c 2 D(x)

Например, пусть дисперсия заработной платы работника равна 4 (х –заработная плата, D(х) = 4). Другой работник всегда получает на 20% больше, чем первый, т.е. заработная плата второго работника равна 1,2*х. Тогда дисперсия заработной платы второго работника равна D(1,2*х) =
= 1,2 2 *D(х) = 1,44*4 = 5,76.

4) Для независимых случайных величин дисперсия их суммы равна сумме дисперсий:

D(x + y) = D(x) + D(y) (для независимых х и y)

Например, пусть дисперсия заработной платы одного работника равна 4 (х – его заработная плата, D(х) = 4), а другого – 5 (y – его заработная плата, D(y) = 5). Тогда дисперсия суммарной заработной платы составит D(x +
+ y) = D(x) + D(y) = 4 + 5 = 9. Однако, выполнить расчет таким образом можно лишь в случае, когда заработные платы этих работников не зависят друг от друга. Если они зависимы, воспользоваться формулой нельзя.

Следует отметить, что дисперсия разности двух случайных величин будет равна тоже сумме дисперсий (а не разности). Это следует из свойств (3) и (4), поскольку при возведении в квадрат сомножителя (-1) получают 1.

Свойство (4) будет верным не только для двух, но для любого конечного числа случайных величин.

5) При увеличении (уменьшении) всех значений случайной величины на константу, ее дисперсия не изменится (это следует из свойств (2) и (4):

с – const D(x - с) = D(x)

Например, если дисперсия среднемесячной зарплаты равна 4, и из зарплаты каждый месяц вычитают 800 руб. на оплату проездного билета, то дисперсия зарплаты за вычетом оплаты проездного будет все равно равна 4.

Например, рассмотрим случайную величину х – количество проданных в день автомобилей. Эта величина измерялась в течение 100 дней, и за это время принимала значения {0; 1; 2; 3; 4} соответственно 18, 15, 28, 15 и 24 число раз. Необходимо определить дисперсию вероятностного распределения х.

Будем считать, что число экспериментов – 100 - достаточно велико, чтобы можно было рассматривать относительную частоту в качестве эмпирической оценки вероятности. Поэтому чтобы определить вероятности, разделим каждую из частот на 100. Представим вероятностное распределение в виде табл.2, приписав к ней две строки для вспомогательных вычислений.

Таблица 2

6,46-2,12 2 1,97.

Использовать полученную оценку все же представляется затруднительным. Ее нельзя сравнить с математическим ожиданием, так как ее единицы измерения не имеют экономического смысла (“автомобили в квадрате”). Поэтому, чтобы определить, действительно ли разброс количества продаж вокруг величины 2,12 так велик, извлечем корень из дисперсии . Полученный результат имеет те же единицы измерения, что и рассматриваемая случайная величина (в данном случае он измеряется в количестве автомобилей, т.е. в штуках).

Эту величину называют средним квадратическим отклонением (СКО) и обозначают .

СКО = 1,4 (шт.) – много это или мало? Вероятно, если бы объем продаж составлял в среднем, например, 10 машин в день, то такая величина характеризовала бы небольшой разброс. В рассматриваемом случае
М = 2,12 (шт.). Чтобы оценить полученный результат, необходимо подсчитать относительный показатель, который позволит сравнить СКО с математическим ожиданием.

Отношение СКО к математическому ожиданию случайной величины называют коэффициентом вариации : . Он представляет собой безразмерную величину (можно перевести его в проценты, умножив на 100%).

Для рассмотренного примера коэффициент вариации равен 1,4/2,12 =
= 0,66 или 66%.

Рассмотренные выше математическое ожидание, дисперсия, СКО и коэффициент вариации представляют собой числовые характеристики случайной величины. Кроме них, существуют и другие числовые характеристики, которые пока рассматривать не будем.