Как найти ребро куба если известен объем. Объемы фигур

Зная некоторые параметры куба, дозволено легко обнаружить его ребро. Для этого довольно лишь иметь информацию о его объеме, площади грани либо длине диагонали грани либо куба.

Вам понадобится

  • Калькулятор

Инструкция

1. В основном встречаются четыре типа задач, в которых нужно обнаружить ребро куба. Это определение длины ребра куба по площади грани куба, по объему куба, по диагонали грани куба и по диагонали куба. Разглядим все четыре варианта таких задач. (Остальные задания, как водится, являются вариациями вышеперечисленных либо задачами по тригонометрии, имеющими крайне косвенное отношение к рассматриваемому вопросу)Если вестима площадь грани куба, то обнаружить ребро куба дюже легко. Потому что грань куба представляет собой квадрат со стороной, равной ребру куба, то ее площадь равняется квадрату ребра куба. Следственно длина ребра куба равняется корню квадратному из площади его грани, то есть:а=?S, гдеа – длина ребра куба,S – площадь грани куба.

2. Нахождение грани куба по его объему еще проще. Рассматривая, что объем куба равен кубу (третьей степени) длины ребра куба, получаем что длина ребра куба равняется корню кубическому (третьей степени) из его объема, т.е.:а=?V (кубический корень), гдеа – длина ребра куба,V – объем куба.

3. Немногим труднее нахождение длины ребра куба по знаменитым длинам диагоналей. Обозначим через:а – длину ребра куба;b – длину диагонали грани куба;c – длину диагонали куба.Как видно из рисунка, диагональ грани и ребра куба образуют прямоугольный равносторонний треугольник. Следственно, по теореме Пифагора:a^2+a^2=b^2(^ – значок возведения в степень).Отсель находим:a=?(b^2/2)(дабы обнаружить ребро куба надобно извлечь квадратный корень из половины квадрата диагонали грани).

4. Дабы обнаружить ребро куба по его диагонали, вновь воспользуемся рисунком. Диагональ куба (с), диагональ грани (b) и ребро куба (а) образуют прямоугольный треугольник. Значит, согласно теореме Пифагора:a^2+b^2=c^2.Воспользуемся вышеустановленной зависимостью между a и b и подставим в формулуb^2=a^2+a^2. Получаем:a^2+a^2+a^2=c^2, откуда находим:3*a^2=c^2, следственно:a=?(c^2/3).

Куб – это прямоугольный параллелепипед, все ребра которого равны. Следственно всеобщая формула для объема прямоугольного параллелепипеда и формула для площади его поверхности в случае куба упрощаются. Также объем куба и его площадь поверхности дозволено обнаружить, зная объем шара, вписанного в него, либо шара, описанного вокруг него.

Вам понадобится

  • длина стороны куба, радиус вписанного и описанного шара

Инструкция

1. Объем прямоугольного параллелепипеда равен: V = abc – где a, b, c – его измерения. Следственно объем куба равен V = a*a*a = a^3, где a – длина стороны куба .Площадь поверхности куба равна сумме площадей всех его граней. Каждого у куба шесть граней, следственно площадь его поверхности равна S = 6*(a^2).

2. Пускай шар вписан в куб. Видимо, диаметр этого шара будет равен стороне куба . Подставляя длину диаметра в выражения для объема взамен длины ребра куба и применяя, что диаметр равен удвоенному радиусу, получим тогда V = d*d*d = 2r*2r*2r = 8*(r^3), где d – диаметр вписанной окружности, а r – радиус вписанной окружности.Площадь поверхности куба тогда будет равна S = 6*(d^2) = 24*(r^2).

3. Пускай шар описан вокруг куба . Тогда его диаметр будет совпадать с диагональю куба . Диагональ куба проходит через центр куба и соединяет две его противоположные точки.Разглядите для начала одну из граней куба . Ребра этой грани являются катетами прямоугольного треугольника, в котором диагональ грани d будет гипотенузой. Тогда по теореме Пифагора получим: d = sqrt((a^2)+(a^2)) = sqrt(2)*a.

4. После этого разглядите треугольник в котором гипотенузой будет диагональ куба , а диагональ грани d и одно из ребер куба a – его катетами. Подобно, по теореме Пифагора получим: D = sqrt((d^2)+(a^2)) = sqrt(2*(a^2)+(a^2)) = a*sqrt(3).Выходит, по выведенной формуле диагональ куба равна D = a*sqrt(3). Отсель, a = D/sqrt(3) = 2R/sqrt(3). Следственно, V = 8*(R^3)/(3*sqrt(3)), где R – радиус описанного шара.Площадь поверхности куба равна S = 6*((D/sqrt(3))^2) = 6*(D^2)/3 = 2*(D^2) = 8*(R^2).

Кубом называют объемный многоугольник с шестью гранями положительной формы – верный гексаэдр. Число положительных граней определяет форму всякой из них – это квадраты. Это, вероятно, самая комфортная из многогранных фигур с точки зрения определения ее геометрических свойств в привычной нам трехмерной системе координат. Все ее параметры дозволено вычислить, зная каждого лишь длину одного ребра.

Инструкция

1. Если у вас имеется некоторый физический объект в форме куба , то для вычисления его объема измерьте длину всякий грани, а после этого используйте алгорифм, описанный в дальнейшем шаге. Если же такое измерение нереально, то дозволено, скажем, испробовать определить объем вытесненной воды, разместив в нее данный кубический объект. Если удастся узнать число вытесненной воды в литрах, то итог дозволено перевести в кубические дециметры – один литр в системе СИ приравнен к одному кубическому дециметру.

2. Возводите в третью степень знаменитое значение длины ребра куба , то есть длину стороны квадрата, составляющего всякую из его граней. Утилитарные расчеты дозволено произвести на любом калькуляторе либо с подмогой поисковой системы Google. Если в поле поискового запроса ввести, скажем, «3,14 в кубе», то поисковик сразу (без нажатия кнопки) покажет итог.

3. Если знаменита только длина диагонали куба , то этого тоже абсолютно довольно для вычисления его объема. Диагональю положительного октаэдра называют отрезок, соединяющий две его противоположные касательно центра вершины. Длину такой диагонали через теорему Пифагора дозволено выразить как длину ребра куба , поделенную на корень из 3. Из этого вытекает, что для нахождения объема куба нужно его диагональ поделить на корень из 3 и итог построить в куб.

4. Подобно дозволено вычислить объем куба , зная только длину диагонали его грани. Из той же теоремы Пифагора вытекает, что длина ребра куба равна диагонали грани, поделенной на корень из 2-х. Объем в этом случае дозволено вычислить, поделив вестимую длину диагонали ребра на корень из 2-х и построив итог в куб.

5. Не забывайте о размерности полученного итога – если вы вычисляете объем исходя из вестимых размеров в сантиметрах, то итог будет получен в кубических сантиметрах. Один дециметр содержит десять сантиметров, а один кубический дециметр (литр) – 1000 (десять в кубе) кубических сантиметров. Соответственно, для перевода итога в кубические дециметры нужно поделить полученное значение в сантиметрах на 1000.

Видео по теме

Продолжаем рассматривать задания с кубами и параллелепипедами. Основные формулы можно посмотреть в начале . Представленные ниже задачи связаны с изменением объёма и площади поверхности при увеличении (уменьшении) ребра.

В одной из задач используется понятие равновеликости. Что это означает? Равновеликие тела это тела имеющие равный объём. Например, если сказано, что шар равновелик кубу – это означает, что шар и куб имеют равный объём. Рассмотрим задачи:

Если каждое ребро куба увеличить на 9, то его площадь поверхности увеличится на 594. Найдите ребро куба.

Так как существует зависимость площади поверхности куба от его ребра, то, конечно же, воспользуемся формулой площади поверхности куба:

Сказано, что при увеличении ребра на 9 площадь поверхности увеличивается на 594. Запишем формулу площади поверхности для увеличенного куба:

Ребро куба равно 1.

Ответ: 1

Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 16, 27. Найдите ребро равновеликого ему куба.

Равновеликий куб – это куб, объём которого равен объёму параллелепипеда. Известно, что объём куба находится по формуле:

Значит если мы найдём объём параллелепипеда, то сможем найти ребро куба. Объём параллелепипеда равен:

Таким образом:

*Как извлечь корень третьей степени из большого числа можно посмотреть .

Ответ: 12

Во сколько раз увеличится объем куба, если его ребра увеличить в шесть раз?

Объем куба с ребром a равен V 1 = a 3 .

Объем куба с ребром в шесть раз большим равен V 2 = (6a) 3 .

Разделим V 2 на V 1 и получим искомую величину:

Объём куба увеличится в 216 раз.

Ответ: 216

Если каждое ребро куба увеличить на 3, то его объем увеличится на 819. Найдите ребро куба.

Пусть ребро куба равно a .

Запишем чему равен объём для исходного куба и для увеличенного:

Объем куба с ребром a равен V 1 = a 3 .

Объем куба с ребром a + 3 равен V 2 = (a + 3) 3 .

Сказано, что объём увеличился на 819, значит:

Решим уравнение:

Подходящее значение a = 8. Отрицательное значение для данной задачи не имеет физического смысла. Таким образом, ребро куба равно 8.

Ответ: 8

Во сколько раз увеличится площадь поверхности куба, если его ребро увеличить в 24 раза?

Запишем формулу площади поверхности исходного куба и формулу площади поверхности для куба с увеличенным ребром:

Теперь остаётся только лишь найти отношение площадей:

Таким образом, площадь поверхности увеличится в 576 раз.

Ответ: 576

Объем одного куба в 729 раз больше объема другого куба. Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба?

Отметим, что первый куб это больший куб, второй это меньший куб. Мы без труда решим эту задачу, если определим во сколько раз ребро первого куба больше ребра второго. Пусть ребро малого (второго) куба равно х, а большего у. Тогда

По условию:

Значит

Получили, что ребро первого куба большего ребра второго в 9 раз, то есть

Теперь запишем площадь поверхности для обоих кубов:

27080. Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба.

27081. Во сколько раз увеличится объем куба, если его ребра увеличить в три раза?

27102. Если каждое ребро куба увеличить на 1, то его объем увеличится на 19. Найдите ребро куба.

27168. Объем одного куба в 8 раз больше объема другого куба. Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба?

Есть ещё отличный подход для решения задач, в которых где речь идёт о изменении объёма и площади поверхности для таких тел как: куб, параллелепипед, шар, правильная четырёхугольная пирамида, конус, цилиндр, при увеличении (уменьшении) ребра (радиуса) в некоторое количество раз. Такие задания практически можно решать в одну строчку. Об этом расскажу в будущем, не пропустите!

Всего доброго! Успеха Вам!

С уважением, Александр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Зная некоторые параметры куба, можно легко найти его ребро. Для этого достаточно лишь иметь информацию о его объеме, площади грани или длине диагонали грани или куба.

Вам понадобится

  • Калькулятор

Инструкция

В основном встречаются четыре типа задач, в которых необходимо найти ребро куба. Это определение длины ребра куба по площади грани куба, по объему куба, по диагонали грани куба и по диагонали куба. Рассмотрим все четыре варианта таких задач. (Остальные задания, как правило, являются вариациями вышеперечисленных или задачами по тригонометрии, имеющими весьма косвенное отношение к рассматриваемому вопросу)

Если известна площадь грани куба, то найти ребро куба очень просто. Так как грань куба представляет собой квадрат со стороной, равной ребру куба, то ее площадь равняется квадрату ребра куба. Следовательно длина ребра куба равняется корню квадратному из площади его грани, то есть:

а - длина ребра куба,

S - площадь грани куба.

Нахождение грани куба по его объему еще проще. Учитывая, что объем куба равен кубу (третьей степени) длины ребра куба, получаем что длина ребра куба равняется корню кубическому (третьей степени) из его объема, т.е.:

а=?V (кубический корень), где

а - длина ребра куба,

V - объем куба.

Немногим сложнее нахождение длины ребра куба по известным длинам диагоналей. Обозначим через:

а - длину ребра куба-

b - длину диагонали грани куба-

c - длину диагонали куба.

Как видно из рисунка, диагональ грани и ребра куба образуют прямоугольный равносторонний треугольник. Следовательно, по теореме Пифагора:

(^ - значок возведения в степень).

Отсюда находим:

(чтобы найти ребро куба нужно извлечь квадратный корень из половины квадрата диагонали грани).

Чтобы найти ребро куба по его диагонали, снова воспользуемся рисунком. Диагональ куба (с), диагональ грани (b) и ребро куба (а) образуют прямоугольный треугольник. Значит, согласно теореме Пифагора:

Воспользуемся вышеустановленной зависимостью между a и b и подставим в формулу

b^2=a^2+a^2. Получаем:

a^2+a^2+a^2=c^2, откуда находим:

3*a^2=c^2, следовательно.

Длины ребра куба по площади грани куба, по объему куба, по диагонали грани куба и по диагонали куба. Рассмотрим все четыре варианта таких задач. (Остальные задания, как , являются вариациями вышеперечисленных или задачами по тригонометрии, имеющими весьма косвенное отношение к рассматриваемому вопросу)

Если известна площадь грани куба, то найти ребро куба очень просто. Так как грань куба представляет собой квадрат со стороной, равной ребру куба, то ее площадь равняется квадрату ребра куба. Следовательно длина ребра куба равняется корню квадратному из площади его грани, то есть:

а - длина ребра куба,

S - площадь грани куба.

Нахождение грани куба по его объему еще проще. Учитывая, что объем куба кубу (третьей степени) длины ребра куба, получаем что длина ребра куба равняется корню кубическому (третьей степени) из его объема, т.е.:

а - длина ребра куба,

V - объем куба.

Немногим сложнее нахождение длины ребра куба по известным длинам диагоналей. Обозначим через:

а - длину ребра куба;

b - длину диагонали грани куба;

c - длину диагонали куба.

Как видно из рисунка, диагональ грани и ребра куба образуют прямоугольный . Следовательно, по теореме Пифагора:

Отсюда находим:

(чтобы найти ребро куба нужно извлечь квадратный корень из половины квадрата диагонали грани).

Чтобы найти ребро куба по его диагонали, снова воспользуемся рисунком. Диагональ куба (с), диагональ грани (b) и ребро куба (а) образуют прямоугольный треугольник. Значит, согласно теореме Пифагора:

Воспользуемся вышеустановленной зависимостью между a и b и подставим в формулу

b^2=a^2+a^2. Получаем:

a^2+a^2+a^2=c^2, откуда находим:

3*a^2=c^2, следовательно:

Источники:

  • ребро куба рисунок

Куб - это прямоугольный параллелепипед, все ребра которого равны. Поэтому общая формула для объема прямоугольного параллелепипеда и формула для площади его поверхности в случае куба упрощаются. Также объем куба и его площадь поверхности можно найти, зная объем шара, вписанного в него, или шара, описанного вокруг него.

Вам понадобится

  • длина стороны куба, радиус вписанного и описанного шара

Инструкция

Объем равен: V = abc - где a, b, c - его . Поэтому куба равен V = a*a*a = a^3, где a - длина стороны куба .Площадь поверхности куба равна сумме площадей всех его граней. Всего у куба шесть граней, поэтому площадь его поверхности равна S = 6*(a^2).

Пусть шар вписан в куб. Очевидно, диаметр этого шара будет равен стороне куба . Подставляя длину в выражения для вместо длины ребра куба и используя, что диаметр равен удвоенному , получим тогда V = d*d*d = 2r*2r*2r = 8*(r^3), где d - диаметр вписанной окружности, а r - радиус вписанной окружности.Площадь поверхности куба тогда будет равна S = 6*(d^2) = 24*(r^2).

Пусть шар описан куба . Тогда его диаметр будет совпадать с диагональю куба . Диагональ куба проходит через центр куба и соединяет две его точки.
Рассмотрите для начала одну из граней куба . Ребра этой грани катетами , в котором диагональ грани d будет гипотенузой. Тогда по теореме Пифагора получим: d = sqrt((a^2)+(a^2)) = sqrt(2)*a.

Затем рассмотрите треугольник в котором гипотенузой будет диагональ куба , а диагональ грани d и одно из ребер куба a - его катетами. Аналогично, по теореме Пифагора получим: D = sqrt((d^2)+(a^2)) = sqrt(2*(a^2)+(a^2)) = a*sqrt(3).
Итак, по выведенной формуле диагональ куба равна D = a*sqrt(3). Отсюда, a = D/sqrt(3) = 2R/sqrt(3). Следовательно, V = 8*(R^3)/(3*sqrt(3)), где R - радиус описанного шара.Площадь поверхности куба равна S = 6*((D/sqrt(3))^2) = 6*(D^2)/3 = 2*(D^2) = 8*(R^2).

Источники:

  • объем куба равен

Кубом называют объемный многоугольник с шестью гранями правильной формы - правильный гексаэдр. Количество правильных граней определяет форму каждой из них - это квадраты. Это, пожалуй, самая удобная из многогранных фигур с точки зрения определения ее геометрических свойств в привычной нам трехмерной системе координат. Все ее параметры можно вычислить, зная всего лишь длину одного ребра.

Инструкция

Если у вас имеется некий физический объект в форме куба , то для вычисления его объема измерьте длину любой грани, а затем используйте алгоритм, описанный в следующем шаге. Если же измерение невозможно, то можно, например, попробовать определить объем вытесненной воды, поместив в нее этот кубический объект. Если удастся выяснить количество вытесненной воды в литрах, то результат можно перевести в кубические ы - один литр в системе СИ приравнен к одному кубическому дециметру.

Возводите в третью степень известное значение длины ребра куба , то есть длину стороны

Представленные ниже задачи просты, большинство из них решаются в 1 действие. В данной статье мы будем рассматривать прямоугольный параллелепипед (все грани прямоугольники). Что необходимо знать и понимать? Сначала посмотрите формулы объёма и площади поверхности куба и прямоугольного параллелепипеда, также формулу диагонали, можно . Кратко перечислим формулы:

Прямоугольный параллелепипед

Пусть рёбра будут равны а, b , с.

Площадь поверхности:

Объём:

Диагональ:

Куб

Пусть ребро куба равно а.

Площадь поверхности:

Объём:

Диагональ:

*Понятно, что формулы куба являются следствием из соответствующих формул прямоугольного параллелепипеда. Куб – это параллелепипед, у которого все рёбра равны, грани являются квадратами.

Рассмотрим задачи:

Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 5 и 8. Площадь поверхности этого параллелепипеда равна 210. Найдите третье ребро, выходящее из той же вершины.

Обозначим известные ребра за а и b , а неизвестное за c .

Тогда формула площади поверхности параллелепипеда выражается как:

Остаётся подставить данные и решить уравнение:

Ответ: 5

Площадь поверхности куба равна 200. Найдите его диагональ.

Построим диагональ куба:

Площадь поверхности куба выражается через его ребро а как S = 6а 2 , значит можем найти ребро а:

Диагональ грани куба по теореме Пифагора равна:

Диагональ куба по теореме Пифагора равна:

Тогда

*Можно было сразу воспользоваться формулой диагонали куба:

Ответ: 10

Объем куба равен 343. Найдите площадь его поверхности.

Площадь поверхности куба выражается через его ребро а как S = 6 а 2 , а объем равен V = а 3 . Значит можем найти ребро куба и затем вычислить площадь поверхности:

Таким образом, площадь поверхности куба равна:

Ответ: 294

27060. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1 и 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.

Диагональ параллелепипеда вычисляется по формуле:

где а, b и с рёбра.

Найдём третье ребро. Мы можем это сделать воспользовавшись формулой площади поверхности параллелепипеда:

Подставляем данные и решаем уравнение:

Таким образом, диагональ будет равна:

Ответ: 3

27063. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760.

В основании правильной четырёхугольной призмы лежит квадрат. Понятно, что она является параллелепипедом. Формулы применяются те же. Пусть боковое ребро будет равно х. Его мы можем найти используя формулу площади поверхности:

Ответ: 12

Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,8 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.

Единичный куб это куб с ребром равным 1.

Площадь поверхности получившегося многогранника можно вычислить следующим образом: от площади поверхности куба нужно вычесть две площади основания вырезанной призмы и прибавить четыре площади боковой грани вырезанной призмы со сторонами 1 и 0,8:

Ответ: 7,92

Площадь грани прямоугольного параллелепипеда равна 48. Ребро, перпендикулярное этой грани, равно 8. Найдите объем параллелепипеда.

Достаточно применить формулу объёма...........................

Объем прямоугольного параллелепипеда равен произведению трёх его ребер, или произведению площади основания на высоту. В данном случае роль основания играет грань, роль высоты ребро, которое ей перпендикулярно. Получим:

Ответ: 384

Следующие задачи вы решите без труда.

27077. Объем прямоугольного параллелепипеда равен 64. Одно из его ребер равно 4. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру. Ответ: 16.

27078. Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани. Ответ: 5.

27079. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 8 и 6. Объем параллелепипеда равен 240. Найдите третье ребро параллелепипеда, выходящее из той же вершины. Ответ: 4.

Ещё для самостоятельного решения:

27054. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.