Как обозначается равнодействующая сил в физике. Равнодействующая сила

Обычно на любое движущееся тело действует не одно, а сразу несколько окружающих его тел. Например, во время падения тела на него действует не только Земля (сила тяжести), но и воздух (сила сопротивления).

В тех случаях, когда на частицу (материальную точку) действует несколько тел, их общее действие характеризуют равнодействующей силой .

Для нахождения равнодействующей силы существуют простые правила.

1. Если к телу приложены две силы F 1 и F 2 , направленные по одной прямой в одну сторону, то их равнодействующая F находится по формуле

F = F 1 + F 2 .

При этом направление равнодействующей силы совпадает с направлением приложенных сил (рис. 32).

2. Если к телу приложены две силы F 1 и F 2 , направленные по одной прямой в противоположные стороны, то при F 1 > F 2 их равнодействующая F находится по формуле

F = F 1 - F 2 .

Направление равнодействующей силы в этом случае совпадает с направлением большей из приложенных сил (рис. 33). Если при этом F 1 = F 2 , то их равнодействующая F окажется равной нулю. В этом случае покоящееся тело так и будет покоиться, а движущееся тело будет совершать равномерное и прямолинейное движение с той скоростью, которая у него была.

Про две силы, равные по величине и направленные вдоль одной прямой в противоположные стороны, говорят, что они уравновешивают или компенсируют друг друга. Равнодействующая F таких сил всегда равна нулю и потому изменить скорость тела не может.

Для изменения скорости тела относительно Земли необходимо, чтобы равнодействующая всех приложенных к телу сил была отлична от нуля. В том случае, когда тело движется в направлении равнодействующей силы, его скорость возрастает; при движении в противоположном направлении скорость тела убывает.

Так, например, во время полета парашютиста на него действуют две силы - сила тяжести и сила сопротивления воздуха. На начальной стадии спуска сила тяжести превышает силу сопротивления и их равнодействующая оказывается направленной вниз. Благодаря этому скорость падения парашютиста на данной стадии полета непрерывно увеличивается. Однако по мере увеличения скорости полета действующая на парашютиста сила сопротивления становится все больше и больше. После раскрытия парашюта сила сопротивления воздуха резко возрастает и становится больше силы тяжести. Равнодействующая этих двух сил оказывается направленной вверх, и скорость парашютиста начинает уменьшаться.

Для безопасного спуска человека площадь купола парашюта должна составлять 40-50 м 2 . При этом минимальная скорость приземления оказывается равной 4-5 м/с.

Слово «парашют» в переводе с французского означает «предотвращающий падение». Идея его создания принадлежит Леонардо да Винчи (1452-1519). Однако первый прыжок с парашютом (с крыши высокой башни) был совершен лишь в 1617 г. венецианским инженером и механиком Ф. Веранцио. Его парашют был далек от совершенства и представлял собой раму, обтянутую полотном.

Первый ранцевый парашют, который располагался на спине человека и раскрывался при помощи вытяжного кольца, был создан в 1911 г. русским изобретателем Г. Е. Котельниковым.

1. Как находится равнодействующая двух сил, направленных по одной прямой в одну сторону? 2. Как находится равнодействующая двух сил, направленных по одной прямой в противоположные стороны? Куда она направлена? 3. Как будет двигаться тело, если к нему приложить две равные силы, которые направлены по одной прямой, но в противоположные стороны?

Мы рассматривали до сих пор сличай, когда на тело действуют две (или больше) силы, векторная сумма которых равна нулю. В этом случае тело может либо покоиться, либо двигаться равномерно. Если тело покоится, то общая работа всех приложенных к нему сил равна нулю. Равна нулю и работа каждой отдельной силы. Если же тело движется равномерно, то общая работа всех сил по-прежнему равна нулю. Но каждая сила в отдельности, если она не перпендикулярна направлению движения, совершает определенную работу - положительную или отрицательную.

Рассмотрим теперь случай, когда равнодействующая всех сил, приложенных к телу, не равна нулю или когда на тело действует только одна сила. В этом случае, как это следует из второго закона Ньютона, тело будет двигаться с ускорением. Скорость тела будет меняться, и работа, совершенная силами в этом случае, не равна нулю, она может быть положительной или отрицательной. Можно ожидать, что между изменением скорости тела и работой, совершенной силами, приложенными к телу, существует какая-то связь. Попытаемся ее установить. Представим себе для простоты рассуждения, что тело движется вдоль прямой линии и равнодействующая сил, приложенных к нему, постоянна по абсолютному значению; и направлена по той же прямой. Обозначим эту равнодействующую силу через а проекцию перемещения на направление силы через Направим координатную ось вдоль направления силы. Тогда , как было показано в § 75, совершаемая работа равна Направим координатную ось вдоль перемещения тела. Тогда, как было показано в § 75, работа А, совершаемая равнодействующей, равна: Если направления силы и перемещения совпадают, то положительна и работа положительна. Если равнодействующая направлена противоположно направлению движения тела, то ее работа отрицательна. Сила сообщает телу ускорение а. По второму закону Ньютона . С другой стороны, во второй главе мы нашли, что при прямолинейном равномерно ускоренном движении

Отсюда следует, что

Здесь - начальная скорость тела, т. е. его скорость в начале перемещения - его скорость в конце этого участка.

Мы получили формулу, связывающую работу, совершенную силой с изменением скорости (точнее, квадрата скорости) тела, вызванным этой силой.

Половина произведения массы тела на квадрат его скорости носит специальное название - кинетическая энергия тела, и часто формулу (1) называют теоремой о кинетической энергии.

Работа силы равна изменению кинетической энергии тела.

Можно показать, что формула (1), выведенная нами для силы, постоянной по величине и направленной вдоль движения, справедлива и в тех случаях, когда сила изменяется, а ее направление не совпадает с направлением перемещения.

Формула (1) замечательна во многих отношениях.

Во-первых, из нее следует, что работа силы, действующей на тело, зависит только от начального и конечного значений скорости тела и не зависит от того, с какой скоростью оно двигалось в других точках.

Во-вторых, из формулы (1) видно, что ее правая часть может быть как положительной, так и отрицательной в зависимости от того, возрастает или убывает скорость тела. Если скорость тела возрастает то правая часть формулы (1) положительна, следовательно, и работа Так и должно быть потому, что для увеличения скорости тела (по абсолютной величине) действующая на него сила должна быть направлена в ту же сторону, что и перемещение. Наоборот, когда скорость тела уменьшается правая часть формулы (1) принимает отрицательное значение (сила направлена противоположно перемещению).

Если в начальной точке скорость тела равна нулю, выражение для работы принимает вид:

Формула (2) позволяет вычислить работу, которую нужно совершить, чтобы покоящемуся телу сообщить скорость, равную

Очевидно обратное: для остановки тела, движущегося со скоростью необходимо совершить работу

очень напомннагт формулу, полученную в предыдущей главе (см. § 59), устанавливающую между импульсом силы и изменением импульса тела

Действительно, левая часть формулы (3) отличается от левой части формулы (1) тем, что в ней сила умножается не на перемещение, совершаемое телом, а на время действия силы. В правой части формулы (3) стоит произведение массы тела на его скорость (импульс) вместо половины произведения массы тела на квадрат его скорости, фигурирующее в правой части формулы (1). Обе эти формулы являются следствием законов Ньютона (из которых они были выведены), а величины являются характеристиками движения.

Но между формулами (1) и (3) имеется и принципиальное различие: формула О) устанавливает связь между скалярными величинами, тогда как формула (3) - это векторная формула.

Задача I. Какую работу надо произвести, чтобы поезд, движущийся со скоростью увеличил свою скорость Масса поезда . Какая сила должна быть приложена к поезду, если это увеличение скорости должно произойти на участке длиной 2 км? Движение считать равноускоренным.

Решение. Работу А можно найти по формуле

Подставив сюда приведенные в задаче данные, получим:

Но определению следовательно,

Задача 2, Какой высоты достигнет тело, брошенное вверх о начальной скоростью

Решение. Тело будет подниматься вверх до тех пор, пока его скорость не станет равной нулю. На тело действует только сила тяжести где - масса тела и - ускорение свободного падения (силой сопротивления воздуха и архимедовой силой пренебрегаем).

Применив формулу

Это выражение мы уже получили ранее (см. стр. 60) более сложным путем.

Упражнение 48

1. Как связана работа силы с кинетической энергией тела?

2 Как изменяется кинетическая энергия тела, если сила, приложенная к нему, совершает положительную работу?

3. Как изменяется кинетическая энергия тела, если приложенная к нему сила совершает отрицательную работу.

4. Тело движется равномерно по окружности радиусом 0,5 м, обладая кинетической энергией в 10 дж. Какова сила, действующая на тело? Как она направлена? Чему равна работа этой силы?

5. К покоящемуся телу массой 3 кг приложена сила в 40 н. После этого тело проходит по гладкой горизонтальной плоскости без трения 3 м. Затем сила уменьшается до 20 н, и тело проходит еще 3 м. Найдите кинетическую энергию тела в конечной точке его движения.

6. Какая работа должна быть совершена для остановки поезда массой 1 000 т, движущегося со скоростью 108 км/ч?

7. На тело массой 5 кг, движущееся со скоростью 6 м/сек, действует сила в 8 н, направленная в сторону, противоположную движению. В результате скорость тела уменьшается до 2 м/сек. Какую работу по величине и по знаку совершила сила? Какое расстояние прошло тело?

8. На тело, первоначально находившееся в покое, начинает действовать сила в 4 н, направленная под углом 60° к горизонту. Тело движется по гладкой горизонтальной поверхности без трения. Вычислите работу силы, если тело прошло расстояние в 1 м.

9. В чем состоит теорема о кинетической энергии?

Если на твердое тело действует много сил, то движение тела зависит только от суммы всех этих сил и от суммы их моментов. Это обстоятельство позволяет иногда заменить совокупность всех действующих на тело сил одной силой, которую называют в таком случае равнодействующей. Очевидно, что по величине и направлению равнодействующая сила равна сумме всех сил, а ее точка приложения должна быть выбрана таким образом, чтобы ее момент был равен суммарному моменту всех сил.

Наиболее важный случай такого рода - сложение параллельных сил. Сюда относится, в частности, сложение сил тяжести, действующих на отдельные части твердого тела.

Рассмотрим какое-либо тело и определим полный момент сил тяжести относительно произвольно выбранной горизонтальной оси (ось Z на рис. 5). Сила тяжести, действующая на элемент m i тела, равна m i g, а ее плечо есть координата x i этого элемента. Поэтому суммарный момент всех сил равен

Равнодействующая сила по величине равна полному весу тела и если обозначить координату ее точки приложения через X, то тот же момент N z запишется в виде (24)

Приравняв оба выражения, найдем (25)

Но это есть не что иное, как х-координата центра инерции тела.

Таким образом, мы видим, что всю совокупность действующих на тело сил тяжести можно заменить одной силой, равной полному весу тела и приложенной к его центру инерции. В связи с этим центр инерции тела часто называют также его центром тяжести.

Сведение системы параллельных сил к одной равнодействующей силе, однако, невозможно, если сумма сил равна нулю. Действие такой совокупности сил может быть сведено к действию, как говорят, пары сил: двух сил, равных по величине и противоположных по направлению. Легко сообразить, что сумма N z моментов таких двух сил относительно любой оси Z, перпендикулярной плоскости их действия, одинакова и равна произведению величины F на расстояние h между направлениями действия обеих сил (плечо пары ): N z =Fh .

Действие пары сил, оказываемое ею на движение тела, зависит только от этого, как говорят, момента пары .

Методика проведения эксперимента и описание установки

Задачи работы : экспериментальное исследование закономерностей гироскопического эффекта, опытное определение полного момента инерции гироскопа.

Приборы и принадлежности: гироскоп ФМ-18, электронный блок, штангенциркуль.

Гироскопом называет массивное тело, вращающееся с большой скоростью вокруг неподвижной оси симметрии. В экспериментальной установке, показанной на рис. 6, гироскопом служит металлический диск 1 с горизонтально расположенной осью 2, который приводится во вращение электродвигателем 3. Ось гироскопа опирается на шарнир 4, закреплённый на подставке 5. Горизонтальное положение оси обеспечивается противовесом 6. Смещая противовес вдоль градуированной шкалы 7, можно создавать дополнительный момент силы тяжести, действующий на гироскоп при его вращении.


Установка работает от блока управления. Левое табло показывает частоту вращения маховика гироскопа – после включения индуцирует начальную частоту. Правое табло индуцирует время поворота гироскопа вокруг вертикальной оси на 90 0 .

Установка позволяет наблюдать так называемый гироскопический эффект, заключающийся в том, что попытка повернуть ось гироскопа в определённой плоскости Х приводит на самой деле к повороту в плоскости, перпендикулярной плоскости Х. Допустим, что в первоначальном положения противовес 6 уравновешивает гироскоп так, что полный момент сил, действующих на гироскоп, . В этих условиях согласно закону сохранения момента импульса должно выполняться равенство и ось гироскопа остаётся горизонтальной и неподвижной.

Попытаемся теперь повернуть ось гироскопа в вертикальной плоскости по часовой стрелке. Для этого сдвинем противовес от положения равновесия на некоторое расстояние (см. рис. 7). При этом на гироскоп будет действовать момент силы тяжести N, направленный вдоль оси Oу и по величине равный (26)

Согласно уравнению динамики вращательного движения твердого тела

Поэтому момент силы вызовет за время изменение момента импульса , равное (28)

Важно отметить, что вектор направлен, как вектор , по оси Oy, т.е. перпендикулярно первоначальному направлению вектора . В результате вектор момента импульса гироскопа займет в пространстве новое положение

что соответствует повороту оси гироскопа в горизонтальной плоскости на некоторый угол . При постоянно действующем моменте силы гироскопический эффект приведет к равномерному горизонтальному вращению оси гироскопа с относительно малой угловой скоростью

Установим связь между и другими параметрами гироскопа. Из рис. 2 следует, что

Для малых углов , тогда, подставляя (29) в (30), получаем.

Нахождение равнодействующей силы

Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы , действующие на тело (при этом если тело движется равноускоренно, значит в направлении ускорения действующая сила длиннее противоположной. Если тело движется равномерно или покоится длина векторов сил одинаковая); затем изобразить координатные оси , выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; на четвертом записать 2 закон Ньютона для всех тел.

Запомните: направление равнодействующей силы всегда совпадает по направлению с вектором ускорения тела.

Примеры

На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.

Обозначим силы, выберем координатные оси

Найдем проекции

Записываем уравнения

Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.

Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.

Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности

Выполняя поворот, тело наклоняется в сторону по­ворота и образует угол a к вертикали:

На тело действуют сила тяжести, сила реакции опоры и сила трения, причем со стороны дороги на тело действует сила, которая в сумме с силой тяжести сообщает телу центростреми­тельное ускорение. По второму закону Ньютона:В проекциях на координатные оси:Значит,

Через неподвижный блок перекинута невесомая нерастяжимая нить, которая может скользить по блоку без трения. К нити привязаны грузы массамии

На оба груза действуют сила тяжести и сила натяжения нити. Равнодействующие этих сил сообщают телам ускорение а. По второму за­кону Ньютона для каждого тела: Выберем осии, связанные с направлением движения каждого из тел. В проекциях на оси уравнения для каждого из тел имеют вид:Сила давления на ось блоканаправлена вверх и равна сумме сил натяже­ния, которые действуют на плечи блока:

На горизонтальной плоскости на­ходятся тела с массамии, связанные невесомой нерастяжи­мой нитью. К первому телу при­ложили горизонтальную силуКоэффициент трения обоих тел о поверхность одинаков и равен.

На первое тело действуют сила тяжести, сила реакции опоры, сила тяги, сила натяжения нити и сила трения. Направления сил указаны на рисунке. По второму закону Ньютона:На второе тело действуют сила тяжести, сила реакции опоры, сила натяже­ния нити и сила трения. По второму закону Ньютона:Спроектируем уравнения (1) и (2) на оси:первая система вторая система Из второй системы уравнений:Тогда силы трения:
Первая система будет иметь вид:

В данной статье рассказано о том, как найти модуль равнодействующей сил, действующих на тело. Репетитор по математике и физике объяснит вам, как найти суммарный вектор равнодействующей сил по правилу параллелограмма, треугольника и многоугольника. Материал разобран на примере решения задачи из ЕГЭ по физике.

Как найти модуль равнодействующей силы

Напомним, что сложить векторы геометрически можно с помощью одного из трех правил: правила параллелограмма, правила треугольника или правила многоугольника. Разберём каждое из этих правил в отдельности.

1. Правило параллелограмма. На рисунке по правилу параллелограмма складываются векторы и . Суммарный вектор есть вектор :

Если векторы и не отложены от одной точки, нужно заменить один из векторов равным и отложить его от начала второго вектора, после чего воспользоваться правилом параллелограмма. Например, на рисунке вектор заменен на равный ему вектор , и :

2. Правило треугольника. На рисунке по правилу треугольника складываются векторы и . В сумме получается вектор :

Если вектор отложен не от конца вектора , нужно заменить его равным и отложенным от конца вектора , после чего воспользоваться правилом треугольника. Например, на рисунке вектор заменен равным ему вектором , и :

3. Правило многоугольника. Для того, чтобы сложить несколько векторов по правилу параллелограмма, необходимо от произвольной точки отложить вектор, равный первому складываемому вектору, от его конца отложить вектор, равный второму складываемому вектору, и так далее. Суммарным будет вектор, проведенный из точки в конец последнего отложенного вектора. На рисунке :

Задача на нахождение модуля равнодействующей силы

Разберем задачу на нахождение равнодействующей сил на конкретном примере из демонстрационного варианта ЕГЭ по физике 2016 года.

Для нахождения вектора равнодействующей сил найдём геометрическую (векторную) сумму всех изображенных сил, используя правило многоугольника. Упрощенно говоря (не вполне корректно с математической точки зрения) , каждый последующий вектор нужно отложить от конца предыдущего. Тогда суммарный вектор будет исходить из точки, из который отложен первоначальный вектор, и приходить в точку, где заканчивается последний вектор:

Требуется найти модуль равнодействующей сил, то есть длину получившегося вектора. Для этого рассмотрим вспомогательный прямоугольный треугольник :

Требуется найти гипотенузу этого треугольника. «По клеточкам» находим длину катетов: Н, Н. Тогда по теореме Пифагора для этого треугольника получаем: Н. То есть искомый модуль равнодействующей сил равен Н.

Итак, сегодня мы разобрали, как находить модуль равнодействующей силы. Задачи на нахождение модуля равнодействующей силы встречаются в вариантах ЕГЭ по физике. Для решения этих задач необходимо знать определение равнодействующей сил, а также уметь складывать векторы по правилу параллелограмма, треугольника или многоугольника. Стоит немного потренироваться, и вы научитесь решать эти задачи легко и быстро. Удачи вам в подготовке к ЕГЭ по физике!


Сергей Валерьевич