Как определить непрерывность функции в точке. Что будем делать с полученным материалом

Рассмотрим две функции, графики которых изображены на рис. 1 и 2. График первой функции можно нарисовать, не отрывая карандаша от бумаги. Эту функцию можно назвать непрерывной. График другой функции так нарисовать нельзя. Он состоит из двух непрерывных кусков, а в точке имеет разрыв, и функцию мы назовем разрывной.

Такое наглядное определение непрерывности никак не может устроить математику, поскольку содержит совершенно нематематические понятия «карандаш» и «бумага». Точное математическое определение непрерывности дается на основе понятия предела и состоит в следующем.

Пусть функция определена на отрезке и - некоторая точка этого отрезка. Функция называется непрерывной в точке , если при стремлении к ( рассматривается только из отрезка ) значения функции стремятся к , т.е. если

. (1)

Функция называется непрерывной на отрезке, если она непрерывна в каждой его точке.

Если в точке равенство (1) не выполняется, функция называется разрывной в точке .

Как видим, математически свойство непрерывности функции на отрезке определяется через местное (локальное) свойство непрерывности в точке.

Величина называется приращением аргумента, разность значений функции называется приращением функции и обозначается . Очевидно, что при стремлении к приращение аргумента стремится к нулю: .

Перепишем равенство (1) в равносильном виде

.

Используя введенные обозначения, его можно переписать так:

Итак, если функция непрерывна, то при стремлении приращения аргумента к нулю приращение функции стремится к нулю. Говорят и иначе: малому приращению аргумента соответствует малое приращение функции. На рис. 3 приведен график непрерывной в точке функции, приращению соответствует приращение функции . На рис. 4 приращению соответствует такое приращение функции , которое, как бы мало ни было, не будет меньше половины длины отрезка ; функция разрывна в точке .

Наше представление о непрерывной функции как о функции, график которой можно нарисовать, не отрывая карандаша от бумаги, прекрасно подтверждается свойствами непрерывных функций, которые доказываются в математическом анализе. Отметим, например, такие их свойства.

1. Если непрерывная на отрезке функция принимает на концах отрезка значения разных знаков, то в некоторой точке этого отрезка она принимает значение, равное нулю.

2. Функция , непрерывная на отрезке , принимает все промежуточные значения между значениями в концевых точках, т.е. между и .

3. Если функция непрерывна на отрезке, то на этом отрезке она достигает своего наибольшего и своего наименьшего значения, т.е. если - наименьшее, а - наибольшее значения функции на отрезке , то найдутся на этом отрезке такие точки и , что и .

Геометрический смысл первого из этих утверждений совершенно ясен: если непрерывная кривая переходит с одной стороны оси на другую, то она пересекает эту ось (рис. 5). Разрывная функция этим свойством не обладает, что подтверждается графиком функции на рис. 2, а также свойствами 2 и 3. На рис. 2 функция не принимает значения , хотя оно заключено между и . На рис. 6 приведен пример разрывной функции (дробная часть числа ), которая не достигает своего наибольшего значения..

Сложение, вычитание, умножение непрерывных на одном и том же отрезке функций вновь приводят к непрерывным функциям. При делении двух непрерывных функций получится непрерывная функция, если знаменатель всюду отличен от нуля.

К понятию непрерывной функции математика пришла, изучая в первую очередь различные законы движения. Пространство и время непрерывны, и зависимость, например, пути от времени , выраженная законом , дает пример непрерывной функции .

С помощью непрерывных функций описывают состояния и процессы в твердых телах, жидкостях и газах. Изучающие их науки - теория упругости, гидродинамика и аэродинамика - объединяются одним названием - «механика сплошной среды».

1. Введение.

2. Определение непрерывности функции.

3. Классификация точек разрыва

4. Свойства непрерывных функций.

5. Экономический смысл непрерывности.

6. Заключение.

10.1. Введение

Всякий раз, оценивая неизбежные с течением времени изменения в окружающем нас мире, мы пытаемся проанализировать происходящие процессы, чтобы выделить их наиболее существенные черты. Один из первых на этом пути встает вопрос: как происходят характерные для этого явления изменения – непрерывно или дискретно , т.е. скачкообразно. Равномерно ли понижается курс валюты или обваливается, происходит постепенная эволюция или революционный скачок? Чтобы унифицировать качественные и количественные оценки происходящего, следует абстрагироваться от конкретного содержания и изучить проблему в терминах функциональной зависимости. Это позволяет сделать теория пределов, которую мы рассматривали на прошлой лекции.

10.2. Определение непрерывности функции

Непрерывность функции интуитивно связано с тем, что ее графиком является сплошная, нигде не прерывающаяся кривая. Мы вычерчиваем график такой функции, не отрывая ручки от бумаги. Если функция задана таблично, то о ее непрерывности, строго говоря, судить нельзя, потому что при заданном шаге таблицы поведение функции в промежутках не определено.

В реальности при непрерывности имеет место следующее обстоятельство: если параметры, характеризующие ситуацию, немного изменить, то не много изменится и ситуация. Здесь важно не то, что ситуация изменится, а то, что она изменится «немного».

Сформулируем понятие непрерывности на языке приращений. Пусть некоторое явление описывается функцией и точка a принадлежит области определения функции. Разность называется приращением аргумента в точке a , разность – приращением функции в точке a .

Определение 10.1. Функция непрерывна в точке a, если она определена в этой точке и бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции :

Пример 10.1. Исследовать на непрерывность функцию в точке .

Решение. Построим график функции и отметим на нем приращения Dx и Dy (рис. 10.1).

Из графика видно, что чем меньше приращение Dx , тем меньше Dy . покажем это аналитически. Приращение аргумента равно , тогда приращение функции в этой точке будет равно

Отсюда видно, что если , то и :

.

Дадим еще одно определение непрерывности функции.

Определение 10.2. Функция называется непрерывной в точке а, если:

1) она определена в точке а, и некоторой ее окрестности;

2) односторонние пределы существуют и равны между собой:

;

3) предел функции при х ®а равен значению функции в этой точке:

.

Если хотя бы одно из этих условий нарушается, то говорят, что функция претерпевает разрыв .

Это определение является рабочим для установления непрерывности в точке. Следуя его алгоритму и отмечая совпадения и несовпадения требований определения и конкретного примера, можно сделать вывод о непрерывности функции в точке.

В определении 2 четко проступает идея близости, когда мы вводили понятие предела. При неограниченном приближении аргумента x к предельному значению a , непрерывная в точке a функция f (x ) сколь угодно близко приближается к предельному значению f (a ).

10.3. Классификация точек разрыва

Точки, в которых нарушаются условия непрерывности функции, называются точками разрыва этой функции. Если x 0 – точка разрыва функции , в ней не выполняется, по крайней мере, одно из условий непрерывности функции. Рассмотрим следующий пример.

1. Функция определена в некоторой окрестности точки a , но не определена в самой точке a . Например, функция не определена в точке a =2, поэтому претерпевает разрыв (см. рис. 10.2).

Рис. 10.2 Рис. 10.3

2. Функция определена в точке a и в некоторой ее окрестности, ее односторонние пределы существуют, но не равны другу:, то функция претерпевает разрыв. Например, функция

определена в точке , однако при функция испытывает разрыв (см. рис. 10.3), т.к.

и ().

3. Функция определена в точке a и в некоторой ее окрестности, существует предел функции при , но этот предел не равен значению функции в точке a :

.

Например, функция (см. рис. 10.4)

Здесь – точка разрыва:

,

Все точки разрыва делятся на точки устранимого разрыва, точки разрыва первого и второго рода.

Определение 10.1. Точка разрыва называется точкой устранимого разрыва , если в этой точке существуют конечные пределы функции слева и справа, равные друг другу:

.

Предел функции в этой точке существует, но не равен значению функции в предельной точке (если функция определена в предельной точке), или функция в предельной точке не определена.

На рис. 10.4 в точке условия непрерывности нарушены, и функция имеет разрыв. На графике точка (0; 1) выколота . Впрочем, этот разрыв легко устранить – достаточно переопределить данную функцию, положив ее равной своему пределу в этой точке, т.е. положить . Поэтому такие разрывы называются устранимыми.

Определение 10.2. Точка разрыва называется точкой разрыва 1-го рода , если в этой точке существуют конечные пределы функции слева и справа, но они не равны друг другу:

.

Говорят, что в этой точке функция испытывает скачок .

На рис. 10.3 функция имеет разрыв 1-го рода в точке . Пределы слева и справа в этой точке равны:

и .

Скачок функции в точке разрыва равен .

Доопределить такую функцию до непрерывной невозможно. График состоит из двух полупрямых, разделенных скачком.

Определение 10.3. Точка разрыва называется точкой разрыва 2-го рода , если, по крайней мере, один из односторонних пределов функции (слева или справа) не существуют или равны бесконечности.

На рис 10.3 функция в точке имеет разрыв 2-го рода. Рассмотренная функция при является бесконечно большой и конечного предела ни справа, ни слева не имеет. Поэтому говорить о непрерывности в такой точке не приходится.

Пример 10.2. Построить график и определить характер точек разрыва:

Решение. Построим график функции f (x ) (рис 10.5).

Из рисунка видно, что исходная функция имеет три точки разрыва: , x 2 = 1,
x 3 = 3. Рассмотрим их по порядку.

Поэтому точке имеется разрыв 2-го рода .

а) Функция определена в этой точке: f (1) = –1.

б) , ,

т.е. в точке x 2 = 1 имеется устранимый разрыв . Переопределив значение функции в этой точке: f (1) = 5, разрыв устраняется и функция в этой точке становится непрерывной.

а) Функция определена в этой точке: f (3) = 1.

Значит, в точке x 1 = 3 имеется разрыв 1-го рода . Функция в этой точке испытывает скачок, равный Dy = –2–1 = –3.

10.4. Свойства непрерывных функций

Вспоминая соответствующие свойства пределов, заключаем, что функция, являющаяся результатом арифметических действий над непрерывными в одной и той же точке функциями, также непрерывны. Отметим:

1) если функции и непрерывны в точке a , то функции , и (при условии, что ) также непрерывны в этой точке;

2) если функция непрерывна в точке a и функция непрерывна в точке , то сложная функция непрерывна в точке a и

,

т.е. знак предела можно вносить под знак непрерывной функции.

Говорят, что функция непрерывна на некотором множестве, если она непрерывна в каждой точке этого множества . График такой функции – непрерывная линия, которая вычеркивается одним росчерком пера.

Все основные элементарные функции непрерывны во всех точках, где они определены .

Функции, непрерывные на отрезке , обладают рядом важных отличительных свойств. Сформулируем теоремы, выражающие некоторые из этих свойств.

Теорема 10.1 (теорема Вейерштрасса ). Если функция непрерывна на отрезке, то она на этом отрезке достигает своих наименьшего и наибольшего значений.

Теорема 10.2 (теорема Коши ). Если функция непрерывна на отрезке, то она на этом отрезке все промежуточные значения между наименьшим и наибольшим значениями .

Из теоремы Коши следует следующее важное свойство.

Теорема 10.3 . Если функция непрерывна на отрезке и на концах отрезка принимает значения разных знаков, то между a и b найдется такая точка c, в которой функция обращается в нуль: .

Геометрический смысл этой теоремы очевиден: если график непрерывной функции переходит с нижней полуплоскости на верхнюю (или наоборот), то по крайней мере в одной точке она пересечет ось Ox (рис.10.6).

Пример 10.3. Приближенно вычислить корень уравнения

, (т.е. приближенно заменить) многочленном соответствующей степени.

Это очень важное для практики свойство непрерывных функций. Например, очень часто непрерывные функции задаются таблицами (данными наблюдений или экспериментов). Тогда используя какой-либо метод можно таблично заданную функцию заменить многочленом. В соответствии с теоремой 10.3 это можно всегда сделать с достаточно высокой точностью. Работать с аналитически заданной функцией (тем более с многочленом) гораздо проще.

10.5. Экономический смысл непрерывности

Большинство функций, используемых в экономике, являются непрерывными и это позволяет высказывать вполне значимые утверждения экономического содержания.

В качестве иллюстрации рассмотрим следующий пример.

Налоговая ставка N имеет примерно такой график, как на рис. 10.7а.

На концах промежутков она разрывна и разрывы эти 1-го рода. Однако сама величина подоходного налога P (рис. 10.7б) является непрерывной функцией годового дохода Q . Отсюда, в частности, вытекает, что если годовые доходы двух людей различаются незначительно, то и различие в величинах подоходного налога, который они должны уплатить, также должны различаться не значительно. Интересно, что обстоятельство воспринимается огромным большинством людей как совершенно естественное, над которым они даже не задумываются.

10.6. Заключение

Под занавес позволим себе небольшое отступление.

Вот как можно графически выразить грустное наблюдение древних:

Sic transit Gloria mundi …

(Так проходит земная слава …)


Конец работы -

Эта тема принадлежит разделу:

Понятие функции

Понятие функции.. все течет и все меняется гераклит.. таблица х х х х y у у у у у..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Непрерывная функция представляет собой функцию без «скачков», то есть такую, для которой выполняется условие: малым изменениям аргумента следуют малые изменения соответствующих значений функции. График подобной функции представляет из себя плавную или непрерывную кривую.

Непрерывность в точке, предельной для некоторого множества, можно определить с помощью понятия предела, а именно: функция должна иметь в этой точке предел, который равен ее значению в предельной точке.

При нарушении этих условий в некоторой точке, говорят, что функция в данной точке терпит разрыв, то есть ее непрерывность нарушается. На языке пределов точку разрыва можно описать как несовпадение значения функции в разрывной точке с пределом функции (если он существует).

Точка разрыва может быть устранимой, для этого необходимо существование предела функции, но несовпадающего с его значением в заданной точке. В этом случае ее в этой точке можно «поправить», то есть доопределить до непрерывности.
Совсем иная картина складывается, если предела функции в заданной существует. Возможно два варианта точек разрыва:

  • первого рода - имеются и конечны оба из односторонних пределов, и значение одного из них или обоих не совпадают со значением функции в заданной точке;
  • второго рода, когда не существует один или оба из односторонних пределов или их значения бесконечны.

Свойства непрерывных функций

  • Функция, полученная в результат арифметических действий, а также суперпозиции непрерывных функций на их области определения также является непрерывной.
  • Если дана непрерывная функция, которая положительна в некоторой точке, то всегда можно найти достаточно малую ее окрестность, на которой она сохранит свой знак.
  • Аналогично, если ее значения в двух точках A и B равны, соответственно, a и b, причем a отлично от b, то для промежуточных точек она примет все значения из промежутка (a ; b). Отсюда можно сделать интересное заключение: если дать растянутой резинке сжаться так, чтобы она не провисала (оставалась прямолинейной), то одна из ее точек останется неподвижной. А геометрически это означает, что существует прямая, проходящая через любую промежуточную точку между A и B, которая пересекает график функции.

Отметим некоторые из непрерывных (на области их определения) элементарных функций:

  • постоянная;
  • рациональная;
  • тригонометрические.

Между двумя фундаментальными понятиями в математике - непрерывностью и дифференцируемостью - существует неразрывная связь. Достаточно только вспомнить, что для дифференцируемости функции необходимо, чтобы это была непрерывная функция.

Если же функция в некоторой точке дифференцируема, то там она непрерывна. Однако совсем не обязательно, чтобы и ее производная была непрерывной.

Функция, имеющая на некотором множестве непрерывную производную, принадлежит отдельному классу гладких функций. Иначе говоря, это - непрерывно дифференцируемая функция. Если же производная имеет ограниченное количество точек разрыва (только первого рода), то подобную функцию называют кусочно гладкой.

Еще одним важным понятием является равномерная непрерывность функции, то есть ее способность быть в любой точке своей области определения одинаково непрерывной. Таким образом, это свойство, которое рассматривается на множестве точек, а не в какой-либо отдельно взятой.

Если же зафиксировать точку, то получится не что иное, как определение непрерывности, то есть из наличия равномерной непрерывности вытекает, что перед нами непрерывная функция. Вообще говоря, обратное утверждение неверно. Однако согласно теореме Кантора, если функция непрерывна на компакте, то есть на замкнутом промежутке, то она на нем равномерно непрерывна.

Определение. Пусть функция у = f(x) определена в точке x0 и некоторой её окрестности. Функция у = f(x) называется непрерывной в точке x0 , если:

1. существует
2. этот предел равен значению функции в точке x0:

При определении предела подчёркивалось, что f(x) может быть не определена в точке x0, а если она определена в этой точке, то значение f(x0) никак не участвует в определении предела. При определении непрерывности принципиально, что f(x0) существует, и это значение должно быть равно lim f(x).

Определение. Пусть функция у = f(х) определена в точке x0 и некоторой её окрестности. Функция f(x) называется непрерывной в точке x0, если для всех ε>0 существует положительное число δ, такое что для всех x из δ-окрестности точки x0 (т.е. |х-x0|
Здесь учитывается, что значение предела должно быть равно f(x0), поэтому, по сравнению с определением предела, снято условие проколотости δ-окрестности 0
Дадим ещё одно (равносильное предыдущим) определение в терминах приращений. Обозначим Δх = x - x0, эту величину будем называть приращением аргумента. Так как х->x0, то Δх->0, т е. Δх - б.м. (бесконечно малая) величина. Обозначим Δу = f(х)-f(x0), эту величину будем называть приращением функции, так как |Δу| должно быть (при достаточно малых |Δх|) меньше произвольного числа ε>0, то Δу- тоже б.м. величина, поэтому

Определение. Пусть функция у = f(х) определена в точке x0 и некоторой её окрестности. Функция f(х) называется непрерывной в точке x0 , если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Определение. Функция f(х), не являющаяся непрерывной в точке x0, называется разрывной в этой точке.

Определение. Функция f(х) называется непрерывной на множестве X, если она непрерывна в каждой точке этого множества.

Теорема о непрерывности суммы, произведения, частного

Теорема о переходе к пределу под знаком непрерывной функции

Теорема о непрерывности суперпозиции непрерывных функций

Пусть функция f(x) определена на отрезке и монотонна на этом отрезке. Тогда f(x) может иметь на этом отрезке только точки разрыва первого рода.

Теорема о промежуточном значении. Если функция f(x) непрерывна на отрезке и в двух точках а и b (a меньше b) принимает неравные значения A = f(a) ≠ В = f(b), то для любого числа С, лежащего между А и В, найдётся точка c ∈ , в которой значение функции равно С: f(c) = C.

Теорема об ограниченности непрерывной функции на отрезке. Если функция f(x) непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема о достижении минимального и максимального значений. Если функция f(x) непрерывна на отрезке, то она достигает на этом отрезке свои нижнюю и верхнюю грани.

Теорема о непрерывности обратной функции. Пусть функция y=f(x) непрерывна и строго возрастает (убывает) на отрезке [а,b]. Тогда на отрезке существует обратная функция х = g(y), также монотонно возрастающая (убывающая) на и непрерывная.

Пусть точка a принадлежит области задания функции f(x) и любая ε -окрестность точки a содержит отличные от a точки области задания функции f(x) , т.е. точка a является предельной точкой множества {x} , на котором задана функция f(x) .

Определение . Функция f(x) называется непрерывной в точке a , если функция f(x) имеет в точке a предел и этот предел равен частному значению f(a) функции f(x) в точке a .

Из этого определения имеем следующее условие непрерывности функции f(x) в точке a :

Так как , то мы можем записать

Следовательно, для непрерывной в точке a функции символ предельного перехода и символ f характеристики функции можно менять местами.

Определение . Функция f(x) называется непрерывной справа (слева) в точке a , если правый (левый) предел этой функции в точке a существует и равен частному значению f(a) функции f(x) в точке a .

Тот факт, что функция f(x) непрерывна в точке a справа записывают так:

А непрерывность функции f(x) в точке a слева записывают как:

Замечание . Точки, в которых функция не обладает свойством непрерывности, называются точками разрыва этой функции.

Теорема . Пусть на одном и том же множестве заданы функции f(x) и g(x) , непрерывные в точке a . Тогда функции f(x)+g(x) , f(x)-g(x) , f(x) · g(x) и f(x)/g(x) - непрерывны в точке a (в случае частного нужно дополнительно требовать g(a) ≠ 0 ).

Непрерывность основных элементарных функций

1) Степенная функция y=x n при натуральном n непрерывна на всей числовой прямой.

Сначала рассмотрим функцию f(x)=x . По первому определению предела функции в точке a возьмем любую последовательность {x n } , сходящуюся к a , тогда соответствующая последовательность значений функций {f(x n)=x n } также будет сходиться к a , то есть , то есть функция f(x)=x непрерывная в любой точек числовой прямой.

Теперь рассмотрим функцию f(x)=x n , где n - натуральное число, тогда f(x)=x · x · … · x . Перейдем к пределу при x → a , получим , то есть функция f(x)=x n непрерывна на числовой прямой.

2) Показательная функция.

Показательная функция y=a x при a>1 является непрерывной функцией в любой точке бесконечной прямой.

Показательная функция y=a x при a>1 удовлетворяет условиям:

3) Логарифмическая функция.

Логарифмическая функция непрерывна и возрастает на всей полупрямой x>0 при a>1 и непрерывна и убывает на всей полупрямой x>0 при 0, причем

4) Гиперболические функции.

Гиперболическими функциями называются следующие функции:

Из определения гиперболических функции следует, что гиперболический косинус, гиперболический синус и гиперболический тангенс заданы на всей числовой оси, а гиперболический котангенс определен всюду на числовой оси, за исключением точки x=0 .

Гиперболические функции непрерывны в каждой точке области их задания (это следует из непрерывности показательной функции и теоремы об арифметических действиях).

5) Степенная функция

Степенная функция y=x α =a α log a x непрерывна в каждой точке открытой полупрямой x>0 .

6) Тригонометрические функции.

Функции sin x и cos x непрерывны в каждой точке x бесконечной прямой. Функция y=tg x (kπ-π/2,kπ+π/2) , а функция y=ctg x непрерывна на каждом из интервалов ((k-1)π,kπ) (здесь всюду k - любое целое число, т.е. k=0, ±1, ±2, …) .

7) Обратные тригонометрические функции.

Функции y=arcsin x и y=arccos x непрерывны на отрезке [-1, 1] . Функции y=arctg x и y=arcctg x непрерывны на бесконечной прямой.

Два замечательных предела

Теорема . Предел функции (sin x)/x в точке x=0 существует и равен единице, т.е.

Этот предел называется первым замечательным пределом .

Доказательство . При 0 справедливы неравенства 0<\sin x. Разделим эти неравенства на sin x , тогда получим

Эти неравенства справедливы также и для значений x , удовлетворяющих условиям -π/2. Это следует из того, что cos x=cos(-x) и . Так как cos x - непрерывная функция, то . Таким образом, для функций cos x , 1 и в некоторой δ -окрестности точки x=0 выполняются все условия теорем. Следовательно, .

Теорема . Предел функции при x → ∞ существует и равен числу e :

Этот предел называется вторым замечательным пределом .

Замечание . Верно также, что

Непрерывность сложной функции

Теорема . Пусть функция x=φ(t) непрерывна в точке a , а функция y=f(x) непрерывна в точке b=φ(a) . Тогда сложная функция y=f[φ(t)]=F(t) непрерывна в точке a .

Пусть x=φ(t) и y=f(x) - простейшие элементарные функции, причем множество значений {x} функции x=φ(t) является областью задания функции y=f(x) . Как мы знаем, элементарные функции непрерывны в каждой точке области задания. Поэтому по предыдущей теореме сложная функция y=f(φ(t)) , то есть суперпозиция двух элементарных функций, непрерывна. Например, функция непрерывна в любой точке x ≠ 0 , как сложная функция от двух элементарных функций x=t -1 и y=sin x . Также функция y=ln sin x непрерывна в любой точке интервалов (2kπ,(2k+1)π) , k ∈ Z (sin x>0 ).