Как найти площадь сечения куба.

Задачи на построение сечений куба плоскостью, как правило, проще чем, например, задачи на сечения пирамиды.

Провести прямую можем через две точки, если они лежат в одной плоскости. При построении сечений куба возможен еще один вариант построения следа секущей плоскости. Поскольку две параллельные плоскости третья плоскость пересекает по параллельным прямым, то, если в одной из граней уже построена прямая, а в другой есть точка, через которую проходит сечение, то можем провести через эту точку прямую, параллельную данной.

Рассмотрим на конкретных примерах, как построить сечения куба плоскостью.

1) Построить сечение куба плоскостью, проходящей через точки A, C и M.

Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1). Треугольник ACM — искомое сечение.

2) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.

Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).

Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).

Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.

Пятиугольник MNLPS — искомое сечение.

3) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).

Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.

Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую. Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).

Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.

Шестиугольник MNHEPF — искомое сечение.

Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.

Работа с прямой PE дает то же сечение MNHEPF.

4) Построить сечение куба плоскостью, проходящей через точку M, N, P.

Здесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

Продолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости (ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.

Можно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.

Инструкция

Способ расчета площади сечения также зависит от данных, которые уже имеются в задаче. Кроме этого, решение определяется тем, что лежит в основании призмы. Если необходимо найти диагональное сечение призмы, найдите длину диагонали, которая равна корню из суммы (основания сторон ). Например, если основания 3 см и 4 см, соответственно, длина диагонали равна корню из (4х4+3х3)= 5 см. Площадь диагонального сечения найдите по формуле: диагональ основания умножить на высоту.

Если в основании призмы треугольник, для вычисления площади сечения призмы используйте формулу: 1/2 часть основания треугольника умножить на высоту.

Различают следующие виды призм - правильные и прямые. Если необходимо найти сечение правильной призмы, вам нужно знать длину только одной из сторон многоугольника, ведь в основании лежит квадрат, у которого все стороны равны. Найдите диагональ квадрата, которая равна произведению его стороны на корень из двух. После этого перемножив диагональ , вы получите площадь сечения правильной призмы.

Призма имеет свои . Так, площадь боковой поверхности произвольной призмы вычисляется по формуле, где - периметр перпендикулярного сечения, - длина бокового ребра. При этом перпендикулярное сечение перпендикулярно ко всем боковым ребрам призмы, а его углы - это линейные углы двугранных углов при соответствующих боковых ребрах. Перпендикулярное сечение перпендикулярно и ко всем боковым граням.

Источники:

  • диагональное сечение призмы

Осевым называется сечение, которое проходит через ось геометрического тела, образованного при вращении некой геометрической фигуры. Цилиндр получается в результате вращения прямоугольника вокруг одной из сторон, и этим обусловлены многие его свойства. Образующие этого геометрического тела параллельны и равны между собой, что очень важно для определения параметров его осевого сечения, в том числе диагонали.

Вам понадобится

  • - цилиндр с заданными параметрами;
  • - лист бумаги;
  • - карандаш;
  • - линейка;
  • - циркуль;
  • - теорема Пифагора;
  • - теоремы синусов и косинусов.

Инструкция

Постройте цилиндр согласно заданным условиям. Для того чтобы его начертить, вам необходимо знать и высоту. Однако в задаче на диагонали могут быть указаны и другие условия - например, угол между диагональю и образующей или диаметром основания. В этом случае при создании чертежа используйте тот размер, который вам задан. Остальные возьмите произвольно и укажите, что именно вам дано. Обозначьте точки пересечения оси и оснований как О и О".

Начертите осевое сечение. Оно представляет собой прямоугольник, два стороны которого являются диаметрами оснований, а две другие - образующими. Поскольку и образующие перпендикулярны основаниям, они являются одновременно и высотами данного геометрического тела. Обозначьте получившийся прямоугольник как АВСD. Проведите диагонали АС и ВD. Вспомните диагоналей прямоугольника. Они равны между собой и делятся в точке пересечения пополам.

Рассмотрите треугольник АDC. Он прямоугольный, поскольку образующая CD перпендикулярна основанию. Один представляет собой диаметр основания, второй - . Диагональ является . Вспомните, как вычисляется длина гипотенузы любого прямоугольного . Она равна квадратному корню из суммы квадратов катетов. То есть в данном случае d=√4r2+h2, где d – диагональ, r – радиус основания, а h – высота цилиндра.

Если в задаче высота цилиндра не дана, но указан угол диагонали осевого сечения с основанием или образующей, используйте теорему синусов или косинусов. Вспомните, данные тригонометрические . Это отношения противолежащего или прилежащего заданному угол катета к гипотенузе, которую вам и нужно найти. Допустим, вам заданы высота и угол CAD между диагональю и диаметром основания. В этом случае используйте теорему синусов, поскольку угол CAD находится напротив образующей. Найдите гипотенузу d по формуле d=h/sinCAD. Если же вам задан радиус и этот же угол, используйте теорему косинусов. В этом случае d=2r/cos CAD.

По тому же принципу действуйте и в тех случаях, когда заданы угол ACD между диагональю и образующей. В этом случае теорема синусов используется, когда дан радиус, а косинусов - если известна высота.

Видео по теме

Золотое сечение - пропорция, которую издревле считали наиболее совершенной и гармоничной. Она заложена в основу конструкций множества древних сооружений, от статуй до храмов, и очень часто встречается в природе. Вместе с тем эта пропорция выражается удивительно изящными математическими конструкциями.

Инструкция

Если длину всего отрезка принять за 1, а длину большей части - за x, то искомая пропорция выразится уравнением:

(1 - x)/x = x/1.

Умножая обе части пропорции на x и перенося слагаемые, получаем квадратное уравнение:

x^2 + x - 1 = 0.

Уравнение имеет два действительных корня, из которых нас, естественно, интересует только положительный. Он равен (√5 - 1)/2, что примерно равняется 0,618. Это число и выражает сечение. В его чаще всего обозначают буквой φ.

Число φ обладает рядом замечательных математических свойств. Например, даже из исходного уравнения видно, что 1/φ = φ + 1. Действительно, 1/(0,618) = 1,618.

Другой способ вычислить золотую пропорцию в использовании бесконечной дроби. Начиная с любого произвольного x, можно последовательно построить дробь:

x
1/(x + 1)
1/(1/(x+1) + 1)
1/(1/(1/(x+1) + 1) +1)

Для облегчения вычислений эту дробь можно представить в виде итеративной , в которой для вычисления следующего шага нужно прибавить единицу к результату предыдущего шага и разделить единицу на получившееся число. Иными словами:

x0 = x
x(n + 1) = 1/(xn + 1).

Этот процесс сходится, и его предел равен φ + 1.

Если заменить вычисление обратной величины извлечением квадратного корня, то есть провести итеративный цикл:

x0 = x
x(n + 1) = √(xn + 1),

то результат останется неизменным: независимо от изначально выбранного x итерации сходятся к значению φ + 1.

Геометрически золотое сечение можно построить при помощи правильного пятиугольника. Если провести в нем две пересекающиеся диагонали, то каждая из них разделит другую строго в золотом соотношении. Это наблюдение, согласно преданию, принадлежит Пифагору, который был так потрясен найденной закономерностью, что счел правильную пятиконечную звезду (пентаграмму) священным божественным символом.

Причины, по которым именно золотое сечение кажется наиболее гармоничным, неизвестны. Однако неоднократно подтверждали, что испытуемые, которым было поручено наиболее красиво разделить отрезок на две неравные части, это в пропорциях, весьма к золотому соотношению.

Вопрос относится к аналитической геометрии. Он решается с привлечением уравнений пространственных прямых и плоскостей, понятия куба и его геометрических свойств, а также с использованием векторной алгебры. Могут понадобиться способы рения систем линейных уравнений.

Инструкция

Выберите условия задачи так, чтобы они были исчерпывающими, но не избыточными. Секущую плоскость α следует задать общим уравнением вида Ax+By+Cz+D=0, что наилучшим образом согласуется с произвольным его выбором. Для задания куба хватит координат любых трех его вершин. Возьмите, например, точки M1(x1,y1,z1), M2(x2,y2,z2), M3(x3,y3,z3), в соответствии с рисунком 1. На этом рисунке проиллюстрировано сечение куба. Оно пересекает два боковых ребра и три ребра оснований.

Определитесь с планом дальнейшей работы. Предстоит искать координаты точек Q, L, N, W, R пересечения сечения с соответствующими ребрами куба. Для этого придется находить уравнения прямых, содержащих эти ребра, и искать точки пересечения ребер с плоскостью α. После этого последует разбиение QLNWR на треугольники (см. рис. 2) и вычисление пощади каждого из них с помощью свойств векторного произведения. Методика каждый раз одна и та же. Поэтому можно ограничиться точками Q и L и площадью треугольника ∆QLN.

Направляющий вектор h прямой, содержащий ребро М1М5 (и точку Q), найдите как векторное произведение M1M2={x2-x1, y2-y1, z2-z1} и M2M3={x3-x2, y3-y2, z3-z2}, h={m1, n1, p1}=. Полученный вектор является направляющим и для всех прочих боковых ребер. Длину ребра куба найдите как, например, ρ=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2). Если модуль вектора h |h|≠ρ, то замените его соответствующим коллинеарным вектором s={m, n, p}=(h/|h|)ρ. Теперь запишите уравнение прямой, содержащей М1М5 параметрически (см. рис. 3). После подстановки соответствующих выражений в уравнение секущей плоскости получите А(x1+mt)+B(y1+nt)+C(z1+pt)+D=0. Определите t, подставьте в уравнения для М1М5 и запишите координаты точки Q(qx, qy, qz) (рис. 3).

Очевидно, что точка М5 имеет координаты М5(x1+m, y1+n, z1+p). Направляющий вектор для прямой, содержащей ребро М5М8 совпадает с М2М3={x3-x2, y3-y2,z3-z2}. Затем повторите предыдущие рассуждения L(lx, ly, lz) (см. рис. 4). Все дальнейшее, для N(nx, ny, nz) – копия это шага.