Как называется наружная мембрана клеток у растений. Клеточная мембрана: ее строение и функции

Основная структурная единица живого организма - клетка, являющаяся дифференцированным участком цитоплазмы, окруженным клеточной мембраной. Ввиду того что клетка выполняет множество важнейших функций, таких, как размножение, питание, движение, оболочка должна быть пластичной и плотной.

История открытия и исследования клеточной мембраны

В 1925 году Гренделем и Гордером был поставлен успешный эксперимент по выявлению «теней» эритроцитов, или пустых оболочек. Несмотря на несколько допущенных грубых ошибок, учеными было произведено открытие липидного бислоя. Их труды продолжили Даниэлли, Доусон в 1935 году, Робертсон в 1960 году. В результате многолетней работы и накопления аргументов в 1972 году Сингер и Николсон создали жидкостно-мозаичную модель строения мембраны. Дальнейшие опыты и исследования подтвердили труды ученых.

Значение

Что же представляет собой клеточная мембрана? Это слово стало использоваться более ста лет назад, в переводе с латинского оно означает «пленка», «кожица». Так обозначают границу клетки, являющуюся естественным барьером между внутренним содержимым и внешней средой. Строение клеточной мембраны предполагает полупроницаемость, благодаря которой влага и питательные вещества и продукты распада свободно могут проходить сквозь нее. Эту оболочку можно назвать основной структурной составляющей организации клетки.

Рассмотрим основные функции клеточной мембраны

1. Разделяет внутреннее содержимое клетки и компоненты внешней среды.

2. Способствует поддержанию постоянного химического состава клетки.

3. Регулирует правильный обмен веществ.

4. Обеспечивает взаимосвязь между клетками.

5. Распознает сигналы.

6. Функция защиты.

"Плазменная оболочка"

Наружная клеточная мембрана, называемая также плазменной, представляет собой ультрамикроскопическую пленку, толщина которой составляет от пяти до семи наномиллиметров. Она состоит преимущественно из белковых соединений, фосфолидов, воды. Пленка является эластичной, легко впитывает воду, а также стремительно восстанавливает свою целостность после повреждений.

Отличается универсальным строением. Эта мембрана занимает пограничное положение, участвует в процессе избирательной проницаемости, выведении продуктов распада, синтезирует их. Взаимосвязь с «соседями» и надежная защита внутреннего содержимого от повреждения делает ее важной составляющей в таком вопросе, как строение клетки. Клеточная мембрана животных организмов иногда оказывается покрытой тончайшим слоем - гликокаликсом, в состав которого входят белки и полисахариды. Растительные клетки снаружи от мембраны защищены клеточной стенкой, выполняющей функции опоры и поддержания формы. Основной компонент ее состава - это клетчатка (целлюлоза) - полисахарид, не растворимый в воде.

Таким образом, наружная клеточная мембрана выполняет функцию восстановления, защиты и взаимодействия с другими клетками.

Строение клеточной мембраны

Толщина этой подвижной оболочки варьируется в пределах от шести до десяти наномиллиметров. Клеточная мембрана клетки имеет особый состав, основой которого служит липидный бислой. Гидрофобные хвосты, инертные к воде, размещены с внутренней стороны, в то время как гидрофильные головки, взаимодействующие с водой, обращены наружу. Каждый липид представляет фосфолипид, который является результатом взаимодействия таких веществ, как глицерин и сфингозин. Липидный каркас тесно окружают белки, которые расположены несплошным слоем. Некоторые из них погружены в липидный слой, остальные проходят сквозь него. В результате этого образуются проницаемые для воды участки. Выполняемые этими белками функции различны. Некоторые из них являются ферментами, остальные - транспортными белками, которые переносят различные вещества из внешней среды на цитоплазму и обратно.

Клеточная мембрана насквозь пронизана и тесно связана интегральными белками, а с переферическими связь менее прочная. Эти белки выполняют важную функцию, которая заключается в поддержании структуры мембраны, получении и преобразовании сигналов из окружающей среды, транспорте веществ, катализации реакций, которые происходят на мембранах.

Состав

Основу клеточной мембраны представляет бимолекулярный слой. Благодаря его непрерывности клетка имеет барьерное и механическое свойства. На разных этапах жизнедеятельности данный бислой может нарушиться. Вследствие этого образуются структурные дефекты сквозных гидрофильных пор. В таком случае могут изменяться абсолютно все функции такой составляющей, как клеточная мембрана. Ядро при этом может пострадать от внешних воздействий.

Свойства

Клеточная мембрана клетки имеет интересные особенности. Благодаря текучести эта оболочка не является жесткой структурой, а основная часть белков и липидов, которые входят в ее состав, свободно перемещается на плоскости мембраны.

В целом клеточная мембрана асимметрична, поэтому состав белковых и липидных слоев различается. Плазматические мамбраны в животных клетках со своей наружной стороны имеют гликопротеиновый слой, который выполняет рецепторные и сигнальные функции, а также играет большую роль в процессе объединения клеток в ткань. Клеточная мембрана является полярной, то есть на внешней стороне заряд положителен, а с внутренней стороны - отрицателен. Помимо всего перечисленного, оболочка клетки обладает избирательной проницательностью.

Это означает, что кроме воды в клетку пропускается только определенная группа молекул и ионов растворившихся веществ. Концентрация такого вещества, как натрий, в большинстве клеток значительно ниже, чем во внешней среде. Для ионов калия характерно другое соотношение: их количество в клетке намного выше, чем в окружающей среде. В связи с этим ионам натрия присуще стремление проникнуть в клеточную оболочку, а ионы калия стремятся освободиться наружу. При данных обстоятельствах мембрана активизирует особую систему, выполняющую «насосную» роль, выравнивая концентрацию веществ: ионы натрия откачиваются на поверхность клетки, а ионы калия накачиваются внутрь. Данная особенность входит в важнейшие функции клеточной мембраны.

Подобное стремление ионов натрия и калия переместиться внутрь с поверхности играет большую роль в вопросе транспортировки сахара и аминокислот в клетку. В процессе активного удаления ионов натрия из клетки мембрана создает условия для новых поступлений глюкозы и аминокислот внутрь. Напротив, в процессе переноса ионов калия внутрь клетки пополняется число "транспортировщиков" продуктов распада изнутри клетки во внешнюю среду.

Как происходит питание клетки через клеточную мембрану?

Многие клетки поглощают вещества посредством таких процессов, как фагоцитоз и пиноцитоз. При первом варианте гибкой наружной мембраной создается маленькое углубление, в котором оказывается захватываемая частица. Затем диаметр углубления становится больше, пока окруженная частица не попадет в клеточную цитоплазму. Посредством фагоцитоза подпитываются некоторые простейшие, например амебы, а также кровяные тельца - лейкоциты и фагоциты. Аналогичным образом клетки поглощают жидкость, которая содержит необходимые полезные вещества. Такое являние носит название пиноцитоз.

Наружная мембрана тесно соединена с эндоплазматической сетью клетки.

У многих типов основных составляющих ткани на поверхности мембраны расположены выступы, складки, микроворсинки. Растительные клетки снаружи этой оболочки покрыты еще одной, толстой и отчетливо различимой в микроскоп. Клетчатка, из которой они состоят, помогает формировать опору тканям растительного происхождения, например, древесину. Клетки животных также обладают рядом внешних структур, которые находятся поверх клеточной мембраны. Они носят исключительно защитный характер, пример тому - хитин, содержащийся в покровных клетках насекомых.

Помимо клеточной, существует внутриклеточная мембрана. Ее функция заключается в разделении клетки на несколько специализированных замкнутых отсеков - компартментов или органелл, где должна поддерживаться определенная среда.

Таким образом, невозможно переоценить роль такой составляющей основной единицы живого организма, как клеточная мембрана. Строение и функции предполагают значительное расширение общей площади поверхности клетки, улучшение обменных процессов. В состав этой молекулярной структуры входят белки и липиды. Отделяя клетку от внешней среды, мембрана обеспечивает ее целостность. С ее помощью межклеточные связи поддерживаются на достаточно крепком уровне, образовывая ткани. В связи с этим можно сделать вывод, что одну из важнейших ролей в клетке играет клеточная мембрана. Строение и функции, выполняемые ею, радикально отличаются в различных клетках, в зависимости от их предназначения. Посредством этих особенностей достигается разнообразие физиологической активности клеточных оболочек и их ролей в существовании клеток и тканей.

Имеет толщину 8-12 нм, поэтому рассмотреть ее в световой микроскоп невозможно. Строение мембраны изучают при помощи электронного микроскопа.

Плазматическая мембрана образована двумя слоями липидов – билипидным слоем, или бислоем. Каждая молекула состоит из гидрофильной головки и гидрофобного хвоста, причем в биологических мембранах липиды расположены головками наружу, хвостами внутрь.

В билипидный слой погружены многочисленные молекулы белков. Одни из них находятся на поверхности мембраны (внешней или внутренней), другие пронизывают мембрану .

Функции плазматической мембраны

Мембрана защищает содержимое клетки от повреждений, поддерживает форму клетки, избирательно пропускает необходимые вещества внутрь клетки и выводит продукты обмена, а также обеспечивает связь клеток между собой.

Барьерную, отграничительную функцию мембраны обеспечивает двойной слой липидов. Он не дает содержимому клетки растекаться, смешиваться с окружающей средой или межклеточной жидкостью, и препятствует проникновению в клетку опасных веществ.

Ряд важнейших функций цитоплазматической мембраны осуществляется за счет погруженных в нее белков. При помощи белков-рецепторов может воспринимать различные раздражения на свою поверхность. Транспортные белки образуют тончайшие каналы, по которым внутрь клетки и из нее проходят ионы калия, кальция, и другие ионы малого диаметра. Белки- обеспечивают процессы жизнедеятельности в самой .

Крупные пищевые частицы, не способные пройти через тонкие мембранные каналы, попадают внутрь клетки путем фагоцитоза или пиноцитоза. Общее название этим процессам – эндоцитоз.

Как происходит эндоцитоз – проникновение крупных пищевых частиц в клетку

Пищевая частица соприкасается с наружной мембраной клетки, и в этом месте образуется впячивание. Затем частица, окруженная мембраной, попадает внутрь клетки, образуется пищеварительная , и внутрь образовавшегося пузырька проникают пищеварительные ферменты.

Лейкоциты крови, способные захватывать и переваривать чужеродные бактерии, называются фагоцитами.

В случае пиноцитоза впячиванием мембраны захватываются не твердые частицы, а капельки жидкости с растворенными в ней веществами. Этот механизм является одним из основных путей проникновения веществ в клетку.

Клетки растений, покрытые поверх мембраны твердым слоем клеточной стенки, не способны к фагоцитозу.

Процесс, обратный эндоцитозу, – экзоцитоз. Синтезированные вещества (к примеру, гормоны) упаковываются в мембранные пузырьки, подходят к , встраиваются в нее, и содержимое пузырька выбрасывается из клетки. Таким образом клетка может избавляться и от ненужных продуктов обмена.

Краткое описание:

Сазонов В.Ф. 1_1 Строение клеточной мембраны [Электронный ресурс] // Кинезиолог, 2009-2018: [сайт]. Дата обновления: 06.02.2018..__.201_). _Описано строение и функционирование клеточной мембраны (синонимы: плазмалемма, плазмолемма, биомембрана, клеточная оболочка, наружная клеточная оболочка, мембрана клетки, цитоплазматическая мембрана). Эти начальные сведения необходимы как для цитологии, так и для понимания процессов нервной деятельности: нервного возбуждения, торможения, работы синапсов и сенсорных рецепторов.

Клеточная мембрана (плазма лемма или плазмо лемма)

Определение понятия

Клеточная мембрана (синонимы: плазмалемма, плазмолемма, цитоплазматическая мембрана, биомембрана) - это тройная липопротеиновая (т.е. "жиро-белковая") оболочка, отделяющая клетку от окружающей среды и осуществлящая управляемый обмен и связь между клеткой и окружающей её средой.

Главное в этом определении - не то, что мембрана отделяет клетку от среды, а как раз то, что она соединяет клетку с окружающей средой. Мембрана - это активная структура клетки, она постоянно работает.

Биологическая мембрана - это ультратонкая бимолекулярная пленка фосфолипидов, инкрустированная белками и полисахаридами. Эта клеточная структура лежит в основе барьерных, механических и матричных свойств живого организма (Антонов В.Ф., 1996).

Образное представление о мембране

Мне клеточная мембрана представляетсся в виде решетчатого забора с множеством дверей в нём, который окружает некую территорию. Всякая мелкая живность может через этот забор свободно перемещаться туда и обратно. Но более крупные посетители могут входить только через двери, да и то не всякие. У разных посетителей ключи только от своих дверей, и через чужие двери они проходить не могут. Так вот через этот забор постоянно идут потоки посетителей туда и обратно, потому что главная функция мембраны-забора двойная: отделять территорию от окружающего пространства и в то же время соединять её с окружающим пространством. Для этого и существует в заборе множество отверстий и дверей - !

Свойства мембраны

1. Проницаемость.

2. Полупроницаемость (частичная проницаемость).

3. Избирательная (синоним: селективная) проницаемость.

4. Активная проницаемость (синоним: активный транспорт).

5. Управляемая проницаемость.

Как видим, основное свойство мембраны - это её проницаемость по отношению к различным веществам.

6. Фагоцитоц и пиноцитоз.

7. Экзоцитоз.

8. Наличие электрических и химических потенциалов, точнее разности потенциалов между внутренней и наружной сторонами мембраны. Образно можно сказать, что "мембрана превращает клетку в "электрическую батарейку" с помощью управления ионными потоками" . Подробности: .

9. Изменения электрического и химического потенциала.

10. Раздражимость. Специальные молекулярные рецепторы, находящиеся на мембране, могут соединяться с сигнальными (управляющими) веществами, вследствие чего может меняться состояние мембраны и всей клетки. Молекулярные рецепторы запускают биохимические реакции в ответ на соединение с ними лигандов (управляющих веществ). Важно отметить, что сигнальное вещество воздействует на рецептор снаружи, а изменения продолжаются внутри клетки. Получается, что мембрана передала информацию из окружающей среды во внутреннюю среду клетки.

11. Каталитическая ферментативная активность. Ферменты могут быть встроены в мембрану или связаны с её поверхностью (как внутри, так и снаружи клетки), и там они осуществляют свою ферментативную деятельность.

12. Изменение формы поверхности и её площади. Это позволяет мембране образовывать выросты наружу или, наоборот, впячивания внутрь клетки.

13. Способность образовывать контакты с другими клеточными мембранами.

14. Адгезия - способность прилипать к твёрдым поверхностям.

Краткий список свойств мембраны

  • Проницаемость.
  • Эндоцитоз, экзоцитоз, трансцитоз.
  • Потенциалы.
  • Раздражимость.
  • Ферментная активность.
  • Контакты.
  • Адгезия.

Функции мембраны

1. Неполная изоляция внутреннего содержимого от внешней среды.

2. Главное в работе клеточной мембраны - это обмен различными веществами между клеткой и межклеточной средой. Этому служит такое свойство мембраны как проницаемость. Кроме того, мембрана регулирует этот обмен за счёт того, что регулирует свою проницаемость.

3. Ещё одна важная функция мембраны - создание разности химических и электрических потенциалов между её внутренней и наружной сторонами. За счёт этого внутри клетка имеет отрицательный электрический потенциал - .

4. Через мембрану осуществляется также информационный обмен между клеткой и окружающей её средой. Специальные молекулярные рецепторы, расположенные на мембране, могут связываться с управляющими веществами (гормонами, медиаторами, модуляторами) и запускать в клетке биохимические реакции, приводящие к различным изменениям в работе клетки или в её структурах.

Видео: Строение мембраны клетки

Видеолекция: Подробно о строении мембраны и транспорте

Строение мембраны

Клеточная мембрана имеет универсальное трёхслойное строение. Её срединный жировой слой является сплошным, а верхний и нижний белковые слои покрывают его в виде мозаики из отдельных белковых участков. Жировой слой является основой, обеспечивающей обособление клетки от окружающей среды, изолирующей её от окружающей среды. Сам по себе он очень плохо пропускает водорастворимые вещества, но легко пропускает жирорастворимые. Поэтому проницаемость мембраны для водорастворимых веществ (например, ионов), приходится обеспечивать специальными белковыми структурами - и .

Ниже представлены микрофотографии реальных клеточных мембран контактирующих клеток, полученные с помощью электронного микроскопа, а также схематический рисунок, показывающий трёхслойность мембраны и мозаичность её белковых слоёв. Для увеличения изображения кликните на него.

Отдельное изображение внутреннего липидного (жирового) слоя клеточной мембраны, пронизанного интегральными встроенными белками. Верхний и нижний белковые слои удалены, чтобы не мешать рассмотрению липидного двойного слоя

Рисунок выше: Неполное схематичное изображение клеточной мембраны (клеточной оболочки), приведённое в Википедии.

Учтите, что наружный и внутренний белковые слои здесь с мембраны сняты, чтобы нам лучше был виден центральный жировой двойной липидный слой. В реальной клеточной мембране сверху и снизу по жировой плёночке (мелкие шарики на рисунке) плавают большие белковые "острова", и мембрана получается более толстой, трёхслойной: белок-жир-белок . Так что она на самом деле похожа на сэндвич из двух белковых "кусков хлеба" с жирным слоем "масла" посередине, т.е. имеет трёхслойное строение, а не двухслойное.

На этом рисунке маленькие голубые и белые шарики соответствуют гидрофильным (смачиваемым) «головкам» липидов, а присоединённые к ним «ниточки» - гидрофобным (несмачиваемым) «хвостам». Из белков показаны только интегральные сквозные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - это молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс. Гликокаликс - это как бы углеводный ("сахарный") "пушок" на мембране, образованный торчащими из неё длинными углеводно-белковыми молекулами.

Живая - это маленький «белково-жировой мешочек», заполненный полужидким желеобразным содержимым, которое пронизано плёнками и трубочками.

Стенки этого мешочка образованы двойной жировой (липидной) плёночкой, облепленной изнутри и снаружи белками - клеточной мембраной. Поэтому говорят, что мембрана имеет трёхслойное строение : белки-жиры-белки . Внутри клетки также есть множество подобных жировых мембран, которые делят её внутреннее пространство на отсеки. Такими же мембранами окружены клеточные органеллы: ядро, митохондрии, хлоропласты. Так что мембрана - это универсальная молекулярная структура, свойственная всем клеткам и всем живым организмам.

Слева - уже не реальная, а искусственная модель кусочка биологической мембраны: это мгновенный снимок жирового фосфолипидного бислоя (т.е. двойного слоя) в процессе его молекулярно-динамического моделирования. Показана расчётная ячейка модели - 96 молекул ФХ (ф осфатидилх олина) и 2304 молекулы воды, всего 20544 атомов.

Справа - наглядная модель одиночной молекулы того самого липида, из которых как раз и собирается мембранный липидный бислой. Вверху у него гидрофильная (водолюбивая) головка, а снизу - два гидрофобных (боящихся воды) хвостика. У этого липида есть простое название: 1-стероил-2-докозагексаеноил-Sn-глицеро-3-фосфатидилхолин (18:0/22:6(n-3)cis ФХ), но вам нет нужды его запоминать, если вы только не планируете довести своего преподавателя до обморока глубиной своих познаний.

Можно дать и более точное научное определение клетке:

– это ограниченная активной мембраной, упорядоченная, структурированная неоднородная система биополимеров, участвующих в единой совокупности обменных, энергетических и информационных процессов, и также осуществляющих поддержание и воспроизведение всей системы в целом.

Внутри клетка также пронизана мембранами, а между мембранами находится не вода, а вязкий гель/золь изменяемой плотности. Поэтому взаимодействующие молекулы в клетке не плавают свободно, как в пробирке с водным раствором, а в основном сидят (иммобилизованы) на полимерных структурах цитоскелета или внутриклеточных мембранах. И химические реакции поэтому проходят внутри клетки почти как в твердом теле, а не в жидкости. Наружная мембрана, окружающая клетку, также облеплена ферментами и молекулярными рецепторами, что делает её очень активной частью клетки.

Клеточная мембрана (плазмалемма, плазмолемма) - это активная оболочка, отделяющая клетку от окружающей среды и связывающая её с окружающей средой. © Сазонов В.Ф., 2016.

Из этого определения мембраны следует, что она не просто ограничивает клетку, а активно работает , связывая её с окружающей её средой.

Жир, из которого состоят мембраны, - особенный, поэтому его молекулы принято называть не просто жиром, а «липидами», «фосфолипидами», «сфинголипидами» . Мембранная плёночка является двойной, т. е. она состоит из двух плёночек, слипшихся друг с другом. Поэтому в учебниках пишут, что основа клеточной мембраны состоит из двух липидных слоёв (или из "бислоя ", т.е. двойного слоя). У каждого отдельно взятого липидного слоя одна сторона может смачиваться водой, а другая - не может. Так вот, эти плёночки слипаются друг с другом именно своими несмачивающимися сторонами.

Мембрана бактерий

Оболочка прокариотической клетки грамотрицательных бактерий состоит из нескольких слоёв, показанных на рисунке ниже.
Слои оболочки грамотрицательных бактерий:
1. Внутренняя трёхслойная цитоплазматическая мембрана, которая соприкасается с цитоплазмой.
2. Клеточная стенка, которая состоит из муреина.
3. Наружная трёхслойная цитоплазматическая мембрана, которая имеет такую же систему липидов с белковыми комплексами, как и внутренняя мембрана.
Общение грамотрицательных бактериальных клеток с внешним миром через такую сложную трёхступенчатую структуру не даёт им преимущества в выживании в суровых условиях по сравнению с грамположительным бактериями, имеющими менее мощную оболочку. Они точно так же плохо переносят высокие температуры, повышенную кислотность и перепады давления.

Видеолекция: Плазматическая мембрана. Е.В. Шеваль, к.б.н.

Видеолекция: Мембрана как клеточная граница. А. Иляскин

Важность ионных каналов мембраны

Легко понять, что через мембранную жировую плёнку могут проникать в клетку только жирорастворимые вещества. Это жиры, спирты, газы. Например, в эритроцитх прямо через мембрану легко проходят внутрь и наружу кислород и углекислый газ. А вот вода и водорастворимые вещества (например, ионы) просто так через мембрану не могут пройти внутрь любой клетки. Это значит, что для них нужны специальные отверстия. Но если просто сделать отверстие в жировой плёнке, то оно тут же затянется обратно. Что же делать? Выход в природе был найден: надо сделать специальные белковые транспортные структуры и протянуть их сквозь мембрану. Именно так и получаются каналы для пропускания не растворимых в жире веществ - ионные каналы мембраны клетки.

Итак, для придания своей мембране дополнительных свойства проницаемости для полярных молекул (ионов и воды) клетка синтезирует в цитоплазме специальные белки, которые затем встраиваются в мембрану. Они бывают двух типов: белки-транспортёры (например, транспортные АТФазы) и белки-каналоформеры (образователи каналов). Эти белки встраиваются в двойной жировой слой мембраны и формируют транспортные структуры в виде транспортёров или в виде ионных каналов . Через эти транспортные структуры теперь могут проходить различные водорастворимые вещества, которые по-другому проходить сквозь жировую мембранную плёнку не могут.

Вообще, встроенные в мембрану белки ещё называются интегральными , именно потому что они как бы включаются в состав мембраны и пронизывают её насквозь. Другие белки, не интегральные, образуют как бы острова, «плавающие» по поверхности мембраны: либо по её наружной поверхности, либо по внутренней. Ведь всем известно, что жир является хорошей смазкой и скользить по нему получается легко!

Выводы

1. В целом, мембрана получается трёхслойной:

1) наружный слой из белковых «островов»,

2) жировое двухслойное «море» (липидный бислой), т.е. двойная липидная плёнка,

3) внутренний слой из белковых «островов».

Но есть ещё рыхлый наружный слой - гликокаликс, который образуют торчащие из мембраны гликопротеины. Они являются молекулярными рецепторами, с которыми связываются сигнальные управляющие вещества.

2. В мембрану встроены специальные белковые структуры, обеспечивающие её протицаемость для ионов или других веществ. Не надо забывать, что в некоторых местах жировое море пронизано интегральными белками насквозь. И именно интегральные белки образуют специальные транспортные структуры клеточной мембраны (смотрите раздел 1_2 Транспортные механизмы мембраны). Через них вещества попадают внутрь клетки, а также выводятся из клетки наружу.

3. С любой стороны мембраны (наружной и внутренней), а также внутри мембраны могут располагаться белки-ферменты, которые влияют и на состояние самой мембраны и на жизнь всей клетки.

Так что мембрана клетки - это активная изменчивая структура, которая активно работает в интересах всей клетки и связывает её с окружающим миром, а не просто является "защитной оболочкой". Это - самое важное, что надо знать про клеточную мембрану.

В медицине мембранные белки зачастую используются как “мишени” для лекарственных средств. В качестве таких мишеней выступают рецепторы, ионные каналы, ферменты, транспортные системы. В последнее время кроме мембраны мишенью для лекарственных веществ становятся также гены, спрятанные в клеточном ядре.

Видео: Введение в биофизику клеточной мембраны: Структура мембран 1 (Владимиров Ю.А.)

Видео: История, строение и функции клеточной мембраны: Структура мембран 2 (Владимиров Ю.А.)

© 2010-2018 Сазонов В.Ф., © 2010-2016 kineziolog.bodhy.

Клеточные мембраны: их структура и функции

Мембраны – это чрезвычайно вязкие и вместе с тем пластичные структуры, окружающие все живые клетки. Функции клеточных мембран:

1.Плазматическая мембрана является барьером, с помощью которого поддерживается различный состав вне- и внутриклеточной среды.

2.Мембраны формируют специализированные компартменты внутри клетки, т.е. многочисленные органеллы – митохондрии, лизосомы, комплекс Гольджи, эндоплазматический ретикулум, ядерные мембраны.

3.В мембранах локализованы ферменты, участвующие в преобразовании энергии в таких процессах, как окислительное фосфорилирование и фотосинтез.

Структура мембран

В 1972 году Сингер и Николсон предложили жидкостно-мозаичную модель мембранной структуры. Согласно этой модели функционирующие мембраны представляют собой двумерный раствор глобулярных интегральных белков, растворенных в жидком фосфолипидном матриксе. Таким образом, основу мембран составляет бимолекулярный липидный слой, с упорядоченным расположением молекул.

При этом гидрофильный слой образован полярной головкой фосфолипидов (фосфатным остатком, с присоединенным к нему холином, этаноламином или серином) а также углеводной частью гликолипидов. А гидрофобный слой – углеводородными радикалами жирных кислот и сфингозина фосфолипидов и гликолипидов.

Свойства мембран:

1. Избирательная проницаемость. Замкнутый бислой обеспечивает одно из основных свойств мембраны: он непроницаем для большинства водорастворимых молекул, поскольку они не растворяются в его гидрофобной сердцевине. Способностью легко проникать в клетку обладают газы, такие как кислород, СО 2 и азот вследствие малого размера молекул и слабого взаимодействия с растворителями. Также без труда проникают через бислой молекулы липидной природы, например, стероидные гормоны.

2.Жидкостность. Двойной липидный слой имеет жидкокристаллическую структуру, поскольку в целом липидная прослойка жидкая, но в ней есть участки затвердевания, похожие на кристаллические структуры. Хотя положение молекул липидов упорядочено, они сохраняют способность к перемещениям. Возможны два типа перемещений фосфолипидов – это кувырок (в научной литературе называется “флип-флоп”) и латеральная диффузия. В первом случае противостоящие друг другу в бимолекулярном слое молекулы фосфолипидов переворачиваются (или совершают кувырок) навстречу друг другу и меняются местами в мембране, т.е. наружная становится внутренней и наоборот. Такие перескоки связаны с затратой энергии и совершаются очень редко. Чаще наблюдаются повороты вокруг оси (ротация) и латеральная диффузия – перемещение в пределах слоя параллельно поверхности мембраны.

3.Асимметрия мембран. Поверхности одной и той же мембраны различаются по составу липидов, белков и углеводов (поперечная асимметрия). Например, в наружном слое преобладают фосфатидилхолины, а во внутреннем – фосфатидилэтаноламины и фосфатидилсерины. Углеводные компоненты гликопротеинов и гликолипидов выходят на наружную поверхность, образуя сплошное поурытие, называемое гликокаликсом. На внутренней поверхности углеводы отсутствуют. Белки – рецепторы гормонов располагаются на наружной поверхности плазматической мембраны, а регулируемые ими ферменты – аденилатциклаза, фосфолипаза С – на внутренней и т.д.

Мембранные белки

Мембранные фосфолипиды играют роль растворителя для мембранных белков, создавая микроокружение, в котором последние могут функционировать. Число разных белков в мембране варьирует от 6-8 в саркоплазматическом ретикулуме до более чем 100 в плазматической мембране. Это ферменты, транспортные белки, структурные белки, антигены, в том числе антигены основной системы гистосовместимости, рецепторы для различных молекул.

По локализации в мембране белки подразделяются на интегральные (частично или полностью погруженные в мембрану) и периферические (расположенные на ее поверхности). Некоторые интегральные белки прошивают мембрану многократно. Например, фоторецептор сетчатки глаза и β 2 -адренорецептор пересекает бислой 7 раз.

Перенос вещества и информации через мембраны

Клеточные мембраны не являются наглухо закрытыми перегородками. Одной из основных функций мембран является регуляция переноса веществ и информации. Трансмембранное перемещение малых молекул осуществляется 1) путем диффузии, пассивной или облегченной и 2) путем активного транспорта. Трансмембранное перемещение крупных молекул осуществляется 1) путем эндоцитоза и 2) путем экзоцитоза. Передача сигнала через мембраны осуществляется с помощью рецепторов, локализованных на наружной поверхности плазматической мембраны. При этом сигнал либо подвергается трансформации (например, глюкагон цАМФ), либо происходит его интернализация, сопряженная с эндоцитозом (например, ЛНП - рецептор ЛНП).

Простая диффузия - это проникновение в клетку веществ по электрохимическому градиенту. При этом никаких энергетических затрат не требуется. Скорость простой диффузии определяется 1) трансмембранным концентрационным градиентом вещества и 2) его растворимостью в гидрофобном слое мембраны.

При облегченной диффузии вещества переносятся через мембрану также по градиенту концентрации, без энергетических затрат, но с помощью специальных мембранных белков-переносчиков. Поэтому облегченная диффузия по ряду параметров отличается от пассивной: 1) для облегченной диффузии характерна высокая избирательность, т.к. белок-переносчик имеет активный центр, комплементарный переносимому веществу; 2) скорость облегченной диффузии способна выходить на плато, т.к. количество молекул-переносчиков ограничено.

Одни транспортные белки просто переносят какое-либо вещество с одной стороны мембраны на другую. Такой простой перенос называется пассивным унипортом. Примером унипорта могут служить ГЛЮТ – транспортеры глюкозы, осуществляющие транспорт глюкозы через клеточные мембраны. Другие белки функционируют как ко-транспортные системы, в которых перенос одного вещества зависит от одновременного или последовательного переноса другого вещества либо в том же направлении – такой перенос называется пассивным симпортом, либо в противоположном направлении – такой перенос называется пассивным антипортом. По механизму пассивного антипорта функционируют транслоказы внутренней мембраны митохондрий, в частности, АДФ/АТФ-транслоказа.

При активном транспорте перенос вещества осуществляется против градиента концентрации и поэтому сопряжен с энергетическими затратами. Если перенос лигандов через мембрану связан с затратой энергии АТФ, то такой перенос называется первично-активным транспортом. Примером могут служить Na + K + -АТФаза и Са 2+ -АТФаза, локализованные в плазматической мембране клеток человека и Н + ,К + -АТФаза слизистой оболочки желудка.

Вторично-активный транспорт. Перенос некоторых веществ против градиента концентрации зависит от одновременного или последовательного переноса Na + (ионов натрия) по градиенту концентрации. При этом, если лиганд переносится в том же направлении, что и Na + , процесс называется активным симпортом. По механизму активного симпорта происходит всасывание глюкозы из просвета кишечника, где ее концентрация низка. Если же лиганд переносится в противоположном ионам натрия направлении, то такой процесс называется активным антипортом. Примером может служить Na + ,Ca 2+ -обменник плазматической мембраны.


Мембраны биологические.

Термин "мембрана"(лат. membrana - кожица, пленка) начали использовать более 100 лет назад для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой - полупроницаемой перегородкой, через которую могут проходить вода и некоторые вещества. Однако этим функции мембраны не исчерпываются, поскольку биологические мембраны составляют основу структурной организации клетки.
Строение мембраны. Со гласно этой модели основной мембраны является липидный бислой, в котором гидрофобные хвосты молекул обращены внутрь, а гидрофильные головки-наружу. Липиды представлены фосфолипидпми - производными глицерина или сфингозина. С липидным слоем связаны белки. Интегральные(транмембраные) белки пронизывают мембрану насквозь и прочно с ней связаны; переферические не пронизывают и связаны с мембраной менее прочно. Функции мембраных белков: поддержание структуры мембран, получение и преобразование сигналов из окр. среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах. толщина мембраны составляет от 6 до 10 нм.

Свойства мембраны:
1. Текучесть. Мембрана не представляет собой жесткую структуру- большая часть входящих в ее состав белков и липидов может перемещаться в плоскости мембран.
2. Асимметрия. Состав наружного и внутреннего слоев как белков, так и липидов различен. Кроме того, плазматические мембраны животных клеток снаружи имеют слой гликопротеинов (гликокаликс, выполняющий сигнальную и рецепторные функции, а также имеющий значение для объединения клеток в ткани)
3. Полярность. Внешняя сторона мембраны несет положительный заряд, а внутренняя-отрицательный.
4. Избирательная проницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определенные молекулы и ионы растворенных веществ.(Использование по отношению к мембранам клеток термина "полупроницаемость" не совсем корректно, тк это понятие подразумевает то, что мембрана пропускает только молекулы растворителя, задерживая при этом все молекулы и ионы растворенных веществ.)

Наружная клеточная мембрана (плазмалемма) - ультрамикроскопическая пленка толщиной 7.5нм, состоящая из белков, фосфолипидов и воды. Эластичная пленка, хорошо смачвающася водой и быстро восстанавливающийся целостность после повреждения. Имеет универсальное строение, те типичное для всех биологических мембран. Пограничное положение этой мембраны, ее участие в процессах избирательной проницаемости, пиноцитозе, фагоцитозе, выведение продуктов выделения и синтез, во взаимосвязи с соседними клетками и защите клетки от повреждений делает ее роль исключительно важной. Животные клетки снаружи от мембраны иногда бывают покрыты тонким слоем,состоящим из полисахаридов и белков, - гликокаликсом. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы)-нерастворимого в воде полисахарида.