Как измеряют двугранный угол. Двугранный угол, перпендикулярные плоскости

Понятие двугранного угла

Для введения понятия двугранного угла, для начала вспомним одну из аксиом стереометрии.

Любую плоскость можно разделить на две полуплоскости прямой $a$, лежащей в этой плоскости. При этом, точки, лежащие в одной полуплоскости находятся с одной стороны от прямой $a$, а точки, лежащие в разных полуплоскостях -- по разные стороны от прямой $a$ (рис. 1).

Рисунок 1.

На этой аксиоме основан принцип построение двугранного угла.

Определение 1

Фигура называется двугранным углом , если она состоит из прямой и двух полуплоскостей этой прямой, не принадлежащих одной плоскости.

При этом полуплоскости двугранного угла называются гранями , а прямая, разделяющая полуплоскости -- ребром двугранного угла (рис. 1).

Рисунок 2. Двугранный угол

Градусная мера двугранного угла

Определение 2

Выберем на ребре произвольную точку $A$. Угол между двумя прямыми, лежащими в разных полуплоскостях, перпендикулярных ребру и пересекающихся в точке $A$ называется линейным углом двугранного угла (рис. 3).

Рисунок 3.

Очевидно, что каждый двугранный угол имеет бесконечное число линейных углов.

Теорема 1

Все линейные углы одного двугранного угла равняются между собой.

Доказательство.

Рассмотрим два линейных угла $AOB$ и $A_1{OB}_1$ (рис. 4).

Рисунок 4.

Так как лучи $OA$ и ${OA}_1$ лежат в одной полуплоскости $\alpha $ и перпендикулярны одной прямой, то они являются сонаправленными. Так как лучи $OB$ и ${OB}_1$ лежат в одной полуплоскости $\beta $ и перпендикулярны одной прямой, то они являются сонаправленными. Следовательно

\[\angle AOB=\angle A_1{OB}_1\]

В силу произвольности выборов линейных углов. Все линейные углы одного двугранного угла равны между собой.

Теорема доказана.

Определение 3

Градусной мерой двугранного угла называется градусная мера линейного угла двугранного угла.

Примеры задач

Пример 1

Пусть нам даны две неперпендикулярные плоскости $\alpha $ и $\beta $ которые пересекаются по прямой $m$. Точка $A$ принадлежит плоскости $\beta $. $AB$ -- перпендикуляр к прямой $m$. $AC$ перпендикуляр к плоскости $\alpha $ (точка $C$ принадлежит $\alpha $). Доказать, что угол $ABC$ является линейным углом двугранного угла.

Доказательство.

Изобразим рисунок по условию задачи (рис. 5).

Рисунок 5.

Для доказательства вспомним следующую теорему

Теорема 2: Прямая, проходящая через основание наклонной, перпендикулярно ей, перпендикулярна её проекции.

Так как $AC$ - перпендикуляр к плоскости $\alpha $, то точка $C$ - проекция точки $A$ на плоскость $\alpha $. Следовательно, $BC$ -- проекция наклонной $AB$. По теореме 2, $BC$ перпендикулярна ребру двугранного угла.

Тогда, угол $ABC$ удовлетворяет всем требованиям определения линейного угла двугранного угла.

Пример 2

Двугранный угол равен $30^\circ$. На одной из граней лежит точка $A$, которая удалена от другой грани на расстояние $4$ см. Найти расстояние от точки $A$ до ребра двугранного угла.

Решение.

Будем рассматривать рисунок 5.

По условию, имеем $AC=4\ см$.

По определению градусной меры двугранного угла, имеем, что угол $ABC$ равен $30^\circ$.

Треугольник $ABC$ является прямоугольным треугольником. По определению синуса острого угла

\[\frac{AC}{AB}=sin{30}^0\] \[\frac{5}{AB}=\frac{1}{2}\] \

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

В планиметрии основными объектами являются прямые, отрезки, лучи и точки. Лучи исходящие из одной точки, образуют одну их геометрических фигур-угол.

Мы знаем, что линейный угол измеряется в градусах и радианах.

В стереометрии к объектам добавляется плоскость. Фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости в геометрии называется двугранным углом. Полуплоскости - это грани двугранного угла. Прямая а - это ребро двугранного угла.

Двухгранный угол как и линейный угол можно назвать, измерить, построить. Это и предстоит нам выяснить в этом уроке.

Найдём двухгранный угол на модели тетраэдра АВСD.

Двугранный угол с ребром АВ называют CABD, где С и D точки принадлежащие разным граням угла а ребро АВ называют в середине

Вокруг нас достаточно много предметов с элементами в виде двухгранного угла.

Во многих городах в парках установлены специальные скамейки для примирения. Скамейка выполнена в виде двух сходящихся к центру наклонных плоскостей.

При строительстве домов часто используется так называемая двухскатная крыша. На этом доме крыша выполнена в виде двухгранного угла в 90 градусов.

Двугранный угол тоже измеряется в градусах или радианах, но как его измерить.

Интересно заметить, что крыши домов лежат на стропилах. А обрешётка стропил образует два ската крыши под заданным углом.

Перенесем изображение на чертёж. На чертеже для нахождения двухгранного угла на его ребре отмечается точка В. Из этой точки проводятся два луча ВА и ВС перпендикулярно ребру угла. Образованный этими лучами угол АВС называется линейным углом двугранного угла.

Градусная мера двугранного угла равна градусной мере его линейного угла.

Измерим угол АОВ.

Градусная мера данного двугранного угла равна шестидесяти градусам.

Линейных углов для двугранного угла можно провести бесконечное количество, важно знать, что все они равны.

Рассмотрим два линейных угла АОВ и А1О1В1 . Лучи ОА и О1А1 лежат в одной грани и перпендикулярны к прямой ОО1, поэтому они сонаправлены. Лучи ОВ и О1В1 так же сонаправлены. Поэтому угол АОВ равен углуА1О1В1 как углы с сонаправленными сторонами.

Так двугранный угол характеризуется линейным углом, а линейные углы бывают острые, тупые и прямые. Рассмотрим модели двугранных углов.

Тупой угол, если его линейный угол от 90 до 180 градусов.

Прямой угол, если его линейный угол равен 90 градусов.

Острый угол, елси его линейный угол от 0 до 90 градусов.

Докажем одно из важных свойств линейного угла.

Плоскость линейного угла перпендикулярна к ребру двугранного угла.

Пусть угол АОВ - линейный угол данного двугранного угла. По построению лучи АО и ОВ перпендикулярные прямой а.

Через две пересекающиеся прямые АО и ОВ проходит плоскость АОВ по теореме: Через две пересекающиеся прямые проходит плоскость и притом только одна.

Прямая а перпендикулярна двум пересекающимся прямым лежащим в этой плоскости, значит по признаку перпендикулярности прямой и плоскости прямая а перпендикулярна плоскости АОВ.

Для решения задач важно уметь строить линейный угол заданного двухгранного угла. Построить линейный угол двугранного угла с ребром АВ для тетраэдра АВСD.

Речь идет о двугранном угле, который образован, во-первых, ребром АВ, одной гранью АВD, второй гранью АВС.

Вот один из способов построения.

Проведем перпендикуляр из точки D к плоскости АВС, Отметим точку М основание перпендикуляра. Вспомним, что в тетраэдре основание перпендикуляра совпадает с центром вписанной окружности в основание тетраэдра.

Проведем наклонную из точки D перпендикулярно к ребру АВ, отметим точку N основание наклонной.

В треугольнике DMN отрезок NM будет проекций наклонной DN на плоскость АВС. По теореме о трёх перпендикулярах ребро АВ будет перпендикулярно проекции NМ.

Значит cтороны угла DNM перпендикулярны к ребру АВ, значит построенный угол DNM искомый линейный угол.

Рассмотрим пример решения задачи на вычисление двугранного угла.

Равнобедренный треугольник АВС и правильный треугольник АDB не лежат в одной плоскости. Отрезок CD является перпендикуляром к плоскости ADB. Найдите двугранный угол DABC, если AC=CB=2 см, АB= 4см.

Двугранный угол DABC равен его линейному углу. Построим этот угол.

Проведем наклонную СМ перпендикулярно к ребру АВ, так как треугольник АСВ равнобедренный, то точка М совпадёт с серединой ребра АВ.

Прямая СD по условию перпендикулярна плоскости ADB, значит перпендикулярна прямой DM лежащей в этой плоскости. А отрезок МD является проекцией наклонной СМ на плоскость АDВ.

Прямая АВ перпендикулярна наклонной СМ по построению, значит по теореме о трех перпендикулярах перпендикулярна проекции MD.

Итак к ребру АВ найдены два перпендикуляра СМ и DМ. Значит они образуют линейный угол СMD двугранного угла DАВС. И нам останется его найти из прямоугольного треугольника СDM.

Так отрезок СМ медиана и высота равнобедренного треугольника АСВ, то по теореме Пифагора катет СМ равен 4 см.

Из прямоугольного треугольника DMB по теореме Пифагора катет DM равен двум корням из трёх.

Косинус угла из прямоугольного треугольника равен отношению прилежащего катета МD к гипотенузе СМ и равен три корня из трёх на два. Значит угол СМD равен 30 градусам.

ГЛАВА ПЕРВАЯ ПРЯМЫЕ И ПЛОСКОСТИ

V. ДВУГРАННЫЕ УГЛЫ, УГОЛ ПРЯМОЙ С ПЛОСКОСТЬЮ,
УГОЛ ДВУХ СКРЕЩИВАЮЩИХСЯ ПРЯМЫХ, МНОГОГРАННЫЕ УГЛЫ

Двугранные углы

38. Определения. Часть плоскости, лежащая по одну сторону от какой-либо прямой, лежащей в этой плоскости, называется полуплоскостью . Фигура, образованная двумя полуплоскостями (Р и Q, черт. 26), исходящими из одной прямой (АВ), называется двугранным углом . Прямая АВ называется ребром , а полуплоскости Р и Q - сторонами или гранями двугранного угла.

Такой угол обозначается обыкновенно двумя буквами, поставленными у его ребра (двугранный угол АВ). Но если при одном ребре лежат нисколько двугранных углов, то каждый из них обозначают четырьмя буквами, из которых две средние стоят при ребре, а две крайние - у граней (например, двугранный угол SCDR) (черт. 27).

Если из произвольной точки D ребра АВ (черт. 28) проведём на каждой грани по перпендикуляру к ребру, то образованный ими угол CDE называется линейным углом двугранного угла.

Величина линейного угла не зависит от положения его вершины на ребре. Так, линейные углы CDE и C 1 D 1 E 1 равны, потому что их стороны соответственно параллельны и одинаково направлены.

Плоскость линейного угла перпендикулярна к ребру, так как она содержит две прямые, перпендикулярные к нему. Поэтому для получения линейного угла достаточно грани данного двугранного угла пересечь плоскостью, перпендикулярной к ребру, и рассмотреть получившийся в этой плоскости угол.

39. Равенство и неравенство двугранных углов. Два двугранных угла считаются равными, если они при вложении могут совместиться; в противном случае тот из двугранных углов считается меньшим, который составит часть другого угла.

Подобно углам в планиметрии, двугранные углы могут быть смежные, вертикальные и пр.

Если два смежных двугранных угла равны между собой, то каждый из них называется прямым двугранным углом .

Теоремы. 1) Равным двугранным углам соответствуют равные линейные углы.

2) Большему двугранному углу соответствует больший линейный угол.

Пусть РАВQ, и Р 1 А 1 В 1 Q 1 (черт. 29)-два двугранных угла. Вложим угол А 1 В 1 в угол АВ так, чтобы ребро А 1 В 1 совпало с ребром АВ и грань Р 1 с гранью Р.

Тогда если эти двугранные углы равны, то грань Q 1 совпадёт с гранью Q; если же угол А 1 В 1 меньше угла АВ, то грань Q 1 займёт некоторое положение внутри двугранного угла, например Q 2 .

Заметив это, возьмём на общем ребре какую-нибудь точку В и проведём через неё плоскость R, перпендикулярную к ребру. От пересечения этой плоскости с гранями двугранных углов получатся линейные углы. Ясно, что если двугранные углы совпадут, то у них окажется один и тот же линейный угол CBD; если же двугранные углы не совпадут, если, например, грань Q 1 займёт положение Q 2 , то у большего двугранного угла окажется больший линейный угол (именно: / CBD > / C 2 BD).

40. Обратные теоремы. 1) Равным линейным углам соответствуют равные двугранные углы.

2) Большему линейному углу соответствует больший двугранный угол .

Эти теоремы легко доказываются от противного.

41. Следствия. 1) Прямому двугранному углу соответствует прямой линейный угол, и обратно.

Пусть (черт. 30) двугранный угол PABQ прямой. Это значит, что он равен смежному углу QABP 1 . Но в таком случае линейные углы CDE и CDE 1 также равны; а так как они смежные, то каждый из них должен быть прямой. Обратно, если равны смежные линейные углы CDE и CDE 1 , то равны и смежные двугранные углы, т. е. каждый из ни должен быть прямой.

2) Bcе прямые двугранные углы равны, лотому что у них равны линейные углы.

Подобным же образом легко доказать, что:

3) Вертикальные двугранные углы равны .

4) Двугранные углы с соответственно параллельными и одинаково (или противоположно) направленными гранями равны.

5) Если за единицу двугранных углов возьмём такой двугранный угол, который соответствует единице линейных углов, то можно сказать, чтo двугранный угол измеряется его линейным углом.


Двугранный угол. Линейный угол двугранного угла. Двугранным углом называется фигура, образованная двумя не принадлежащим одной плоскости полуплоскостями, имеющими общую границу – прямую а. Полуплоскости, образующие двугранный угол, называются его гранями, а общая граница этих полуплоскостей – ребром двугранного угла. Линейным углом двугранного угла называется угол, сторонами которого являются лучи, по которым грани двугранного угла, пересекаются плоскостью, перпендикулярной ребру двугранного угла. У каждого двугранного угла сколько угодно линейных углов: через каждую точку ребра можно провести плоскость, перпендикулярный этому ребру; лучи, по которым эта плоскость пересекает грани двугранного угла, и образуют линейные углы.


Все линейные углы двугранного угла равны между собой. Докажем, что если равны двугранные углы, образованные плоскостью основания пирамиды КАВС и плоскостям ее боковых граней, то основание перпендикуляра, проведенного из вершины К, является центром вписанной в треугольник АВС окружности.


Доказательство. Прежде всего, построим линейные углы равных двугранных углов. По определению, плоскость линейного угла должна быть перпендикулярна ребру двугранного угла. Следовательно, ребро двугранного угла должно быть перпендикулярно сторонам линейного угла. Если КО перпендикуляр к плоскости основания, то можно провести ОР перпендикуляр АС, ОR перпендикуляр СВ, OQ перпендикулярAB, а затем соединить точки P, Q, R С точкой К. Тем самым, мы построим проекцию наклонных РК, QK, RK так, что ребра АС, СВ, АВ перпендикулярны этим проекциям. Следовательно, эти ребра перпендикулярны и самим наклонным. И потому плоскости треугольников РОК, QOK, ROK перпендикулярны соответствующим ребрам двугранного угла и образуют те равные линейные углы, о которых сказано в условии. Прямоугольные треугольники РОК, QOK, ROK равны (так как у них общий катет ОК и равны противолежащие этому катету углы). Следовательно, ОР = OR = OQ. Если провести окружность с центром О и радиусом ОР, то стороны треугольника АВС перпендикулярны радиусам ОР, OR и OQ а потому являются касательными к этой окружности.


Перпендикулярность плоскостей. Плоскость альфа и бета называются перпендикулярными, если линейный угол одного из двугранных углов, образовавшихся при их пересечении равен 90". Признаки перпендикулярности двух плоскостей Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.






На рисунке изображен прямоугольный параллелепипед. Его основаниями служат прямоугольники ABCD и A1B1C1D1. А боковые ребра АА1 ВВ1, СС1, DD1, перпендикулярны к основаниям. Отсюда следует что АА1 перпендикуляр АВ, т. е. боковая грань – прямоугольник. Таким образом, можно обосновать свойства прямоугольного параллелепипеда: В прямоугольном параллелепипеде все шесть граней – прямоугольники. В прямоугольном параллелепипеде все шесть граней – прямоугольники. Все двугранные углы прямоугольного параллелепипеда – прямые. Все двугранные углы прямоугольного параллелепипеда – прямые.


Теорема Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. Обратимся снова к рисунку, И докажем что АС12 =АВ2+AD2+АА12 Так как ребро СС1 перпендикулярно к основанию АВСD то угол АСС1 прямой. Из прямоугольного треугольника АСС1 по теореме Пифагора получаем АС12=АС2+СС12. Но АС - диагональ прямоугольника АВСD, поэтому АС2 = АВ2+АD2. Кроме того, СС1 = АА1. Следовательно АС12= АВ2+АD2+AA12 Теорема доказана.





Тема урока: «Двугранный угол».

Цель урока: введение понятия двугранного угла и его линейного угла.

Задачи:

Образовательная: рассмотреть задачи на применение этих понятий, сформировать конструктивный навык нахождения угла между плоскостями;

Развивающая: развитие творческого мышления учащихся, личностное саморазвитие учащихся, развитие речи учащихся;

Воспитательная: воспитание культуры умственного труда, коммуникативной культуры, рефлексивной культуры.

Тип урока: урок усвоения новых знаний

Методы обучения: объяснительно-иллюстративный

Оборудование: компьютер, интерактивная доска.

Литература:

    Геометрия. 10-11 классы: учеб. для 10-11 кл. общеобразоват. учреждений: базовый и профил. уровни / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.] – 18-е изд. – М. : Просвещение, 2009. – 255 с.

План урока:

    Организационный момент (2 мин)

    Актуализация знаний (5 мин)

    Изучение нового материала (12 мин)

    Закрепление изученного материала (21 мин)

    Домашнее задание (2 мин)

    Подведение итогов (3 мин)

Ход урока:

1. Организационный момент.

Включает в себя приветствие учителем класса, подготовку помещения к уроку, проверку отсутствующих.

2. Актуализация опорных знаний.

Учитель: На прошлом уроке вы писали самостоятельную работу. В целом работы написали неплохо. А теперь давайте немного повторим. Что называется углом на плоскости?

Ученик: Углом на плоскости называется фигура, образованная двумя лучами, исходящими из одной точки.

Учитель: Что называется углом между прямыми в пространстве?

Ученик: Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых с вершиной в точке их пересечения.

Ученик: Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным.

Учитель: Что называется углом между прямой и плоскостью?

Ученик: Углом между прямой и плоскостью называется любой угол между прямой и ее проекцией на эту плоскость.

3.Изучение нового материала.

Учитель: В стереометрии наряду с такими углами рассматривается ещё один вид углов – двугранные углы. Вы, наверное, уже догадались какова тема сегодняшнего урока, поэтому откройте тетради, запишите сегодняшнее число и тему урока.

Запись на доске и в тетрадях:

10.12.14.

Двугранный угол.

Учитель : Чтобы ввести понятие двугранного угла, следует напомнить, что любая прямая, проведенная в данной плоскости, разделяет эту плоскость на две полуплоскости (рис.1,а)

Учитель : Представим себе, что мы перегнули плоскость по прямой так, что две полуплоскости с границей оказались уже не лежащими в одной плоскости (рис. 1, б). Полученная фигура и есть двугранный угол. Двугранным углом называется фигура, образованная прямой и двумя полуплоскостями с общей границей, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол, называются его гранями. У двугранного угла две грани, отсюда и название - двугранный угол. Прямая - общая граница полуплоскостей - называется ребром двугранного угла. Запишите определение в тетрадь.

Двугранным углом называется фигура, образованная прямой и двумя полуплоскостями с общей границей, не принадлежащими одной плоскости.

Учитель : В обыденной жизни мы часто встречаемся с предметами, имеющими форму двугранного угла. Приведите примеры.

Ученик : Полураскрытая папка.

Ученик : Стена комнаты совместно с полом.

Ученик : Двускатные крыши зданий.

Учитель : Правильно. И таких примеров огромное количество.

Учитель : Как вы знаете, углы на плоскости измеряются в градусах. Вероятно у вас возник вопрос, а как же измеряются двугранные углы? Это делается следующим образом. Отметим на ребре двугранного угла какую-нибудь точку и в каждой грани из этой точки проведем луч перпендикулярно к ребру. Образованный этими лучами угол называется линейным углом двугранного угла. Сделайте чертёж у себя в тетрадях.

Запись на доске и в тетрадях.

О а, АО а, ВО a , СА BD – двугранный угол, AOB – линейный угол двугранного угла.

Учитель : Все линейные углы двугранного угла равны. Сделайте себе ещё вот такой чертёж.

Учитель : Докажем это. Рассмотрим два линейных угла АОВ и PQR . Лучи ОА и QP лежат в одной грани и перпендикулярны OQ , значит, они сонаправлены. Аналогично лучи ОВ и QR сонаправлены. Значит, AOB = PQR (как углы с сонаправленными сторонами).

Учитель : Ну, а теперь ответ на наш вопрос как же измеряется двугранный угол. Градусной мерой двугранного угла называется градусная мера его линейного угла. Перерисуйте из учебника со страницы 48 изображения острого, прямого и тупого двугранного угла.

4.Закрепление изученного материала.

Учитель : Сделайте чертежи к задачам.

1 . Дано: Δ ABC , АС = ВС, АВ лежит в плоскости α, CD α, С α. Построить линейный угол двугранного угла CABD .

Ученик : Решение: CM AB , DC АВ. CMD - искомый.

2. Дано: Δ ABC , C = 90°, ВС лежит плоскости α, АО α, A α.

Построить линейный угол двугранного угла АВСО.

Ученик : Решение: AB BC , АО ВС, значит, ОС ВС. ACO - искомый.

3 . Дано: Δ ABC , С = 90°, АВ лежит в плоскости α, CD α, С α. Построить линейный угол двугранного угла DABC .

Ученик : Решение: CK AB , DC АВ, DK АВ, значит, DKC - искомый.

4 . Дано: DABC - тетраэдр, DO ABC .Построить линейный угол двугранного угла ABCD .

Ученик : Решение: DM ВС, DO ВС, значит, ОМ ВС; OMD - искомый.

5.Подведение итогов.

Учитель: Что нового вы узнали сегодня на уроке?

Ученики : Что называется двугранным углом, линейным углом, как измеряется двугранный угол.

Учитель : Что повторили?

Ученики : Что называется углом на плоскости; углом между прямыми.

6.Домашнее задание.

Запись на доске и в дневниках: п. 22, №167, №170.