Как находить арифметическую прогрессию. можно познакомиться с функциями и производными

При изучении алгебры в общеобразовательной школе (9 класс) одной из важных тем является изучение числовых последовательностей, к которым относятся прогрессии -геометрическая и арифметическая. В данной статье рассмотрим арифметическую прогрессию и примеры с решениями.

Что собой представляет арифметическая прогрессия?

Чтобы это понять, необходимо дать определение рассматриваемой прогрессии, а также привести основные формулы, которые далее будут использованы при решении задач.

Известно, что в некоторой прогрессии алгебраической 1-й член равен 6, а 7-й член равен 18. Необходимо найти разность и восстановить эту последовательность до 7 члена.

Воспользуемся формулой для определения неизвестного члена: a n = (n - 1) * d + a 1 . Подставим в нее известные данные из условия, то есть числа a 1 и a 7 , имеем: 18 = 6 + 6 * d. Из этого выражения можно легко вычислить разность: d = (18 - 6) /6 = 2. Таким образом, ответили на первую часть задачи.

Чтобы восстановить последовательность до 7 члена, следует воспользоваться определением алгебраической прогрессии, то есть a 2 = a 1 + d, a 3 = a 2 + d и так далее. В итоге восстанавливаем всю последовательность: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, a 7 = 18.

Пример №3: составление прогрессии

Усложним еще сильнее условие задачи. Теперь необходимо ответить на вопрос, как находить арифметическую прогрессию. Можно привести следующий пример: даны два числа, например, - 4 и 5. Необходимо составить прогрессию алгебраическую так, чтобы между этими помещалось еще три члена.

Прежде чем начинать решать эту задачу, необходимо понять, какое место будут занимать заданные числа в будущей прогрессии. Поскольку между ними будут находиться еще три члена, тогда a 1 = -4 и a 5 = 5. Установив это, переходим к задаче, которая аналогична предыдущей. Снова для n-го члена воспользуемся формулой, получим: a 5 = a 1 + 4 * d. Откуда: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Здесь получили не целое значение разности, однако оно является рациональным числом, поэтому формулы для алгебраической прогрессии остаются теми же самыми.

Теперь добавим найденную разность к a 1 и восстановим недостающие члены прогрессии. Получаем: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, что совпало с условием задачи.

Пример №4: первый член прогрессии

Продолжим приводить примеры арифметической прогрессии с решением. Во всех предыдущих задачах было известно первое число алгебраической прогрессии. Теперь рассмотрим задачу иного типа: пусть даны два числа, где a 15 = 50 и a 43 = 37. Необходимо найти, с какого числа начинается эта последовательность.

Формулы, которыми пользовались до настоящего времени, предполагают знание a 1 и d. В условии задачи об этих числах ничего неизвестно. Тем не менее выпишем выражения для каждого члена, о котором имеется информация: a 15 = a 1 + 14 * d и a 43 = a 1 + 42 * d. Получили два уравнения, в которых 2 неизвестные величины (a 1 и d). Это означает, что задача сводится к решению системы линейных уравнений.

Указанную систему проще всего решить, если выразить в каждом уравнении a 1 , а затем сравнить полученные выражения. Первое уравнение: a 1 = a 15 - 14 * d = 50 - 14 * d; второе уравнение: a 1 = a 43 - 42 * d = 37 - 42 * d. Приравнивая эти выражения, получим: 50 - 14 * d = 37 - 42 * d, откуда разность d = (37 - 50) / (42 - 14) = - 0,464 (приведены лишь 3 знака точности после запятой).

Зная d, можно воспользоваться любым из 2 приведенных выше выражений для a 1 . Например, первым: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Если возникают сомнения в полученном результате, можно его проверить, например, определить 43 член прогрессии, который задан в условии. Получим: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Небольшая погрешность связана с тем, что при вычислениях использовалось округление до тысячных долей.

Пример №5: сумма

Теперь рассмотрим несколько примеров с решениями на сумму арифметической прогрессии.

Пусть дана числовая прогрессия следующего вида: 1, 2, 3, 4, ...,. Как рассчитать сумму 100 этих чисел?

Благодаря развитию компьютерных технологий можно эту задачку решить, то есть последовательно сложить все числа, что вычислительная машина сделает сразу же, как только человек нажмет клавишу Enter. Однако задачу можно решить в уме, если обратить внимание, что представленный ряд чисел является прогрессией алгебраической, причем ее разность равна 1. Применяя формулу для суммы, получаем: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Любопытно отметить, что эта задача носит название "гауссовой", поскольку в начале XVIII века знаменитый немецкий еще будучи в возрасте всего 10 лет, смог решить ее в уме за несколько секунд. Мальчик не знал формулы для суммы алгебраической прогрессии, но он заметил, что если складывать попарно числа, находящиеся на краях последовательности, то получается всегда один результат, то есть 1 + 100 = 2 + 99 = 3 + 98 = ..., а поскольку этих сумм будет ровно 50 (100 / 2), то для получения правильного ответа достаточно умножить 50 на 101.

Пример №6: сумма членов от n до m

Еще одним типичным примером суммы арифметической прогрессии является следующий: дан такой чисел ряд: 3, 7, 11, 15, ..., нужно найти, чему будет равна сумма его членов с 8 по 14.

Задача решается двумя способами. Первый из них предполагает нахождение неизвестных членов с 8 по 14, а затем их последовательное суммирование. Поскольку слагаемых немного, то такой способ не является достаточно трудоемким. Тем не менее предлагается решить эту задачу вторым методом, который является более универсальным.

Идея заключается в получении формулы для суммы алгебраической прогрессии между членами m и n, где n > m - целые числа. Выпишем для обоих случаев два выражения для суммы:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Поскольку n > m, то очевидно, что 2 сумма включает в себя первую. Последнее умозаключение означает, что если взять разность между этими суммами, и добавить к ней член a m (в случае взятия разности он вычитается из суммы S n), то получим необходимый ответ на задачу. Имеем: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m/2). В это выражение необходимо подставить формулы для a n и a m . Тогда получим: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Полученная формула является несколько громоздкой, тем не менее сумма S mn зависит только от n, m, a 1 и d. В нашем случае a 1 = 3, d = 4, n = 14, m = 8. Подставляя эти числа, получим: S mn = 301.

Как видно из приведенных решений, все задачи основываются на знании выражения для n-го члена и формулы для суммы набора первых слагаемых. Перед тем как приступить к решению любой из этих задач, рекомендуется внимательно прочитать условие, ясно понять, что требуется найти, и лишь затем приступать к решению.

Еще один совет заключается в стремлении к простоте, то есть если можно ответить на вопрос, не применяя сложные математические выкладки, то необходимо поступать именно так, поскольку в этом случае вероятность допустить ошибку меньше. Например, в примере арифметической прогрессии с решением №6 можно было бы остановиться на формуле S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m , и разбить общую задачу на отдельные подзадачи (в данном случае сначала найти члены a n и a m).

Если возникают сомнения в полученном результате, то рекомендуется его проверять, как это было сделано в некоторых приведенных примерах. Как находить арифметическую прогрессию, выяснили. Если разобраться, то это не так сложно.

И. В. Яковлев | Материалы по математике | MathUs.ru

Арифметическая прогрессия

Арифметическая прогрессия это специального вида последовательность. Поэтому прежде чем давать определение арифметической (а затем и геометрической) прогрессии, нам нужно вкратце обсудить важное понятие числовой последовательности.

Последовательность

Вообразите устройство, на экране которого высвечиваются одно за другим некоторые числа. Скажем, 2; 7; 13; 1; 6; 0; 3; : : : Такой набор чисел как раз и является примером последовательности.

Определение. Числовая последовательность это множество чисел, в котором каждому числу можно присвоить уникальный номер (то есть поставить в соответствие единственное натуральное число)1 . Число с номером n называется n-м членом последовательности.

Так, в приведённом выше примере первый номер имеет число 2 это первый член последовательности, который можно обозначить a1 ; номер пять имеет число 6 это пятый член последовательности, который можно обозначить a5 . Вообще, n-й член последовательности обозначается an (или bn , cn и т. д.).

Очень удобна ситуация, когда n-й член последовательности можно задать некоторой формулой. Например, формула an = 2n 3 задаёт последовательность: 1; 1; 3; 5; 7; : : : Формула an = (1)n задаёт последовательность: 1; 1; 1; 1; : : :

Не всякое множество чисел является последовательностью. Так, отрезок не последовательность; в нём содержится ¾слишком много¿ чисел, чтобы их можно было перенумеровать. Множество R всех действительных чисел также не является последовательностью. Эти факты доказываются в курсе математического анализа.

Арифметическая прогрессия: основные определения

Вот теперь мы готовы дать определение арифметической прогрессии.

Определение. Арифметическая прогрессия это последовательность, каждый член которой (начиная со второго) равен сумме предыдущего члена и некоторого фиксированного числа (называемого разностью арифметической прогрессии).

Например, последовательность 2; 5; 8; 11; : : : является арифметической прогрессией с первым членом 2 и разностью 3. Последовательность 7; 2; 3; 8; : : : является арифметической прогрессией с первым членом 7 и разностью 5. Последовательность 3; 3; 3; : : : является арифметической прогрессией с разностью, равной нулю.

Эквивалентное определение: последовательность an называется арифметической прогрессией, если разность an+1 an есть величина постоянная (не зависящая от n).

Арифметическая прогрессия называется возрастающей, если её разность положительна, и убывающей, если её разность отрицательна.

1 А вот более лаконичное определение: последовательность есть функция, определённая на множестве натуральных чисел. Например, последовательность действительных чисел есть функция f: N ! R.

По умолчанию последовательности считаются бесконечными, то есть содержащими бесконечное множество чисел. Но никто не мешает рассматривать и конечные последовательности; собственно, любой конечный набор чисел можно назвать конечной последовательностью. Например, конечная последовательность 1; 2; 3; 4; 5 состоит из пяти чисел.

Формула n-го члена арифметической прогрессии

Легко понять, что арифметическая прогрессия полностью определяется двумя числами: первым членом и разностью. Поэтому возникает вопрос: как, зная первый член и разность, найти произвольный член арифметической прогрессии?

Получить искомую формулу n-го члена арифметической прогрессии нетрудно. Пусть an

арифметическая прогрессия с разностью d. Имеем:

an+1 = an + d (n = 1; 2; : : :):

В частности, пишем:

a2 = a1 + d;

a3 = a2 + d = (a1 + d) + d = a1 + 2d;

a4 = a3 + d = (a1 + 2d) + d = a1 + 3d;

и теперь становится ясно, что формула для an имеет вид:

an = a1 + (n 1)d:

Задача 1. В арифметической прогрессии 2; 5; 8; 11; : : : найти формулу n-го члена и вычислить сотый член.

Решение. Согласно формуле (1 ) имеем:

an = 2 + 3(n 1) = 3n 1:

a100 = 3 100 1 = 299:

Свойство и признак арифметической прогрессии

Свойство арифметической прогрессии. В арифметической прогрессии an для любого

Иначе говоря, каждый член арифметической прогрессии (начиная со второго) является средним арифметическим соседних членов.

Доказательство. Имеем:

a n 1+ a n+1

(an d) + (an + d)

что и требовалось.

Более общим образом, для арифметической прогрессии an справедливо равенство

a n = a n k+ a n+k

при любом n > 2 и любом натуральном k < n. Попробуйте самостоятельно доказать эту формулу тем же самым приёмом, что и формулу (2 ).

Оказывается, формула (2 ) служит не только необходимым, но и достаточным условием того, что последовательность является арифметической прогрессией.

Признак арифметической прогрессии. Если для всех n > 2 выполнено равенство (2 ), то последовательность an является арифметической прогрессией.

Доказательство. Перепишем формулу (2 ) следующим образом:

a na n 1= a n+1a n:

Отсюда видно, что разность an+1 an не зависит от n, а это как раз и означает, что последовательность an есть арифметическая прогрессия.

Свойство и признак арифметической прогрессии можно сформулировать в виде одного утверждения; мы для удобства сделаем это для трёх чисел (именно такая ситуация часто встречается в задачах).

Характеризация арифметической прогрессии. Три числа a, b, c образуют арифметическую прогрессию тогда и только тогда, когда 2b = a + c.

Задача 2. (МГУ, экономич. ф-т, 2007) Три числа 8x, 3 x2 и 4 в указанном порядке образуют убывающую арифметическую прогрессию. Найдите x и укажите разность этой прогрессии.

Решение. По свойству арифметической прогрессии имеем:

2(3 x2 ) = 8x 4 , 2x2 + 8x 10 = 0 , x2 + 4x 5 = 0 , x = 1; x = 5:

Если x = 1, то получается убывающая прогрессия 8, 2, 4 с разностью 6. Если x = 5, то получается возрастающая прогрессия 40, 22, 4; этот случай не годится.

Ответ: x = 1, разность равна 6.

Сумма первых n членов арифметической прогрессии

Легенда гласит, что однажды учитель велел детям найти сумму чисел от 1 до 100 и сел спокойно читать газету. Однако не прошло и нескольких минут, как один мальчик сказал, что решил задачу. Это был 9-летний Карл Фридрих Гаусс, впоследствии один из величайших математиков в истории.

Идея маленького Гаусса была такова. Пусть

S = 1 + 2 + 3 + : : : + 98 + 99 + 100:

Запишем данную сумму в обратном порядке:

S = 100 + 99 + 98 + : : : + 3 + 2 + 1;

и сложим две этих формулы:

2S = (1 + 100) + (2 + 99) + (3 + 98) + : : : + (98 + 3) + (99 + 2) + (100 + 1):

Каждое слагаемое в скобках равно 101, а всего таких слагаемых 100. Поэтому

2S = 101 100 = 10100;

Мы используем эту идею для вывода формулы суммы

S = a1 + a2 + : : : + an + a n n: (3)

Полезная модификация формулы (3 ) получается, если в неё подставить формулу n-го члена an = a1 + (n 1)d:

2a1 + (n 1)d

Задача 3. Найти сумму всех положительных трёхзначных чисел, делящихся на 13.

Решение. Трёхзначные числа, кратные 13, образуют арифметическую прогрессию с первым членом 104 и разностью 13; n-й член этой прогрессии имеет вид:

an = 104 + 13(n 1) = 91 + 13n:

Давайте выясним, сколько членов содержит наша прогрессия. Для этого решим неравенство:

an 6 999; 91 + 13n 6 999;

n 6 908 13 = 6911 13 ; n 6 69:

Итак, в нашей прогрессии 69 членов. По формуле (4 ) находим искомую сумму:

S = 2 104 + 68 13 69 = 37674: 2

Арифметическая и геометрическая прогрессии

Теоретические сведения

Теоретические сведения

Арифметическая прогрессия

Геометрическая прогрессия

Определение

Арифметической прогрессией a n называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d (d - разность прогрессий)

Геометрической прогрессией b n называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и тоже число q (q - знаменатель прогрессии)

Рекуррентная формула

Для любого натурального n
a n + 1 = a n + d

Для любого натурального n
b n + 1 = b n ∙ q, b n ≠ 0

Формула n-ого члена

a n = a 1 + d (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Характеристическое свойство
Сумма n-первых членов

Примеры заданий с комментариями

Задание 1

В арифметической прогрессии (a n ) a 1 = -6, a 2

По формуле n-ого члена:

a 22 = a 1 + d (22 - 1) = a 1 + 21 d

По условию:

a 1 = -6, значит a 22 = -6 + 21 d .

Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = - 48.

Ответ : a 22 = -48.

Задание 2

Найдите пятый член геометрической прогрессии: -3; 6;....

1-й способ (с помощью формулы n -члена)

По формуле n-ого члена геометрической прогрессии:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4 .

Так как b 1 = -3,

2-й способ (с помощью рекуррентной формулы)

Так как знаменатель прогрессии равен -2 (q = -2), то:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

Ответ : b 5 = -48.

Задание 3

В арифметической прогрессии (a n ) a 74 = 34; a 76 = 156. Найдите семьдесят пятый член этой прогрессии.

Для арифметической прогрессии характеристическое свойство имеет вид .

Из этого следует:

.

Подставим данные в формулу:

Ответ : 95.

Задание 4

В арифметической прогрессии (a n ) a n = 3n - 4. Найдите сумму семнадцати первых членов.

Для нахождения суммы n-первых членов арифметической прогрессии используют две формулы:

.

Какую из них в данном случае удобнее применять?

По условию известна формула n-ого члена исходной прогрессии (a n ) a n = 3n - 4. Можно найти сразу и a 1 , и a 16 без нахождения d . Поэтому воспользуемся первой формулой.

Ответ : 368.

Задание 5

В арифметической прогрессии(a n ) a 1 = -6; a 2 = -8. Найдите двадцать второй член прогрессии.

По формуле n-ого члена:

a 22 = a 1 + d (22 – 1) = a 1 + 21d .

По условию, если a 1 = -6, то a 22 = -6 + 21d . Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = -48.

Ответ : a 22 = -48.

Задание 6

Записаны несколько последовательных членов геометрической прогрессии:

Найдите член прогрессии, обозначенный буквой x .

При решении воспользуемся формулой n-го члена b n = b 1 ∙ q n - 1 для геометрических прогрессий. Первый член прогрессии. Чтобы найти знаменатель прогрессии q необходимо взять любой из данных членов прогрессии и разделить на предыдущий. В нашем примере можно взять и разделить на. Получим, что q = 3. Вместо n в формулу подставим 3, так как необходимо найти третий член, заданной геометрической прогрессии.

Подставив найденные значения в формулу, получим:

.

Ответ : .

Задание 7

Из арифметических прогрессий, заданных формулой n-го члена, выберите ту, для которой выполняется условие a 27 > 9:

Так как заданное условие должно выполняться для 27-го члена прогрессии, подставим 27 вместо n в каждую из четырех прогрессий. В 4-й прогрессии получим:

.

Ответ : 4.

Задание 8

В арифметической прогрессии a 1 = 3, d = -1,5. Укажите наибольшее значение n , для которого выполняется неравенство a n > -6.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Арифметическая прогрессия - это ряд чисел, в котором каждое число больше (или меньше) предыдущего на одну и ту же величину.

Эта тема частенько представляется сложной и непонятной. Индексы у буковок, n-й член прогрессии, разность прогрессии - всё это как-то смущает, да... Разберёмся со смыслом арифметической прогрессии и всё сразу наладится.)

Понятие арифметической прогрессии.

Арифметическая прогрессия - понятие очень простое и чёткое. Сомневаетесь? Зря.) Смотрите сами.

Я напишу незаконченный ряд чисел:

1, 2, 3, 4, 5, ...

Сможете продлить этот ряд? Какие числа пойдут дальше, за пятёркой? Каждый... э-э-э..., короче, каждый сообразит, что дальше пойдут числа 6, 7, 8, 9 и т.д.

Усложним задачу. Даю незаконченный ряд чисел:

2, 5, 8, 11, 14, ...

Сможете уловить закономерность, продлить ряд, и назвать седьмое число ряда?

Если сообразили, что это число 20 - я вас поздравляю! Вы не только почувствовали ключевые моменты арифметической прогрессии, но и успешно употребили их в дело! Если не сообразили - читаем дальше.

А теперь переведём ключевые моменты из ощущений в математику.)

Первый ключевой момент.

Арифметическая прогрессия имеет дело с рядами чисел. Это и смущает поначалу. Мы привыкли уравнения решать, графики строить и всё такое... А тут продлить ряд, найти число ряда...

Ничего страшного. Просто прогрессии - это первое знакомство с новым разделом математики. Раздел называется "Ряды" и работает именно с рядами чисел и выражений. Привыкайте.)

Второй ключевой момент.

В арифметической прогрессии любое число отличается от предыдущего на одну и ту же величину.

В первом примере эта разница - единичка. Какое число ни возьми, оно больше предыдущего на единичку. Во втором - тройка. Любое число больше предыдущего на тройку. Собственно, именно этот момент и даёт нам возможность уловить закономерность и рассчитать последующие числа.

Третий ключевой момент.

Этот момент не бросается в глаза, да... Но очень, очень важен. Вот он: каждое число прогрессии стоит на своём месте. Есть первое число, есть седьмое, есть сорок пятое, и т.д. Если их перепутать как попало, закономерность исчезнет. Исчезнет и арифметическая прогрессия. Останется просто ряд чисел.

Вот и вся суть.

Разумеется, в новой теме появляются новые термины и обозначения. Их надо знать. Иначе и задание-то не поймёшь. Например, придётся решать, что-нибудь, типа:

Выпишите первые шесть членов арифметической прогрессии (a n), если a 2 = 5, d = -2,5.

Внушает?) Буковки, индексы какие-то... А задание, между прочим - проще некуда. Просто нужно понять смысл терминов и обозначений. Сейчас мы это дело освоим и вернёмся к заданию.

Термины и обозначения.

Арифметическая прогрессия - это ряд чисел, в котором каждое число отличается от предыдущего на одну и ту же величину.

Эта величина называется . Разберёмся с этим понятием поподробнее.

Разность арифметической прогрессии.

Разность арифметической прогрессии - это величина, на которую любое число прогрессии больше предыдущего.

Один важный момент. Прошу обратить внимание на слово "больше". Математически это означает, что каждое число прогрессии получается прибавлением разности арифметической прогрессии к предыдущему числу.

Для расчёта, скажем, второго числа ряда, надо к первому числу прибавить эту самую разность арифметической прогрессии. Для расчёта пятого - разность надо прибавить к четвёртому, ну и т.п.

Разность арифметической прогрессии может быть положительной, тогда каждое число ряда получится реально больше предыдущего. Такая прогрессия называется возрастающей. Например:

8; 13; 18; 23; 28; .....

Здесь каждое число получается прибавлением положительного числа, +5 к предыдущему.

Разность может быть и отрицательной, тогда каждое число ряда получится меньше предыдущего. Такая прогрессия называется (вы не поверите!) убывающей.

Например:

8; 3; -2; -7; -12; .....

Здесь каждое число получается тоже прибавлением к предыдущему, но уже отрицательного числа, -5.

Кстати, при работе с прогрессией очень полезно бывает сразу определить её характер - возрастающая она, или убывающая. Это здорово помогает сориентироваться в решении, засечь свои ошибки и исправить их, пока не поздно.

Разность арифметической прогрессии обозначается, как правило, буквой d.

Как найти d ? Очень просто. Надо от любого числа ряда отнять предыдущее число. Вычесть. Кстати, результат вычитания называется "разность".)

Определим, например, d для возрастающей арифметической прогрессии:

2, 5, 8, 11, 14, ...

Берём любое число ряда, какое хотим, например, 11. Отнимаем от него предыдущее число, т.е. 8:

Это правильный ответ. Для этой арифметической прогрессии разность равна трём.

Брать можно именно любое число прогрессии, т.к. для конкретной прогрессии d - всегда одно и то же. Хоть где-нибудь в начале ряда, хоть в середине, хоть где угодно. Брать нельзя только самое первое число. Просто потому, что у самого первого числа нет предыдущего. )

Кстати, зная, что d = 3 , найти седьмое число этой прогрессии очень просто. Прибавим 3 к пятому числу - получим шестое, это будет 17. Прибавим к шестому числу тройку, получим седьмое число - двадцать.

Определим d для убывающей арифметической прогрессии:

8; 3; -2; -7; -12; .....

Напоминаю, что, независимо от знаков, для определения d надо от любого числа отнять предыдущее. Выбираем любое число прогрессии, например -7. Предыдущее у него - число -2. Тогда:

d = -7 - (-2) = -7 + 2 = -5

Разность арифметической прогрессии может быть любым числом: целым, дробным, иррациональным, всяким.

Другие термины и обозначения.

Каждое число ряда называется членом арифметической прогрессии.

Каждый член прогрессии имет свой номер. Номера идут строго по порядочку, безо всяких фокусов. Первый, второй, третий, четвёртый и т.д. Например, в прогрессии 2, 5, 8, 11, 14, ... двойка - это первый член, пятёрка - второй, одиннадцать - четвёртый, ну, вы поняли...) Прошу чётко осознать - сами числа могут быть совершенно любые, целые, дробные, отрицательные, какие попало, но нумерация чисел - строго по порядку!

Как записать прогрессию в общем виде? Не вопрос! Каждое число ряда записывается в виде буквы. Для обозначения арифметической прогрессии используется, как правило, буква a . Номер члена указывается индексом внизу справа. Члены пишем через запятую (или точку с запятой), вот так:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1 - это первое число, a 3 - третье, и т.п. Ничего хитрого. Записать этот ряд кратко можно вот так: (a n ).

Прогрессии бывают конечные и бесконечные.

Конечная прогрессия имеет ограниченное количество членов. Пять, тридцать восемь, сколько угодно. Но - конечное число.

Бесконечная прогрессия - имеет бесконечное количество членов, как можно догадаться.)

Записать конечную прогрессию через ряд можно вот так, все члены и точка в конце:

a 1 , a 2 , a 3 , a 4 , a 5 .

Или так, если членов много:

a 1 , a 2 , ... a 14 , a 15 .

В краткой записи придётся дополнительно указывать количество членов. Например (для двадцати членов), вот так:

(a n), n = 20

Бесконечную прогрессию можно узнать по многоточию в конце ряда, как в примерах этого урока.

Теперь уже можно порешать задания. Задания несложные, чисто для понимания смысла арифметической прогрессии.

Примеры заданий по арифметической прогрессии.

Разберём подробненько задание, что приведено выше:

1. Выпишите первые шесть членов арифметической прогрессии (a n), если a 2 = 5, d = -2,5.

Переводим задание на понятный язык. Дана бесконечная арифметическая прогрессия. Известен второе число этой прогрессии: a 2 = 5. Известна разность прогрессии: d = -2,5. Нужно найти первый, третий, четвёртый, пятый и шестой члены этой прогрессии.

Для наглядности запишу ряд по условию задачки. Первые шесть членов, где второй член - пятёрка:

a 1 , 5 , a 3 , a 4 , a 5 , a 6 ,....

a 3 = a 2 + d

Подставляем в выражение a 2 = 5 и d = -2,5 . Не забываем про минус!

a 3 =5+(-2,5)=5 - 2,5 = 2,5

Третий член получился меньше второго. Всё логично. Если число больше предыдущего на отрицательную величину, значит само число получится меньше предыдущего. Прогрессия - убывающая. Ладно, учтём.) Считаем четвёртый член нашего ряда:

a 4 = a 3 + d

a 4 =2,5+(-2,5)=2,5 - 2,5 = 0

a 5 = a 4 + d

a 5 =0+(-2,5)= - 2,5

a 6 = a 5 + d

a 6 =-2,5+(-2,5)=-2,5 - 2,5 = -5

Так, члены с третьего по шестой вычислили. Получился такой ряд:

a 1 , 5 , 2,5 , 0 , -2,5 , -5 , ....

Остаётся найти первый член a 1 по известному второму. Это шаг в другую сторону, влево.) Значит, разность арифметической прогрессии d надо не прибавить к a 2 , а отнять:

a 1 = a 2 - d

a 1 =5-(-2,5)=5 + 2,5=7,5

Вот и все дела. Ответ задания:

7,5, 5, 2,5, 0, -2,5, -5, ...

Попутно замечу, что это задание мы решали рекуррентным способом. Это страшное слово означает, всего лишь, поиск члена прогрессии по предыдущему (соседнему) числу. Другие способы работы с прогрессией мы рассмотрим далее.

Из этого несложного задания можно сделать один важный вывод.

Запоминаем:

Если нам известен хотя бы один член и разность арифметической прогрессии, мы можем найти любой член этой прогрессии.

Запомнили? Этот несложный вывод позволяет решать большинство задач школьного курса по этой теме. Все задачи крутятся вокруг трёх главных параметров: член арифметической прогрессии, разность прогрессии, номер члена прогрессии. Всё.

Разумеется, вся предыдущая алгебра не отменяется.) К прогрессии прицепляются и неравенства, и уравнения, и прочие вещи. Но по самой прогрессии - всё крутится вокруг трёх параметров.

Для примера рассмотрим некоторые популярные задания по этой теме.

2. Запишите конечную арифметическую прогрессию в виде ряда, если n=5, d = 0,4, и a 1 = 3,6.

Здесь всё просто. Всё уже дано. Нужно вспомнить, как считаются члены арифметической прогрессии, посчитать, да и записать. Желательно не пропустить слова в условии задания: "конечную" и "n=5 ". Чтобы не считать до полного посинения.) В этой прогрессии всего 5 (пять) членов:

a 2 = a 1 + d = 3,6 + 0,4 = 4

a 3 = a 2 + d = 4 + 0,4 = 4,4

a 4 = a 3 + d = 4,4 + 0,4 = 4,8

a 5 = a 4 + d = 4,8 + 0,4 = 5,2

Остаётся записать ответ:

3,6; 4; 4,4; 4,8; 5,2.

Ещё задание:

3. Определите, будет ли число 7 членом арифметической прогрессии (a n), если a 1 = 4,1; d = 1,2.

Хм... Кто ж его знает? Как определить-то?

Как-как... Да записать прогрессию в виде ряда и посмотреть, будет там семёрка, или нет! Считаем:

a 2 = a 1 + d = 4,1 + 1,2 = 5,3

a 3 = a 2 + d = 5,3 + 1,2 = 6,5

a 4 = a 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Сейчас чётко видно, что семёрку мы просто проскочили между 6,5 и 7,7! Не попала семёрка в наш ряд чисел, и, значит, семёрка не будет членом заданной прогрессии.

Ответ: нет.

А вот задачка на основе реального варианта ГИА:

4. Выписано несколько последовательных членов арифметической прогрессии:

...; 15; х; 9; 6; ...

Здесь записан ряд без конца и начала. Нет ни номеров членов, ни разности d . Ничего страшного. Для решения задания достаточно понимать смысл арифметической прогрессии. Смотрим и соображаем, что можно узнать из этого ряда? Какие параметры из трёх главных?

Номера членов? Нет тут ни единого номера.

Зато есть три числа и - внимание! - слово "последовательных" в условии. Это значит, что числа идут строго по порядку, без пропусков. А есть ли в этом ряду два соседних известных числа? Да, есть! Это 9 и 6. Стало быть, мы можем вычислить разность арифметической прогрессии! От шестёрки отнимаем предыдущее число, т.е. девятку:

Остались сущие пустяки. Какое число будет предыдущим для икса? Пятнадцать. Значит, икс можно легко найти простым сложением. К 15 прибавить разность арифметической прогрессии:

Вот и всё. Ответ: х=12

Следующие задачки решаем самостоятельно. Замечание: эти задачки - не на формулы. Чисто на понимание смысла арифметической прогрессии.) Просто записываем ряд с числами-буквами, смотрим и соображаем.

5. Найдите первый положительный член арифметической прогрессии, если a 5 = -3; d = 1,1.

6. Известно, что число 5,5 является членом арифметической прогрессии (a n), где a 1 = 1,6; d = 1,3. Определите номер n этого члена.

7. Известно, что в арифметической прогрессии a 2 = 4; a 5 = 15,1. Найдите a 3 .

8. Выписано несколько последовательных членов арифметической прогрессии:

...; 15,6; х; 3,4; ...

Найдите член прогрессии, обозначенный буквой х.

9. Поезд начал движение от станции, равномерно увеличивая скорость на 30 метров в минуту. Какова будет скорость поезда через пять минут? Ответ дайте в км/час.

10. Известно, что в арифметической прогрессии a 2 = 5; a 6 = -5. Найдите a 1 .

Ответы (в беспорядке): 7,7; 7,5; 9,5; 9; 0,3; 4.

Всё получилось? Замечательно! Можно осваивать арифметическую прогрессию на более высоком уровне, в следующих уроках.

Не всё получилось? Не беда. В Особом разделе 555 все эти задачки разобраны по косточкам.) И, конечно, описан простой практический приём, который сразу высвечивает решение подобных заданий чётко, ясно, как на ладони!

Кстати, в задачке про поезд есть две проблемки, на которых часто спотыкается народ. Одна - чисто по прогрессии, а вторая - общая для любых задач по математике, да и физике тоже. Это перевод размерностей из одной в другую. В показано, как надо эти проблемы решать.

В этом уроке мы рассмотрели элементарный смысл арифметической прогрессии и её основные параметры. Этого достаточно для решения практически всех задач на эту тему. Прибавляй d к числам, пиши ряд, всё и решится.

Решение "на пальцах" хорошо подходит для очень коротких кусочков ряда, как в примерах этого урока. Если ряд подлиннее, вычисления усложняются. Например, если в задачке 9 в вопросе заменить "пять минут" на "тридцать пять минут", задачка станет существенно злее.)

А ещё бывают задания простые по сути, но несусветные по вычислениям, например:

Дана арифметическая прогрессия (a n). Найти a 121 , если a 1 =3, а d=1/6.

И что, будем много-много раз прибавлять по 1/6?! Это же убиться можно!?

Можно.) Если не знать простую формулу, по которой решать подобные задания можно за минуту. Эта формула будет в следующем уроке. И задачка эта там решена. За минуту.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Арифметической прогрессией называют последовательность чисел (членов прогрессии)

В которой каждый последующий член отличается от предыдущего на сталое слагаемое, которое еще называют шагом или разницей прогрессии .

Таким образом, задавая шаг прогрессии и ее первый член можно найти любой ее элемент по формуле

Свойства арифметической прогрессии

1) Каждый член арифметической прогрессии, начиная со второго номера является средним арифметическим от предыдущего и следующего члена прогрессии

Обратное утверждение также верно. Если среднее арифметическое соседних нечетных (четных) членов прогрессии равно члену, который стоит между ними, то данная последовательность чисел является арифметической прогрессией. По этим утверждением очень просто проверить любую последовательность.

Также по свойству арифметической прогрессии, приведенную выше формулу можно обобщить до следующей

В этом легко убедиться, если расписать слагаемые справа от знака равенства

Ее часто применяют на практике для упрощения вычислений в задачах.

2) Сумма n первых членов арифметической прогрессии вычисляется по формуле

Запомните хорошо формулу суммы арифметической прогрессии, она незаменима при вычислениях и довольно часто встречается в простых жизненных ситуациях.

3) Если нужно найти не всю сумму, а часть последовательности начиная с k -го ее члена, то в Вам пригодится следующая формула суммы

4) Практический интерес представляет отыскание суммы n членов арифметической прогрессии начиная с k -го номера. Для этого используйте формулу

На этом теоретический материал заканчивается и переходим к решению распространенных на практике задач.

Пример 1. Найти сороковой член арифметической прогрессии 4;7;...

Решение:

Согласно условию имеем

Определим шаг прогрессии

По известной формуле находим сороковой член прогрессии

Пример2. Арифметическая прогрессия задана третьим и седьмым ее членом . Найти первый член прогрессии и сумму десяти.

Решение:

Распишем заданные элементы прогрессии по формулам

От второго уравнения вычтем первое, в результате найдем шаг прогрессии

Найденное значение подставляем в любое из уравнений для отыскания первого члена арифметической прогрессии

Вычисляем сумму первых десяти членов прогрессии

Не применяя сложных вычислений ми нашли все искомые величины.

Пример 3. Арифметическую прогрессию задано знаменателем и одним из ее членов . Найти первый член прогрессии, сумму 50 ее членов начиная с 50 и сумму 100 первых.

Решение:

Запишем формулу сотого элемента прогрессии

и найдем первый

На основе первого находим 50 член прогрессии

Находим сумму части прогрессии

и сумму первых 100

Сумма прогрессии равна 250.

Пример 4.

Найти число членов арифметической прогрессии, если:

а3-а1=8, а2+а4=14, Sn=111.

Решение:

Запишем уравнения через первый член и шаг прогрессии и определим их

Полученные значения подставляем в формулу суммы для определения количества членов в сумме

Выполняем упрощения

и решаем квадратное уравнение

Из найденных двух значений условии задачи подходит только число 8 . Таким образом сумма первых восьми членов прогрессии составляет 111.

Пример 5.

Решить уравнение

1+3+5+...+х=307.

Решение: Данное уравнение является суммой арифметической прогрессии. Выпишем первый ее член и найдем разницу прогрессии