Как доказать существование предела. Предел последовательности и функции

Здесь мы рассмотрим определение конечного предела последовательности. Случай последовательности, сходящейся к бесконечности, рассмотрен на странице «Определение бесконечно большой последовательности» .

Определение .
{ x n } , если для любого положительного числа ε > 0 существует такое натуральное число N ε , зависящее от ε , что для всех натуральных n > N ε выполняется неравенство
| x n - a| < ε .
Предел последовательности обозначается так:
.
Или при .

Преобразуем неравенство:
;
;
.

Открытый интервал (a - ε, a + ε ) называют ε - окрестностью точки a .

Последовательность, у которой существует предел называется сходящейся последовательностью . Также говорят, что последовательность сходится к a . Последовательность, не имеющая предела, называется расходящейся .

Из определения следует, что, если последовательность имеет предел a , что какую бы ε - окрестностью точки a мы не выбрали, за ее пределами может оказаться, лишь конечное число элементов последовательности, или вообще ни одного (пустое множество). А любая ε - окрестность содержит бесконечное число элементов. В самом деле, задав определенное число ε , мы, тем самым имеем число . Так что все элементы последовательности с номерами , по определению, находятся в ε - окрестностью точки a . Первые элементов могут находиться где угодно. То есть за пределами ε - окрестности может находиться не более элементов - то есть конечное число.

Также заметим, что разность вовсе не обязана монотонно стремиться к нулю, то есть все время убывать. Она может стремиться к нулю не монотонно: может то возрастать, то убывать, имея локальные максимумы. Однако эти максимумы, с ростом n , должны стремиться к нулю (возможно тоже не монотонно).

С помощью логических символов существования и всеобщности, определение предела можно записать следующим образом:
(1) .

Определение, что число a не является пределом

Теперь рассмотрим обратное утверждение, что число a не является пределом последовательности.

Число a не является пределом последовательности , если существует такое , что для любого натурального n существует такое натуральное m > n , что
.

Запишем это утверждение с помощью логических символов.
(2) .

Утверждение, что число a не является пределом последовательности , означает, что
можно выбрать такую ε - окрестность точки a , за пределами которой будет находиться бесконечное число элементов последовательности .

Рассмотрим пример . Пусть задана последовательность с общим элементом
(3)
Любая окрестность точки содержит бесконечное число элементов. Однако эта точка не является пределом последовательности, поскольку и любая окрестность точки также содержит бесконечное число элементов. Возьмем ε - окрестность точки с ε = 1 . Это будет интервал (-1, +1) . Все элементы, кроме первого, с четными n принадлежат этому интервалу. Но все элементы с нечетными n находятся за пределами этого интервала, поскольку они удовлетворяют неравенству x n > 2 . Поскольку число нечетных элементов бесконечно, то за пределами выбранной окрестности будет находиться бесконечное число элементов. Поэтому точка не является пределом последовательности.

Теперь покажем это, строго придерживаясь утверждения (2). Точка не является пределом последовательности (3), поскольку существует такое , так что, для любого натурального n , существует нечетное , для которого выполняется неравенство
.

Также можно показать, что любая точка a не может являться пределом этой последовательности. Мы всегда можем выбрать такую ε - окрестность точки a , которая не содержит либо точку 0, либо точку 2. И тогда за пределами выбранной окрестности будет находиться бесконечное число элементов последовательности.

Эквивалентное определение

Можно дать эквивалентное определение предела последовательности, если расширить понятие ε - окрестности. Мы получим равносильное определение, если в нем, вместо ε - окрестности, будет фигурировать любая окрестность точки a .

Определение окрестности точки
Окрестностью точки a называется любой открытый интервал, содержащий эту точку. Математически окрестность определяется так: , где ε 1 и ε 2 - произвольные положительные числа.

Тогда определение предела будет следующим.

Эквивалентное определение предела последовательности
Число a называется пределом последовательности , если для любой ее окрестности существует такое натуральное число N , что все элементы последовательности с номерами принадлежат этой окрестности.

Это определение можно представить и в развернутом виде.

Число a называется пределом последовательности , если для любых положительных чисел и существует такое натуральное число N , зависящее от и , что для всех натуральных выполняются неравенства
.

Доказательство равносильности определений

Докажем, что, представленные выше, два определения предела последовательности равносильны.

    Пусть число a является пределом последовательности согласно первому определению. Это означает, что имеется функция , так что для любого положительного числа ε выполняются неравенства:
    (4) при .

    Покажем, что число a является пределом последовательности и по второму определению. То есть нам нужно показать, что существует такая функция , так что для любых положительных чисел ε 1 и ε 2 выполняются неравенства:
    (5) при .

    Пусть мы имеем два положительных числа: ε 1 и ε 2 . И пусть ε - наименьшее из них: . Тогда ; ; . Используем это в (5):
    .
    Но неравенства выполняются при . Тогда и неравенства (5) выполняются при .

    То есть мы нашли такую функцию , при которой выполняются неравенства (5) для любых положительных чисел ε 1 и ε 2 .
    Первая часть доказана.

    Теперь пусть число a является пределом последовательности согласно второму определению. Это означает, что имеется функция , так что для любых положительных чисел ε 1 и ε 2 выполняются неравенства:
    (5) при .

    Покажем, что число a является пределом последовательности и по первому определению. Для этого нужно положить . Тогда при выполняются неравенства:
    .
    Это соответствует первому определению с .
    Равносильность определений доказана.

Примеры

Здесь мы рассмотрим несколько примеров, в которых требуется доказать, что заданное число a является пределом последовательности. При этом нужно задать произвольные положительное число ε и определить функцию N от ε такую, что для всех выполняется неравенство .

Пример 1

Доказать, что .


(1) .
В нашем случае ;
.


.
Воспользуемся свойствами неравенств . Тогда если и , то
.


.
Тогда
при .
Это означает, что число является пределом заданной последовательности:
.

Пример 2

С помощью определения предела последовательности доказать, что
.

Выпишем определение предела последовательности:
(1) .
В нашем случае , ;
.

Вводим положительные числа и :
.
Воспользуемся свойствами неравенств . Тогда если и , то
.

То есть, для любого положительного , мы можем взять любое натуральное число, большее или равное :
.
Тогда
при .
.

Пример 3


.

Вводим обозначения , .
Преобразуем разность:
.
Для натуральных n = 1, 2, 3, ... имеем:
.

Выпишем определение предела последовательности:
(1) .
Вводим положительные числа и :
.
Тогда если и , то
.

То есть, для любого положительного , мы можем взять любое натуральное число, большее или равное :
.
При этом
при .
Это означает, что число является пределом последовательности :
.

Пример 4

Используя определение предела последовательности доказать, что
.

Выпишем определение предела последовательности:
(1) .
В нашем случае , ;
.

Вводим положительные числа и :
.
Тогда если и , то
.

То есть, для любого положительного , мы можем взять любое натуральное число, большее или равное :
.
Тогда
при .
Это означает, что число является пределом последовательности :
.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Постоянное число а называется пределом последовательности {x n }, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения x n , у которых n>N, удовлетворяют неравенству

|x n - a| < ε. (6.1)

Записывают это следующим образом: или x n → a.

Неравенство (6.1) равносильно двойному неравенству

a- ε < x n < a + ε, (6.2)

которое означает, что точки x n , начиная с некоторого номера n>N, лежат внутри интервала (a- ε, a+ ε), т.е. попадают в какую угодно малую ε-окрестность точки а .

Последовательность, имеющая предел, называется сходящейся , в противном случае - расходящейся .

Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции x n = f(n) целочисленного аргумента n .

Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a . Точка a может принадлежать множеству D(f), а может и не принадлежать ему.

Определение 1. Постоянное число А называется предел функции f(x) при x→ a, если для всякой последовательности {x n } значений аргумента, стремящейся к а , соответствующие им последовательности {f(x n)} имеют один и тот же предел А.

Это определение называют определением предел функции по Гейне, или “на языке последовательностей ”.

Определение 2 . Постоянное число А называется предел функции f(x) при x→ a, если, задав произвольное как угодно малое положительное число ε , можно найти такое δ >0 (зависящее от ε ), что для всех x , лежащих в ε-окрестности числа а , т.е. для x , удовлетворяющих неравенству
0 <
x-a < ε , значения функции f(x) будут лежать в ε-окрестности числа А, т.е. |f(x)-A| < ε.

Это определение называют определением предел функции по Коши, или “на языке ε - δ “.

Определения 1 и 2 равносильны. Если функция f(x) при x → a имеет предел , равный А, это записывается в виде

. (6.3)

В том случае, если последовательность {f(x n)} неограниченно возрастает (или убывает) при любом способе приближения x к своему пределу а , то будем говорить, что функция f(x) имеет бесконечный предел, и записывать это в виде:

Переменная величина (т.е. последовательность или функция), предел которой равен нулю, называется бесконечно малой величиной.

Переменная величина, предел которой равен бесконечности, называется бесконечно большой величиной .

Чтобы найти предел на практике пользуются следующими теоремами.

Теорема 1 . Если существует каждый предел

(6.4)

(6.5)

(6.6)

Замечание . Выражения вида 0/0, ∞/∞, ∞-∞ , 0*∞ , - являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и найти предел такого вида носит название “раскрытие неопределенностей”.

Теорема 2. (6.7)

т.е. можно переходить к пределу в основании степени при постоянном показателе, в частности, ;

(6.8)

(6.9)

Теорема 3.

(6.10)

(6.11)

где e » 2.7 - основание натурального логарифма. Формулы (6.10) и (6.11) носят название первый замечательного предело и второй замечательный предел.

Используются на практике и следствия формулы (6.11):

(6.12)

(6.13)

(6.14)

в частности предел,

Eсли x → a и при этом x > a, то пишут x →a + 0. Если, в частности, a = 0, то вместо символа 0+0 пишут +0. Аналогично если x→ a и при этом xa-0. Числа и называются соответственно предел справа и предел слева функции f(x) в точке а . Чтобы существовал предел функции f(x) при x→ a необходимо и достаточно, чтобы . Функция f(x) называется непрерывной в точке x 0 , если предел

. (6.15)

Условие (6.15) можно переписать в виде:

,

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Если равенство (6.15) нарушено, то говорят, что при x = x o функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R , кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(x o)= f(0) не определено, поэтому в точке x o = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке x o , если предел

,

и непрерывной слева в точке x o, если предел

.

Непрерывность функции в точке x o равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке x o , например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(x o). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если предел существует и не равен f(x o), то говорят, что функция f(x) в точке x o имеет разрыв первого рода, или скачок .

2. Если предел равен +∞ или -∞ или не существует, то говорят, что в точке x o функция имеет разрыв второго рода .

Например, функция y = ctg x при x → +0 имеет предел, равный +∞ , значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x ) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка , называется непрерывной в . Непрерывная функция изображается сплошной кривой.

Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.

Рассмотрим пример Я. И. Перельмана , дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 × 1,5 = 150, а еще через полгода - в 150 × 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 » 237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100 × (1 +1/10) 10 » 259 (ден. ед.),

100 × (1+1/100) 100 » 270 (ден. ед.),

100 × (1+1/1000) 1000 » 271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел

Пример 3.1. Пользуясь определением предела числовой последовательности, доказать, что последовательность x n =(n-1)/n имеет предел, равный 1.

Решение. Нам надо доказать, что, какое бы ε > 0 мы ни взяли, для него найдется натуральное число N, такое, что для всех n N имеет место неравенство |x n -1| < ε.

Возьмем любое e > 0. Так как ; x n -1 =(n+1)/n - 1= 1/n, то для отыскания N достаточно решить неравенство 1/n< e . Отсюда n>1/ e и, следовательно, за N можно принять целую часть от 1/ e , N = E(1/ e ). Мы тем самым доказали, что предел .

Пример 3 .2 . Найти предел последовательности, заданной общим членом .

Решение. Применим теорему предел суммы и найдем предел каждого слагаемого. При n ∞ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему предел частного. Поэтому сначала преобразуем x n , разделив числитель и знаменатель первого слагаемого на n 2 , а второго на n . Затем, применяя теорему предел частного и предел суммы, найдем:

.

Пример 3.3 . . Найти .

Решение. .

Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.

Пример 3 .4 . Найти ().

Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞ . Преобразуем формулу общего члена:

.

Пример 3 .5 . Дана функция f(x)=2 1/x . Доказать, что предел не существует.

Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность { x n }, сходящуюся к 0, т.е. Покажем, что величина f(x n)= для разных последовательностей ведет себя по-разному. Пусть x n = 1/n. Очевидно, что , тогда предел Выберем теперь в качестве x n последовательность с общим членом x n = -1/n, также стремящуюся к нулю. Поэтому предел не существует.

Пример 3 .6 . Доказать, что предел не существует.

Решение. Пусть x 1 , x 2 ,..., x n ,... - последовательность, для которой
. Как ведет себя последовательность {f(x n)} = {sin x n } при различных x n → ∞

Если x n = p n, то sin x n = sin p n = 0 при всех n и предел Если же
x n =2
p n+ p /2, то sin x n = sin(2 p n+ p /2) = sin p /2 = 1 для всех n и следовательно предел . Таким образом, не существует.

Виджет для вычисления пределов on-line

В верхнем окошке вместо sin(x)/x введите функцию, предел которой надо найти. В нижнее окошко введите число, к которому стремится х и нажмите кнопку Calcular, получите искомый предел. А если в окне результата нажмете на Show steps в правом верхнем углу, то получите подробное решение.

Правила ввода функций: sqrt(x)- квадратный корень, cbrt(x) - кубический корень, exp(x) - экспонента, ln(x) - натуральный логарифм, sin(x) - синус, cos(x) - косинус, tan(x) - тангенс, cot(x) - котангенс, arcsin(x) - арксинус, arccos(x) - арккосинус, arctan(x) - арктангенс. Знаки: * умножения, / деления, ^ возведение в степень, вместо бесконечности Infinity. Пример: функция вводится так sqrt(tan(x/2)).

(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0
2) для любой последовательности { x n } , сходящейся к x 0 :
, элементы которой принадлежат окрестности ,
последовательность { f(x n )} сходится к a :
.

Здесь x 0 и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность может быть как двусторонней, так и односторонней.


.

Второе определение предела функции (по Коши)

Число a называется пределом функции f(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0 , на которой функция определена;
2) для любого положительного числа ε > 0 существует такое число δ ε > 0 , зависящее от ε , что для всех x , принадлежащих проколотой δ ε - окрестности точки x 0 :
,
значения функции f(x) принадлежат ε - окрестности точки a :
.

Точки x 0 и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность также может быть как двусторонней, так и односторонней.

Запишем это определение с помощью логических символов существования и всеобщности:
.

В этом определении используются окрестности с равноудаленными концами. Можно дать и эквивалентное определение, используя произвольные окрестности точек.

Определение с использованием произвольных окрестностей
Число a называется пределом функции f(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0 , на которой функция определена;
2) для любой окрестности U(a) точки a существует такая проколотая окрестность точки x 0 , что для всех x , принадлежащих проколотой окрестности точки x 0 :
,
значения функции f(x) принадлежат окрестности U(a) точки a :
.

С помощью логических символов существования и всеобщности это определение можно записать так:
.

Односторонние и двусторонние пределы

Приведенные выше определения универсальны в том смысле, что их можно использовать для любых типов окрестностей. Если, в качестве мы используем левостороннюю проколотую окрестность конечной точки, то получим определение левостороннего предела . Если в качестве окрестности использовать окрестность бесконечно удаленной точки, то получим определение предела на бесконечности.

Для определения предела по Гейне это сводится к тому, что на произвольную, сходящуюся к , последовательность накладывается дополнительное ограничение - ее элементы должны принадлежать соответствующей проколотой окрестности точки .

Для определения предела по Коши нужно в каждом случае преобразовать выражения и в неравенства, используя соответствующие определения окрестности точки.
См. «Окрестность точки ».

Определение, что точка a не является пределом функции

Часто возникает необходимость использовать условие, что точка a не является пределом функции при . Построим отрицания к изложенным выше определениям. В них мы предполагаем, что функция f(x) определена на некоторой проколотой окрестности точки x 0 . Точки a и x 0 могут быть как конечными числами, так и бесконечно удаленными. Все сформулированное ниже относится как к двусторонним, так и к односторонним пределам.

По Гейне .
Число a не является пределом функции f(x) в точке x 0 : ,
если существует такая последовательность { x n } , сходящаяся к x 0 :
,
элементы которой принадлежат окрестности ,
что последовательность { f(x n )} не сходится к a :
.
.

По Коши .
Число a не является пределом функции f(x) в точке x 0 :
,
если существует такое положительное число ε > 0 , так что для любого положительного числа δ > 0 , существует такое x , принадлежащее проколотой δ - окрестности точки x 0 :
,
что значение функции f(x) не принадлежит ε - окрестности точки a :
.
.

Разумеется, если точка a не является пределом функции при , то это не означает, что у нее не может быть предела. Возможно, существует предел , но он не равен a . Также возможен случай, когда функция определена в проколотой окрестности точки , но не имеет предела при .

Функция f(x) = sin(1/x) не имеет предела при x → 0.

Например, функция определена при , но предела не существует. Для доказательства возьмем последовательность . Она сходится к точке 0 : . Поскольку , то .
Возьмем последовательность . Она также сходится к точке 0 : . Но поскольку , то .
Тогда предел не может равняться никакому числу a . Действительно, при , существует последовательность , с которой . Поэтому любое отличное от нуля число не является пределом. Но также не является пределом, поскольку существует последовательность , с которой .

Эквивалентность определений предела по Гейне и по Коши

Теорема
Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство

При доказательстве мы предполагаем, что функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). Точка a также может быть конечной или бесконечно удаленной.

Доказательство Гейне ⇒ Коши

Пусть функция имеет в точке предел a согласно первому определению (по Гейне). То есть для любой последовательности , принадлежащей окрестности точки и имеющей предел
(1) ,
предел последовательности равен a :
(2) .

Покажем, что функция имеет предел в точке по Коши. То есть для любого существует , что для всех .

Допустим противное. Пусть условия (1) и (2) выполнены, но функция не имеет предела по Коши. То есть существует такое , что для любого существует , так что
.

Возьмем , где n - натуральное число. Тогда существует , причем
.
Таким образом мы построили последовательность , сходящуюся к , но предел последовательности не равен a . Это противоречит условию теоремы.

Первая часть доказана.

Доказательство Коши ⇒ Гейне

Пусть функция имеет в точке предел a согласно второму определению (по Коши). То есть для любого существует , что
(3) для всех .

Покажем, что функция имеет предел a в точке по Гейне.
Возьмем произвольное число . Согласно определению Коши, существует число , так что выполняется (3).

Возьмем произвольную последовательность , принадлежащую проколотой окрестности и сходящуюся к . По определению сходящейся последовательности, для любого существует , что
при .
Тогда из (3) следует, что
при .
Поскольку это выполняется для любого , то
.

Теорема доказана.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.