К базальным ядрам относятся. Конечный мозг и базальные ганглии

Базальные (подкорковые) ядра располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. У млекопитающих к базальным ганглиям относятся сильно вытянутое в длину и изогнутое хвостатое ядро и заложенное в толще белого вещества чечевицеобразное ядро. Двумя белыми пластинками оно подразделяется на три части: наиболее крупную, лежащую латерально скорлупу и бледный шар, состоящий из внутреннего и внешнего отделов. Они формируют так называемую стриопаллидарную систему, которая по филогенетическим и функциональным критериям разделяется на древний палеостриатум и неостриатум. Палеостриатум представлен бледным шаром, а неостриатум, состоит из хвостатого ядра и скорлупы, которые объединяются под названием полосатого тела или стриатума. А объединяют их под общим названием «полосатое тело», в связи с тем, что скопление нервных клеток, образующих серое вещество, чередуются с прослойками белого вещества. (Ноздрачева А.Д., 1991)

Базальные ганглии головного мозга человека включает в себя также ограду. Это ядро имеет форму узкой полоски серого вещества. (Покровский, 1997) Медиально она граничит с наружной капсулой, латерально - с капсулой экстрема.

Нейронная организация

Хвостатое ядро и скорлупа имеют сходную нейронную организацию. Они содержат главным образом мелкие нейроны с короткими дендритами и тонкими аксонами, их размер до 20 мк. Кроме мелких, имеется небольшое число (5% от общего состава) относительно крупных нейронов, имеющих разветвленную сеть дендритов и размер около 50 мк.

Рис.2.Базальные ядра конечного мозга (полусхематично)

А - вид сверху B -- вид изнутри C -- вид снаружи 1. хвостатое ядро 2. головка 3. тело 4. хвост 5. таламус 6. подушка таламуса 7. миндалевидное ядро 8. скорлупа 9. наружный бледный шар 10. внутренний бледный шар 11. чечевицеобразное ядро 12. ограда 13. передняя спайка мозга 14. перемычки

В противоположность полосатому телу, бледный шар имеет преимущественно крупные нейроны. Кроме того, имеется значительное количество мелких нейронов, выполняющих, по-видимому, функции промежуточных элементов. (Ноздрачева А.Д., 1991)

Ограда содержит полиморфные нейроны разных типов. (Покровский, 1997)

Функции неостриатума

Функции любых образований головного мозга определяется, прежде всего, их связями с неостриатумом. Базальные ганглии образуют многочисленные связи как между структурами входящими в их состав, так и другими отделами мозга. Эти связи представлены в виде параллельных петель, связывающих кору больших полушарий (двигательную, соматосенсорную, лобную) с таламусом. Информация поступает из вышеперечисленных зон коры, проходит через базальные ядра (хвостатое ядро и скорлупу) и черное вещество в двигательные ядра таламуса оттуда снова возвращается в эти же зоны коры - это скелетомоторная петля. Одна из таких петель управляет движениями лица и рта, контролирует такие параметры движения как сила, амплитуда и направление.

Другая петля - глазодвигательная (окуломоторная) специализируется на движении глаза (Агаджанян Н.А., 2001)

Неостриатум имеет также функциональные связи со структурами, лежащими вне этого круга: с черной субстанцией, красным ядром, вестибулярными ядрами, мозжечком, мотонейронами спинного мозга.

Обилие и характер связей неостриатума свидетельствует о его участии в интегративных процессах (аналитикосинтетическая деятельность, обучение, память, рассудок, речь, сознание), в организации и регуляции движений, регуляции работы вегетативных органов.

Некоторые из этих структур, например, черная субстанция, оказывает модулирующее влияние на хвостатое ядро. Взаимодействие черной субстанции с неостриатумом основано на прямых и обратных связях между ними. Стимуляция хвостатого ядра усиливает активность нейронов черного вещества. Стимуляция черного вещества приводит к увеличению, а его разрушение - уменьшает количество дофамина в хвостатом ядре. Дофамин синтезируется в клетках черной субстанции, а затем со скоростью 0,8 мм в час транспортируется к синапсам нейронов хвостатого ядра. В неостриатуме на 1 г нервной ткани накапливается до 10 мг дофамина, что в 6 раз больше, чем в других отделах переднего мозга, например в бледном шаре и в 19 раз больше, чем в мозжечке. Дофамин подавляет фоновую активность большинства нейронов хвостатого ядра, а это позволяет снять тормозящее действие этого ядра на активность бледного шара. Благодаря дофамину появляется растормаживающий механизм взаимодействия между нео- и палеостриатумом. При недостатке дофамина в неостриатуме, что наблюдается при дисфункции черного вещества, нейроны бледного шара растормаживаются, активизируют спинно-стволовые системы, это приводит к двигательным нарушениям в виде ригидности мышцы.

Во взаимодействиях неостриатума и палеостриатума между собой превалируют тормозные влияния. Если раздражать хвостатое ядро, то большая часть нейронов бледного шара тормозится, часть вначале возбуждается - затем тормозится, меньшая часть нейронов возбуждается.

Неостриатум и палеостриатум принимают участие в таких интегративных процессах как условнорефлекторная деятельность, двигательная активность. Это выявляется при их стимуляции, деструкции и при регистрации электрической активности.

Прямое раздражение некоторых зон неостриатума вызывает поворот головы в сторону, противоположную раздражаемому полушарию, животное начинает двигаться по кругу, т.е. возникает так называемая циркуляторная реакция. Раздражение других областей неостриатума вызывает прекращение всех видов активности человека или животного: ориентировочной, эмоциональной, двигательной, пищевой. При этом в коре мозга наблюдается медленно-волновая электрическая активность.

У человека во время нейрохирургической операции, стимуляция хвостатого ядра нарушает речевой контакт с больным: если больной что-то говорил, то он замолкает, а после прекращения раздражения не помнит, что к нему обращались. В случае травм черепа с симптомами раздражения неостриатума у больных отмечается ретро-, антеро- или ретроантероградная амнезия -выпадение памяти на событие, предшествующее травме. Раздражение хвостатого ядра на разных этапах выработки рефлекса приводит к торможению выполнения этого рефлекса.

Раздражение хвостатого ядра может полностью предотвратить восприятие болевых, зрительных, слуховых и других видов стимуляции. Раздражение вентральной области хвостатого ядра снижает, а дорсальной повышает слюноотделение.

Ряд подкорковых структур так же получает тормозное влияние со стороны хвостатого ядра. Так, стимуляция хвостатых ядер вызывала веретенообразную активность в зрительном бугре, бледном шаре, субталамическом теле, черном веществе и др.

Таким образом, специфичным для раздражения хвостатого ядра является торможение активности коры, подкорки, торможение безусловного и условно-рефлекторного поведения.

Хвостатое ядро имеет наряду с тормозящими структурами и возбуждающие. Поскольку возбуждение неостриатума тормозит движения, вызываемые с других пунктов мозга, то оно может тормозить и движения, вызываемые раздражением самого неостриатума. В то же время, если его возбудительные системы стимулируются изолированно, они вызывают то или иное движение. Если считать, что функции хвостатого ядра заключается в обеспечении перехода одного вида движения в другое, т.е прекращение одного движения и обеспечении нового путем создания позы, условий для изолированных движений, то становится понятным существование двух функций хвостатого ядра - тормозной и возбуждающей.

Эффекты выключения неостриатума показали, что функция его ядер связана с регуляцией тонуса мускулатуры. Так, при повреждении этих ядер наблюдались гиперкинезы типа непроизвольных мимических реакций, тремора, торсионного спазма, хореи (подергивания конечностей, туловища, как при нескоординированном танце), двигательной гиперактивности в форме бесцельного перемещения с места на место.

При повреждении неостриатума имеет место расстройства высшей нервной деятельности, затруднение ориентации в пространстве, нарушение памяти, замедление роста организма. После двустороннего повреждения хвостатого ядра условные рефлексы исчезают на длительный срок, выработка новых рефлексов затрудняется, дифференцировка, если и образуется, то отличается непрочностью, отсроченные реакции выработать не удается.

При повреждении хвостатого ядра общее поведение отличается застойностью, инертностью, трудностью переключений с одной формы поведения на другую. При воздействиях на хвостатое ядро имеют места расстройства движения: двустороннее повреждение полосатого тела ведет к безудержному стремлению движения вперед, одностороннее повреждение приводит к манежным движениям.

Несмотря на большое функциональное сходство хвостатого ядра и скорлупы, все же имеет ряд функций, специфичных для последней. Для скорлупы характерно участие в организации пищевого поведения; ряд трофических нарушений кожи, внутренних органов (например, гепатолентикулярная дегенерация) возникает при дефиците функции скорлупы. Раздражения скорлупы приводят к изменениям дыхания, слюноотделения.

Из фактов о том, что стимуляция неостриатума приводит к торможению условного рефлекса, следовало бы ожидать, что разрушение хвостатого ядра вызовет облегчение условнорефлекторной деятельности. Но оказалось, что разрушение хвостатого ядра также приводит к торможению условнорефлекторной деятельности. Видимо, функция хвостатого ядра не является просто тормозной, а заключается в корреляции и интеграции процессов оперативной памяти. Об этом свидетельствует также тот факт, что на нейронах хвостатого ядра конвергирует информация различных сенсорных систем, так как большая часть этих нейронов полисенсорна. Таким образом, неостриатум является подкорковым интегративным и ассоциативным центром.

Функции палеостриатума (бледного шара)

В отличие от неостриатума, стимуляция палеостриатума не вызывает торможения, а провоцирует ориентировочную реакцию, движение конечностей, пищевое поведение (жевание, глотание). Разрушение бледного шара приводит к гипомимии (маскообразное лицо), гиподинамии, эмоциональной тупости. Повреждение бледного шара вызывает у людей тремор головы, конечностей, причем этот тремор исчезает в покое, во время сна и усиливается при движении конечностей, речь становится монотонной. При повреждении бледного шара имеет место миоклония - быстрые подергивания отдельных мышечных групп или отдельных мышц рук, спины, лица. У человека с дисфункцией бледного шара начало движений становится трудным, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные помахивания рук при ходьбе.

Функции ограды

Ограда тесно связана с островской корой как прямыми, так и обратными связями. Кроме того, прослеживаются связи ограды к лобной, затылочной, височной коре, показаны обратные связи от коры к ограде. Ограда связана с обонятельной луковицей, с обонятельной корой своей и контралатеральной стороны, а также с оградой другого полушария. Из подкорковых образований ограда связана со скорлупой, хвостатым ядром черным веществом, миндалевидным комплексом, зрительным бугром, бледным шаром.

Реакции нейронов ограды широко представлены на соматические, слуховые, зрительные раздражения, причем эти реакции, в основном, возбудительного характера. Атрофия ограды приводит к полной потере способности больного говорить. Стимуляция ограды вызывает ориентировочную реакцию, поворот головы, жевательные, глотательные, иногда рвотные движения. Эффекты раздражения ограды на условный рефлекс, предъявление стимуляции в разные фазы условного рефлекса тормозит условный рефлекс на счет, мало сказывается при условном рефлексе на звук. Если раздражение производилось одновременно с подачей условного сигнала, то условный рефлекс тормозился. Стимуляция ограды во время еды тормозит поведение пищи. При повреждении ограды левого полушария у человека наблюдается расстройство речи.

Таким образом базальные ганглии головного мозга являются интегративными центрами организации моторики, эмоции, высшей нервной деятельности. Причем, каждая из этих функций может быть усилена или заторможена активацией отдельных образований базальных ядер. (Ткаченко, 1994)

кишка мембранный мозг неостриатум

БАЗАЛЬНЫЕ ЯДРА [позднелатинский basalis относящийся к основанию; синоним: центральные узлы, подкорковые ядра (nuclei subcorticales )] - скопления серого вещества в толще больших полушарий головного мозга, участвующие в коррекции программы сложного двигательного акта и формировании эмоционально-аффективных реакций.

Первые сведения по морфологии базальные ядра встречаются в работах Бурдаха (К. F. Burdach), 1819; И. П. Лебедева, 1873; Антона (Anton), 1895; Капперса (С. A. Kappers), 1908, и др. Большой вклад в изучение базальных ядер внесли анатомические и клинико-морфологические исследования С. Фогт и О. Фогта (С. Vogt, О. Vogt), 1920; М. О. Гуревич, 1930; Фуа и Николеско (Foix, Nicolesco), 1925; E. Κ. Сеппа, 1949; T. А. Леонтовича, 1952, 1954; Η. П. Бехтеревой, 1963; Э. И. Канделя, 1961; Л. А. Кукуева, 1968, и др.

Базальные ядра наряду с расположенной по поверхности полушарий корой мозга (cortex cerebri) составляют клеточное вещество конечного мозга (telencephalon). В отличие от коры, имеющей строение экранных центров (характеризующееся определенными цитоархитектоническими признаками: четким выделением слоев, вертикальной ориентацией большинства нейронов, их дифференцировкой по форме и величине в зависимости от их положения в разных слоях), базальные ядра имеют строение ядерных центров, где подобная структурная организация отсутствует. Нередко эти ядра называют подкоркой. К ним относятся: хвостатое ядро (nucleus caudatus), чечевицеобразное ядро (nucleus lentiformis, s. nucleus lenticularis), ограда (claustrum) и миндалевидное тело (corpus amygdaloideum). К базальным ядрам относят также базальный комплекс ядер, расположенный между передним продырявленным веществом (substantia perforata anterior) и передней частью бледного шара (globus pallidus), принадлежащий септальной области (см.).

Сравнительная анатомия

Исследования развития базальных ядер в фило и онтогенезе показали, что хвостатое ядро и скорлупа чечевицеобразного ядра (putamen) развиваются из ганглиозного бугра, расположенного на нижней стенке бокового желудочка. Они представляют единую клеточную массу, которая у высших позвоночных разделяется волокнами передней ножки внутренней капсулы (crus anterior capsulae internae). Ввиду общности происхождения и сохраняющегося в течение всей жизни соединения головки хвостатого ядра и переднего отдела скорлупы полосками серого вещества, чередующимися с белыми пучками волокон внутренней капсулы, хвостатое ядро и скорлупу объединяют под названием «полосатое тело» (corpus striatum), или «стриатум» (striatum). Так как полосатое тело является филогенетически более поздним образованием, чем медиально расположенная часть чечевицеобразного ядра - бледный шар, состоящий из наружного и внутреннего члеников, его называют «неостриатум» (neostriatum), а бледный шар - «палеостриатум» (paleostriatum). Последний в наст, время выделяют в особую морфологическую единицу под названием «паллидум» (pallidum).

Исследования Л. А. Кукуева (1968) показывают, что наружный и внутренний членики бледного шара имеют различное происхождение. Наружный членик, как и скорлупа, развивается из ганглиозного бугра конечного мозга; внутренний членик - из промежуточного мозга и гомологичен энтопедункулярному ядру субприматов (расположено у них в мозге над зрительным трактом, то есть его топография сходна с топографией внутреннего членика бледного шара на ранних стадиях развития зародыша человека). В процессе как филогенетического, так и онтогенетического развития происходит перемещение внутреннего членика по направлению к наружному, в результате чего они сближаются.

Базальные ядра различно представлены в мозге разных классов позвоночных животных. Так, у рыб и амфибий базальные ядра представлены лишь бледным шаром, хвостатое ядро и скорлупа появляются впервые у рептилий, особенно хорошо они развиты у птиц. У млекопитающих (хищных и грызунов) бледный шар представлен единым образованием, у человека он состоит из двух члеников, разделенных прослойкой белого вещества. Размеры полосатого тела уменьшаются по мере развития головного мозга в филогенезе. Из млекопитающих у низших насекомоядных оно составляет 8% от величины всего конечного мозга, у тупайя и полуобезьян -7%, а у обезьян-6%.

В онтогенезе полосатое тело можно дифференцировать в начале 2-го месяца эмбрионального развития. На 3-м месяце развития головка хвостатого ядра вдается в полость бокового желудочка. Латеральнее хвостатого ядра формируется скорлупа, которая вначале нерезко отграничена от остальных частей полушария. Миндалевидное тело занимает особое положение среди базальных ядер; на ранних стадиях эмбрионального развития оно отделяется от полосатого тела, цитологическая дифференцировка происходит в нем позднее, чем в бледном шаре, однако несколько раньше, чем в полосатом теле. Исходя из онто- и филогенетического развития, нельзя его также рассматривать и как измененную, утолщенную часть коры височной доли или как результат ее погружения внутрь и отшнуровывания. При исследовании миндалевидного тела в сравнительно-анатомическом аспекте было выявлено заметное уменьшение его размеров у млекопитающих - от низших насекомоядных, где оно вместе с палеокортексом составляет 31% от всей величины конечного мозга, до человека, в головном мозге которого миндалевидное тело составляет лишь 4% от всей массы конечного мозга. Исследования развития ограды в онто- и филогенезе (И. Н. Филимонов) показали, что ее нельзя считать производным корковой пластинки или связывать по происхождению с полосатым телом. Она представляет собой промежуточное образование между этими основными клеточными массами конечного мозга.

Анатомия

Хвостатое ядро имеет грушевидную форму; его передняя часть утолщена и носит название головки хвостатого ядра (caput nuclei caudati). Она расположена в переднем отделе полушария и выступает в передний рог бокового желудочка (cornu anterius ventriculi lateralis), образуя его стенку снизу и латерально. Кзади от головки хвостатое ядро суживается и этот отдел его называется телом хвостатого ядра (corpus nuclei caudati). Тело хвостатого ядра ограничивает с латеральной стороны центральную часть бокового желудочка (pars centralis ventriculi lateralis) и описывает полукруг над зрительным бугром (thalamus) и чечевицеобразным ядром. Истонченный задний отдел хвостатого ядра, образующий часть крыши нижнего рога бокового желудочка (cornu inferius ventriculi lateralis), образует хвост хвостатого ядра (cauda nuclei caudati). Латеральная поверхность хвостатого ядра прилежит к внутренней капсуле (capsula interna), его медиальный край примыкает к конечной полоске (stria terminalis).

Чечевицеобразное ядро имеет форму клина, основание которого направлено латерально, а верхушка медиально и вниз, примыкая к подбугорной области. Оно лежит латерально и несколько ниже (вентральнее) от хвостатого ядра и зрительного бугра, от которых отделено внутренней капсулой. Спереди и вентрально чечевицеобразное ядро соединяется с головкой хвостатого ядра тонкими полосками серого вещества. Латеральная его поверхность несколько выпуклая и располагается вертикально, гранича с наружной капсулой (capsula externa), которая представляет собой тонкую белую мозговую пластинку, ограниченную латерально серым веществом - оградой (claustrum). Вентральная поверхность чечевицеобразного ядра лежит горизонтально и в средней своей части соединяется с корой в области переднего продырявленного вещества. Две тонкие мозговые пластинки, медиальная и латеральная (laminae medullares medialis et lateralis), разделяют его на три части: наружная часть, более темно окрашенная, называется скорлупой, две другие представляют собой более слабо окрашенные наружный и внутренний членики бледного шара. Ограда является узкой пластинкой серого вещества, которая расположена латеральнее чечевицеобразного ядра и отделена от него наружной капсулой. От коры островка (insula) ограда отделена слоем белого вещества, образующим внешнюю капсулу (capsula extrema).

Миндалевидное тело - это комплекс ядер, расположенных в области крючка парагиппокампальной извилины (uncus gyri parahippocampalis), хорошо дифференцированных и отличающихся друг от друга цитологически и цитоархитектонически (см. Амигдалоидная область).

Гистология

Хвостатое ядро и скорлупа сходны по гистологическому строению. Серое вещество этих ядер состоит из двух видов клеточных элементов: малых и крупных клеток. Малые клетки, величиной до 15-20 мкм, имеющие короткие дендриты и тонкие аксоны, обладают нежной зернистостью и большим ядром с ядрышком. Крупные клетки, размерами до 50 мкм, в основном треугольные и полигональные, ядро их часто расположено эксцентрично, в протоплазме имеются хроматиновые зернышки и по соседству с ядром большое количество желтого липоидного пигмента. Эти клетки в норме окружены сателлитами. Отношение крупных клеток к малым в хвостатом ядре и скорлупе в среднем составляет 1: 20. Как малые, так и крупные клетки имеют длинные аксоны, прослеживаемые к другим глубоким структурам мозга.

Рис. 1. Схема главных связей экстрапирамидальной системы (по С. и О. Фогт): 7 -cortex prefrontalis; 2 - tractus frontothalamicus; 3 - nucleus caudatus; 4 - thalamus; 5 -nucleus medialis thalami; 6 и 25 - nucleus ventralis thalami; 7 -nucleus campi Forell (BNA); 8 - nucleus subthalamicus; 9 -decussatio Foreli (BNA); 10 - nucleus ruber; 11 - substantia nigra; 12 - comissura post.; 13 - nucleus Darkschewitschi; 14 - nucleus interstitialis; 15 - pedunculi cerebelli superiores (tractus cerebellotegmentalls); 16 - cerebellum; 17 - nucleus dentatus; 18 - pedunculi cerebelli medii; 19 - nucleus vestibularis sup.; 20 - canalis semicirculatis; 21 - nucleus vestibularis lat.; 22 - fasciculus longitudinalis medius; 23 - fasciculus rubrospinalis; 24 - crus cerebri; 26 - globus pallidus; 27 - putamen; 28 - area gigantopyramidalis; 29 - capsula interna.

Определенные взаимоотношения между клеточными элементами и волокнами позволили Фогту (О. Vogt) указать на сходство строения полосатого тела с корой. В хвостатом ядре под эпендимой располагается зона, бедная волокнами; наружная часть этой зоны бедна ганглиозными клетками, внутренняя ими более богата. Глубже находится слой тангенциальных волокон, содержащий небольшое количество ганглиозных клеток. На основании этого Фогтом была разработана схема структурнофункциональной организации полосатого тела (цветной рис. 1): стриопетальные волокна оканчиваются на малых клетках, тесно связанных между собой и с большими клетками, от которых уже начинаются стриофугальные волокна. В малых клетках фибриллы не дифференцированы, в больших - распределены пучками. Миелиновых волокон в полосатом теле мало, большая часть их возникает в самом полосатом теле и служит для соединения с паллидумом; между пучками миелиновых волокон располагается густая сеть безмиелиновых. Богатая сеть нейроглии окружает нервные клетки и нервные волокна. В паллидуме имеются клетки только очень крупные, различной формы - пирамидные, веретенообразные, муль-типолярные с длинными дендритами (цветные рис. 2 и 3). В протоплазме много хроматофильных глыбок. Поверхность клеток покрыта петлеобразными концевыми тельцами - окончаниями безмиелиновых волокон, окружающих клетки и миелиновые волокна. Миелиновых волокон много больше, чем серого вещества; этим объясняется бледный цвет ядра.

Кровоснабжение базальных ядер осуществляется главным образом от средней мозговой артерии (a. cerebri media), ветвями, идущими к полосатому телу (rr. striati). Ветви передней мозговой артерии (a. cerebri anterior) также принимают участие в кровоснабжении базальных ядер. Все базальные ядра, особенно полосатое тело, очень богаты капиллярами; распределение капилляров в полосатом теле напоминает распределение в коре; при поражениях сосудов мозга в полосатом теле особенно часто появляются очаги размягчения.

Связи базальных ядер

Афферентные волокна полосатое тело получает от зрительного бугра, от ядер подбугорья, окружающих III желудочек, из покрышки среднего мозга (tegmentum mesencepnali) и от черного вещества (substantia nigra). Эти волокна заканчиваются около малых клеток полосатого тела, от которых аксоны преимущественно идут к большим клеткам, а уже от этих последних волокна идут в паллидум в составе стрио-паллидарного пучка (fasciculus striopallidalis). Волокна хвостатого ядра пересекают внутреннюю капсулу, входят в скорлупу, а затем, пронизывая мозговую пластинку, проникают в паллидум. Из скорлупы, от ее крупных клеток, волокна через мозговую пластинку также входят в паллидум. Последний является главным местом, куда направляются волокна от хвостатого ядра и скорлупы. Некоторые авторы не отрицают возможности существования длинных волокон, идущих непосредственно из скорлупы в ствол, не прерываясь в паллидуме. Афферентные волокна, направляющиеся в паллидум, состоят из волокон, идущих: 1) непосредственно от коры; 2) из коры через зрительный бугор; 3) от полосатого тела; 4) от центрального серого вещества (substantia grisea centralis) промежуточного мозга; 5) от крыши (tectum) и покрышки (tegmentum) среднего мозга; 6) от черного вещества.

Эфферентные волокна базальных ядер отходят от бледного шара. Главный пучок, выходящий из него,- лентикулярная петля (ansa lenticularis); ее волокна начинаются в хвостатом ядре, принимают участие в образовании мозговых пластинок (laminae medullares). Петля прерывается в бледном шаре. Волокна, выходящие из бледного шара, пересекают внутреннюю капсулу; на границе с ножками мозга в подбугорье они рассыпаются веерообразно и заканчиваются в переднем и латеральном ядрах зрительного бугра, в подбугорье (hypothalamus), черном веществе, подбугорном ядре (nucleus subthalamicus) и красном ядре (nucleus ruber). Часть волокон идет в составе переднего перекреста покрышки (decussatio tegmentalis anterior) на противоположную сторону, где заканчивается в одноименных образованиях. Другой пучок, выходящий из бледного шара, - лентикулярный пучок (fasciculus lenticularis). Этот пучок располагается под zona incerta, включает волокна, идущие к подбугорному ядру (вокруг которого образуют сумку), к зрительному бугру, красному ядру, ядру нижней оливы (nucleus olivaris), сетчатому веществу (formatio reticularis), четверохолмию , перивентрикулярным ядрам. Часть волокон через передний перекрест покрышки переходит на противоположную сторону и заканчивается в тех же образованиях. Описаны пути, соединяющие полосатое тело с областью воронки (infundibulum) и располагающиеся над zona incerta. От красного ядра, четверохолмия начинаются периферические Экстрапирамидные волокна (tractus rubrospinalis, tractus tectospinalis). Точных данных о связи ограды и миндалевидного тела пока нет. В литературе имеются указания на связь у животных ограды с волокнами из наружной сумки, происходящими из пириформной области, на ее связь с миндалевидным телом противоположной области и вентральной областью промежуточного мозга. Установлено также, что ограда связана с корой островка. Связи миндалевидного тела - см. Амигдалоидная область .

Физиология базальных ядер

Рис. Основные афферентные и эфферентные связи (обозначены стрелками) базальных ядер с другими системами мозга (I, II, IV - по Бьюси; III - по Глису): I - связи из моторной и премоторной зон (поля 4, 4S, 6,8, 24) коры мозга к хвостатому ядру и скорлупе; II - связи базальных ядер с ядрами зрительного бугра; III - связи между отдельными базальными ядрами и между базальными ядрами и моторной и премоторной зонами коры; IV - связи базальных ядер с черной субстанцией и красным ядром. С. N. (С - по Глису) - nuci, caudatus; V. А. (Nva - по Глису) - nuci, ventralis ant. thalami; V. L.- nuci, lateralis thalami; V. P.- nuci, ventralis post, thalami; С. М.- nuci, medialis thalami; R. N.- nuci, ruber; S. N.- substantia nigra; C. e.- corpus callosum; F - fornix; Na - nuci. ant. thalami; Tr. o.- tractus opticus; P - putamen; Pi - globus pallidus (внутренний членик); Pe - globus pallidus (наружный членик); Ca - comissura ant.; Th - thalamus; G. P.- globus pallidus; H.- hypothalamus; С. S.- sulcus centralis.

На низших ступенях эволюции (у рыб, рептилий, птиц) базальные ядра являются высшими центрами координации сложного поведения. У человека и высших животных (приматов) сложную интегративную деятельность осуществляет кора больших полушарий, однако роль базальных ядер не уменьшается, а лишь видоизменяется (Е. К. Сепп, 1959).

На ранних стадиях постнатального онтогенеза основная двигательная функция новорожденного - непроизвольные хаотические движения - осуществляется в основном за счет паллидума. С развитием стриатума в более поздние сроки постнатального онтогенеза отмечаются эмоциональные проявления (улыбка) и усложняются статокинетические и тонические функции (ребенок удерживает головку, выполняет содружественные движения). При рассмотрении физиологической роли базальных ядер необходимо исходить из особенностей связей этих ядер с другими отделами головного мозга (Е. П. Кононова, 1959; И. Н. Филимонов, 1959; О. Загер, 1962). Базальные ядра характеризуются богатством афферентных и эфферентных связей с моторными зонами коры головного мозга (рис., /), с ядрами зрительного бугра (рис., II), между базальными ядрами (рис., III), с ядрами среднего мозга (рис., IV), а также с подбугорьем, образованиями лимбической системы и мозжечком. Важное значение для понимания физиологии базальных ядер имеет учет обратных связей, идущих от них в кору головного мозга. Такой широкий спектр связей обусловливает сложность функционального значения базальных ядер (объединяемых в стрио-паллидарную систему) в различных нейрофизиологических и психофизиологических процессах (В. А. Черкес, 1963; Е. Ю. Ривина, 1968; Η. П. Бехтерева, 1971). Установлено участие базальных ядер в следующих нейрофизиологических функциях: а) сложные двигательные акты; б) вегетативные функции; в) безусловные рефлексы; г) сенсорные процессы; д) условнорефлекторные механизмы; е) психофизиологические процессы (эмоции). Роль базальных ядер в осуществлении сложных двигательных актов заключается в том, что они обусловливают миостатические реакции, оптимальное перераспределение мышечного тонуса (благодаря модулирующим влияниям на нижележащие структуры центральной нервной системы, определяющие регуляцию движений).

Так, изучение функции паллидума, проведенное в условиях хронического опыта, позволило установить его важную роль в протекании сложных безусловных рефлексов различной биологической, направленности -половых, пищевых, оборонительных и др.

Методом прямой электростимуляции паллидума показана легкость воспроизведения моторных и биоэлектрических проявлений эпилептиформных реакций тонического типа. Среди важнейших функций хвостатого ядра и скорлупы следует отметить их тормозящее влияние на паллидум [Тилни и Рили (F. Tilney, H. А. Riley), 1921; Пейпс (J. W. Papez), 1942; А. М. Гринштейн, 1946, и др.]. Эффекты выключения неостриатума (полосатое тело) отражаются на функциональной активности паллидарных и среднемозговых центров (черная субстанция, ретикулярная формация ствола). Происходит их растормаживание, что сопровождается изменением мышечного тонуса и появлением гиперкинезов (см.). Многочисленные исследования влияния хвостатого ядра на условнорефлекторную деятельность и на целенаправленные движения свидетельствуют как о тормозящем, так и об облегчающем характере этих влияний, что привело к заключению о наличии двух восходящих активирующих систем: неостриарной и ретикулярной; неостриарная осуществляет влияния на кору больших полушарий как прямо, так и опосредованно, через ядра зрительного бугра. В базальных ядрах обнаружены явления конвергенции звуковых, зрительных, проприоцептивных импульсов. По-видимому, базальные ядра являются передаточной инстанцией импульсов из ретикулярной формации в кору больших полушарий. Этим объясняются явления дезориентации, хаотической двигательной активности на фоне стимуляции хвостатого ядра и скорлупы. Важное значение полосатое тело имеет в регуляции вегетативных компонентов сложных поведенческих реакций. Раздражение неостриатума сопровождается эмоционально выразительными реакциями (мимические реакции, повышенная двигательная активность). При лечении больных в нейрохирургических клиниках, проводимом с помощью вживленных на длительный срок электродов, показано угнетающее влияние стимуляции хвостатого ядра на выполнение интеллектуальной, речевой деятельности, на состояние памяти (Η. П. Бехтерева, 1971, и др.). Большое значение придают базальные ядра в механизме развития гиперкинезов. При разрушении паллидума или его патологии наблюдается проявление гипертонии мышц, ригидность, гиперкинез. Однако установлено, что развитие гиперкинезов есть результат выпадения функции не отдельного базального ядра, а сопряжено с нарушением функций вентро-медиальных ядер зрительного бугра и центров среднего мозга, регулирующих тонус (В. А. Черкес, 1963; Η. П. Бехтерева, 1965, 1971).

Данные нейрофизиологических и клинико-неврологических исследований функций базальных ядер позволяют заключить, что их физиологическое значение необходимо рассматривать в связи с другими системами мозга. Хартманн и Монаков (Н. Hartmann, К. Monakow, 1960) показали, что во время сложного двигательного акта базальные ядра объединяются непрерывным потоком импульсов, которые распространяются по определенным нейронным кругам: а) зрительный бугор - полосатое тело - зрительный бугор; б) зрительный бугор - кора полушарий - полосатое тело - бледный шар - зрительный бугор.

Функциональные взаимоотношения между базальными ядрами еще до конца не выяснены. Электрофизиологические исследования показали, что контроль полосатого тела над бледным шаром не является только тормозным. В острых опытах на кошках было выявлено также и облегчающее влияние хвостатого ядра на нейронную активность бледного шара, о чем свидетельствует учащение потенциалов действия отдельных элементов бледного шара под влиянием раздражения головки хвостатого ядра.

Изучение вызванных потенциалов в базальных ядрах показало возможность конвергенции возбуждений от различных сенсорных каналов на одном и том же нейроне [Сегундо и Макне (I. P. Segundo, X. Machne), 1956; Альб-Фессар с соавторами (D. Albe-Fessard) с соавт., 1960], и, по их мнению, ни в одной из нейронных групп базальных ядер не представлена соматотопическая локализация.

Большой удельный вес афферентных морфо-функциональных связей позволяет считать, что физиологическая роль базальных ядер не исчерпывается двигательной сферой. Учитывая большое значение обратных связей и тесное взаимодействие базальных ядер с другими системами мозга, можно прийти к заключению, что роль базальных ядер заключается в сличении различных афферентных воздействий для выполнения конечной двигательной задачи. Исходя из концепции П. К. Анохина о функциональной системе (1968), можно считать, что базальные ядра участвуют в формировании афферентного синтеза, в коррекции программы сложного двигательного акта и в оценке результатов действия. Кроме того, функциональное состояние базальных ядер отражается и на других функциях головного мозга, особенно при формировании эмоционально-аффективных реакций.

Библиогр. Анохин П. К. Биология и нейрофизиология условного рефлекса, М., 1968, библиогр.; Беритов И. С. Нервные механизмы поведения высших позвоночных животных, М., 1961, библиогр.; Бехтерева Η. П. Нейрофизиологические аспекты психической деятельности человека, Л., 1971, библиогр.; Беляев Ф. П. Подкорковые механизмы сложных двигательных рефлексов, Д., 1965, библиогр.; Гранит Р. Электрофизио-логическое исследование рецепции, пер. с англ., М., 1957, библиогр.; К о г а н А. Б. Электрофизиологическое исследование центральных механизмов некоторых сложных рефлексов, М., 1949, библиогр.; Рожанский Н. А. Очерки по физиологии нервной системы, JI., 1957, библиогр.; Сепп Е. К. История развития нервной системы позвоночных. М., 1959, библиогр.; Суворов Η. Ф. Центральные механизмы сосудистых нарушений, JI., 1967, библиогр.; Филимонов И. Н. Филогенез и онтогенез нервной системы, Многотомн. руководство по неврол., под ред. Н. И. Гращенкова, т. 1, кн. 1, с. 9, М., 1959; Черкес В. А. Очерки по физиологии базальных ганглиев головного мозга, Киев, 1963, библиогр.; А 1 b е-Fessard D., Oswaldo-Cruz E. a. Rocha-M iranda С. Activity 6voqu6es dans le noyau caude du chat en rSponse h des types divers d’aff6rences, Electroenceph. clin. Neurophysiol., v. 12, p. 405, 1960; B u с у Р. С. The basal ganglia, the thalamus and hypothalamus, в кн.: Physiol, basis med. pract., ed. by С. H. Best, p. 144, Baltimore, 1966, bibliogr.; Clara M. Das Nervensystem des Menschen, Lpz., 1959, Bibliogr.; The diseases of the basal ganglia, ed. by T. J. Putnam a. o., Baltimore, 1942, bibliogr.

H. H. Боголепов, E. П. Кононова; Ф. П. Ведяев (физ.).

Базальные ядра представляют собой скопления серого вещества в виде ядер или узлов, расположенных в каждом из полушарий в толще белого вещества, латеральнее и несколько книзу от боковых желудочков, ближе к основанию мозга.

Скопления серого вещества в связи с их положением получили название базальных ядер, nuclei basales. Второе их название подкорковые узлы, noduli subcorticales.

К ним в каждом полушарии относятся: полосатое тело , которое включает в себя хвостатое и чечевицеобразное ядра; ограду и миндалевидное тело (комплекс).

Полосатое тело, corpus striatum, получило свое название в связи с тем, что на горизонтальных и фронтальных срезах головного мозга оно имеет вид чередующихся полос серого и белого вещества. Полосатое тело состоит из хвостатого и чечевицеобразного ядер, которые соединены между собой при помощи тонких перемычек серого вещества.

Хвостатое ядро , nucleus caudatus, располагается кпереди от таламуса, от которого его отделяет (видно на горизонтальном разрезе) полоска белого вещества – колено внутренней капсулы, и кпереди и медиально от чечевицеобразного ядра, от которого отделяется передней ножкой внутренней капсулы. Передний отдел ядра утолщен и образует головку, caput, которая составляет латеральную стенку переднего рога бокового желудочка. Располагаясь в лобной доле, головка хвостатого ядра внизу примыкает к переднему продырявленному веществу. В этом месте головка хвостатого ядра соединяется с чечевицеобразным ядром. Суживаясь кзади и кверху, головка продолжается в более тонкое тело, corpus, которое лежит в области дна центральной части бокового желудочка и как бы перекидывается через таламус, отделяясь от него терминальной полоской белого вещества. Задний отдел хвостатого ядра – хвост, cauda, постепенно истончается, изгибается книзу и кпереди и участвует в образовании верхней стенки нижнего рога бокового желудочка и достигает миндалевидного тела, лежащего в толще височного полюса (кзади от переднего продырявленного вещества).

Чечевицеобразное ядро , nucleus lentiformis, получившее свое название за сходство с чечевичным зерном, находится кпереди и латеральнее таламуса, и кзади и латеральнее хвостатого ядра. От таламуса чечевицеобразное ядро отделяет задняя ножка внутренней капсулы. От хвостатого ядра чечевицеобразное ядро отделяется передней ножкой внутренней капсулы. Нижняя поверхность переднего отдела чечевицеобразного ядра прилежит к переднему продырявленному веществу и соединяется здесь с головкой хвостатого ядра. На горизонтальном и фронтальном разрезах головного мозга чечевицеобразное ядро имеет форму треугольника с закругленным основанием. Вершина его направлена медиально к колену внутренней капсулы, находящемуся на границе таламуса и головки хвостатого ядра, а основание обращено к основанию островковой доли мозга.

Две параллельные вертикальные прослойки белого вещества, расположенные почти в сагиттальной плоскости, делят чечевицеобразное ядро на три части. Наиболее латерально лежит скорлупа, putamen, имеющая более темную окраску. Медиальнее скорлупы расположены две светлые мозговые пластинки, которые объединяют под названием «бледный шар», globus pallidus.

Медиальную пластинку называют медиальным бледным шаром, globus pallidus medialis, латеральную – латеральным бледным шаром, globus pallidus lateralis.

Хвостатое ядро и скорлупа относятся к филогенетически более новым образованиям – neostriatum. Бледный шар является более старым образованием – paleostriatum.

Ограда, claustrum, расположена в белом веществе, между скорлупой и корой островковой доли. Ограда имеет вид тонкой вертикальной пластинки серого вещества толщиной до 2 мм. От скорлупы ее отделяет прослойка белого вещества – наружная капсула, capsula externa, от коры островка – такая же прослойка, получившая название «самая наружная капсула», capsula extrema.

Миндалевидное тело, corpus amygdaloideum, находится в белом веществе нижнемедиальной части височной доли, примерно на 1,5 – 2 см кзади от височного полюса, позади переднего продырявленного вещества. В составе миндалевидного тела различают базально-латеральную часть, pars basolateralis, и корково-медиальную часть, pars corticomedialis. В последней части выделяют также переднее миндалевидное поле, area amygdaloidea anterior.

Базальные ядра включают хвостатое ядро, чечевицеобразное ядро, ограду, миндалевидное тело и прилежащее ядро.

Самым крупным из этих ядер является хвостатое ядро (п. caudatus). Оно вытянуто в ростро-каудальном направлении (спереди назад) и имеет С-образную форму (рис. 9.1).

Рис. 9.1.

пунктиром обозначены мозговые желудочки

Утолщенная передняя часть образует головку хвостатого ядра, она переходит в тело и заканчивается хвостом. На горизонтальном срезе (рис. 9.2, 7-8 ) видны только головка и хвост этого ядра. С медиальной стороны хвостатое ядро примыкает к таламусу, отделяясь от него конечной полоской (см. рис. 8.1).

Несколько латеральнее и ниже хвостатого ядра расположено чечевицеобразное ядро (п. lentiformis ) (см. рис. 9.1). Тонкими прослойками белого вещества оно делится на три части (рис. 9.2, 9-11). Латеральная часть - это ядро, называемое скорлупой (putamen ). Две медиальные части - это наружный и внутренний сегменты бледного шара (globuspallidus ). Бледный шар светлее скорлупы, так как пронизан многочисленными миелиновыми волокнами.

Чечевицеобразное ядро отделено от хвостатого ядра и таламуса прослойкой белого вещества - внутренней капсулой (capsula interna) (рис. 9.2, 12). Через нее проходят все проекционные волокна полушарий, которые связывают кору большого мозга с нижележащими структурами ЦНС. Сверху восходящие волокна образуют в белом веществе полушарий лучистый венец (corona radiata ), а книзу волокна нисходящих проводящих путей в виде компактных пучков направляются в ножки среднего мозга.

Еще латеральнее скорлупы, между ней и островковой корой (см. ниже) лежит полоска серого вещества - ограда (claustrum).

Хвостатое ядро, бледный шар и скорлупа на разрезе выглядят как чередующиеся полоски серого и белого вещества. Из-за этого они были объединены под общим названием «полосатое тело» (corpus striatum). При изучении клеточного состава и характера связей базальных ганглиев выяснилось, что бледный шар является филогенетически более древним образованием и значительно отличается от хвостатого ядра и скорлупы. В связи с этим бледный шар (globus paUidus) выделяют из полосатого тела как отдельную единицу - паллидум. Филогенетически более молодые хвостатое ядро и скорлупу принято называть неостриатум , или просто стри- атум. Вместе они образуют стриопаллидарную систему , имеющую очень обширные связи.

Рис. 9.2.

комиссуры свода:

  • 1 - продольная срединная щель; 2 - лобный полюс; 3 - затылочный полюс;
  • 4 - колено мозолистого тела; 5 - полость прозрачной перегородки; 6 - пластина прозрачной перегородки; 7-8 - головка (7) и хвост (8) хвостатого ядра;
  • 9 - скорлупа; 10 - ограда; 11 - наружный и внутренний сегменты бледного шара;
  • 12 - внутренняя капсула; 13-14 - передний (13) и задний (14) рога бокового желудочка; 15 - III желудочек; 16 - островковая доля; 17 - мамилло-таламический пучок; 18 - комиссура свода; 19 - валик мозолистого тела; 20 - гиппокамп;
  • 21 - бахромка гиппокампа; 22 - таламус

Основные афференты стриопаллидарной системы получает стриатум. Это волокна от коры больших полушарий, в основном от зоны кожно- мышечной чувствительности и двигательной зоны (поля 1-4; см. рис. 9.9) и лобной доли в целом. Также сюда приходят дофаминергические волокна от компактной части черной субстанции, волокна от мозжечка и от неспецифических таламических ядер. Большинство эфферентов стри- атума идет к бледному шару. Часть волокон направляется к ретикулярной части черной субстанции. Есть и менее значительные связи с различными двигательными структурами.

Бледный шар получает основные афференты от стриатума и, кроме того, от субталамуса. Эфференты паллидума идут к таламическим ядрам VA, VL (двигательные проекционные ядра), а также они направляются к субталамусу и ядрам поводков в эпиталамусе.

Основные функции стриопаллидарной системы связаны с управлением движениями. Наряду с мозжечком она является крупнейшим подкорковым двигательным центром. При этом если мозжечок связан с регуляцией конкретных параметров выполняемых движений (амплитудой мышечных сокращений, их согласованностью при одновременной реализации и т.п.), то стриопаллидарная система рассматривается как область, управляющая запуском движений и содержащая информацию о двигательных программах - последовательных комплексах движений. Действительно, при запуске движений активация нервных клеток наблюдается сначала в ассоциативной лобной коре, затем в стриатуме и бледном шаре, премоторной коре и лишь затем - в моторной коре больших полушарий и мозжечке. Как и мозжечок, структуры стриопаллидарной системы участвуют в двигательном обучении и превращении исходно произвольных (т.е. выполняемых иод контролем сознания) движений в автоматизированные. При повреждении, например, стриатума наблюдается запуск патологических движений - высокоамплитудных подергиваний рук (хорея), скручиваний туловища (атетоз). Проявления паркинсонизма (тремор и т.п.) также связаны в основном с нарушением влияния черной субстанции на хвостатое ядро.

Миндалевидное тело (corpus amygdaloideum ) - сферическое образование, располагающееся под скорлупой около внутренней части переднего отдела височной коры (см. рис. 9.1, 4). Амигдала (миндалина) соприкасается с хвостом хвостатого ядра, который, закручиваясь, заходит в височные доли. Она имеет многочисленные связи с корой больших полушарий, гипоталамусом, обонятельными мозговыми структурами. Амигдала входит в Л С мозга и играет важнейшую роль в деятельности системы потребностей и эмоций (в частности, в регуляции проявлений агрессивности, страха и др.). Повреждение миндалины часто ведет к глубоким изменениям психики, депрессивным и маниакальным состояниям.

Прилежащее ядро (п. accumbens ) расположено в вентроростральной области базальных ганглиев, перед бледным шаром под головкой хвостатого ядра (см. рис. 9.1, 6). Это ядро является важнейшим центром положительного подкрепления и ключевой областью мезолимбического пути (см. параграф 6.6). Главные афференты аккумбенс получает от лобной ассоциативной коры, амигдалы и вентральной тегментальной области. Эфференты от этого ядра идут к бледному шару, оттуда к ядру MD таламуса, которое дает проекции на лобную ассоциативную кору. Большинство психических процессов, связанных с получением удовольствия (и обучением, происходящим на фоне этого удовольствия), базируются на активации аккумбенса.

Подкорковыми или базальными ядрами называют скопления серого вещества в толще нижней и боковых стенок больших полушарий. К ним относятся полосатое тело, бледный шар и ограда .

Полосатое тело состоит из хвостатого ядра и скорлупы . К нему идут афферентные нервные волокна от двигательных и ассоциативных зон коры, таламуса, черной субстанции среднего мозга. Связь с черной субстанцией осуществляется с помощью дофаминергических синапсов. Выделяющийся в них дофамин тормозит нейроны полосатого тела. Кроме того, сигналы от полосатого тела поступают от мозжечка, красных и вестибулярных ядер. От него аксоны нейронов идут к бледному шару. В свою очередь, от бледного шара эфферентные пути идут к таламусу и двигательным ядрам среднего мозга, т.е. красному ядру и черной субстанции. Полосатое тело оказывает на нейроны бледного шара преимущественно тормозящее влияние. Основная функция подкорковых ядер – регуляция движения. Кора посредством подкорковых ядер организует и регулирует дополнительные, вспомогательные движения, необходимые для правильного выполнения основного двигательного акта или облегчающие его. Это, например, определенное положение туловища и ног при выполнении работы руками. При нарушении функции подкорковых ядер вспомогательные движения становятся либо чрезмерными, либо полностью отсутствуют. В частности, при болезни Паркинсона или дрожательном параличе , полностью исчезает мимика, и лицо становится маскообразным, ходьба осуществляется мелкими шажками. Больные с рудом начинают и оканчивают движения, выражен тремор конечностей. Тонус мышц повышается. Возникновение болезни Паркинсона обусловлено нарушением проведения нервных импульсов от черной субстанции к полосатому телу через дофаминергические синапсы, обеспечивающие эту передачу (L-DCFA).

С поражением полосатого тела и гиперактивностью бледного шара связаны заболевания с избыточными движениями, т.е. гиперкинезы. Это подергивания мышц лица, шеи, туловища, конечностей. А также двигательная гиперактивность в виде бесцельного перемещения. Например, она наблюдается при хорее .

Кроме этого, полосатое тело принимает участие в организации условных рефлексов, процессах памяти, регуляции пищевого поведения.

Общий принцип организации движения.

Таким образом, за счет центров спинного, продолговатого, среднего мозга, мозжечка, подкорковых ядер организуются бессознательные движения. Сознательные осуществляются тремя путями:

    С помощью пирамидных клеток коры и нисходящих пирамидных трактов. Значение этого механизма небольшое.

    Через мозжечок.

    Посредством базальных ядер.

Для организации движений особое значение имеют афферентные импульсы спинальной двигательной системы. Восприятие напряжения мышц осуществляется мышечными веретенами и сухожильными рецепторами. Во всех мышцах имеются короткие клетки веретенообразной формы. Несколько таких веретен заключены в соединительно-тканную капсулу. Поэтому их называют интрафузальными . Существует два типа интрафузальных волокон: волокна с ядерной цепочкой и волокна с ядерной сумкой . Последние толще и длиннее первых. Эти волокна выполняют различные функции. Через капсулу к мышечным веретенам проходит толстое афферентное нервное волокно, относящее к группе 1А. После входа в капсулу оно разветвляется, и каждая веточка образует спираль вокруг центра ядерной сумки интрафузальных волокон. Поэтому такое окончание называется аннулоспиральным . На периферии веретена, т.е. его дистальный отделах находятся вторичные афферентные окончания. Кроме того, к веретенам подходят эфферентные волокна от мотонейронов спинного мозга. При их возбуждении происходит укорочение веретен. Это необходимо для регуляции чувствительности веретен к растяжению. Вторичные афферентные окончания также являются рецепторами растяжения, но их чувствительность меньше чем аннулоспиральных. В основном их функция заключается в контроле степени напряжения мышц при постоянном тонусе экстрафузальных мышечных клеток.

В сухожилиях находятся сухожильные органы Гольджи . Они образованы сухожильными нитями, отходящими от нескольких экстрафузальных, т.е. рабочих мышечных клеток. На этих нитях располагаются разветвления миелиновых афферентных нервов группы 1Б.

Мышечных веретен относительно больше в мышцах отвечающих за тонкие движения. Рецепторов Гольджи меньше чем веретен.

Мышечные веретена воспринимают в основном изменение длины мышцы. Рецепторы сухожилий – ее напряжение. Импульсы от этих рецепторов по афферентным нервам поступают в двигательные центры спинного мозга, а по восходящим путям – к мозжечку и коре. В результате анализа пропреорецепторных сигналов в мозжечке происходит непроизвольная координация сокращений отдельных мышц и мышечных групп. Она осуществляется при посредстве центров среднего и продолговатого мозга. Обработка сигналов корой приводит к возникновению мышечного чувства и организации произвольных движений через пирамидные тракты, мозжечок и подкорковые ядра.

Лимбическая система .

К лимбической системе относятся такие образования древней и старой коры, как обонятельные луковицы, гиппокамп, поясная извилина, зубчатая фасция, парагиппокампальная извилина, а также подкорковое миндалевидное ядро и переднее таламическое ядро. Лимбической эта система структур мозга называется, потому что они образуют кольцо (лимб) на границе ствола мозга и новой коры. Структуры лимбической системы имеют многочисленные двусторонние связи между собой, а также с лобными, височными долями коры и гипоталамусом.

Благодаря этим связям она регулирует и выполняет следующие функции:

    Регуляция вегетативных функций и поддержание гомеостаза . Лимбическую систему называют висцеральным мозгом , так как она осуществляет тонкую регуляцию функций органов кровообращения, дыхания, пищеварения, обмен веществ и т.д. Особое значение лимбической системы состоит в том, что она реагирует на небольшие отклонения параметров гомеостаза. Она влияет на эти функции через вегетативные центры гипоталамуса и гипофиз.

    Формирование эмоций . При операциях на мозге было установлено, что раздражение миндалевидного ядра вызывает появление у пациентов беспричинных эмоций страха, гнева, ярости. При удалении миндалевидного ядра у животных, полностью исчезает агрессивное поведение (психохирургия). Раздражение некоторых зон поясной извилины ведет к возникновению немотивированной радости или грусти. А так как лимбическая система участвует и в регуляции функций висцеральных систем, то все вегетативные реакции, возникающие при эмоциях (изменение работы сердца, кровяного давления, потоотделения), также осуществляются ею.

    Формирование мотиваций. Лимбическая система участвует в возникновении и организации направленности мотиваций. Миндалевидное ядро регулирует пищевую мотивацию. Некоторые его области тормозят активность центра насыщения и стимулируют центр голода гипоталамуса. Другие действуют противоположным образом. За счет этих центров пищевой мотивации миндалевидного ядра формируется поведение на вкусную и невкусную пищу. В нем же есть отделы, регулирующие половую мотивацию. При их раздражении возникает гиперсексуальность и выраженная половая мотивация.

    Участие в механизмах памяти. В механизмах запоминания особая роль принадлежит гиппокампу. Во-первых, он классифицирует и кодирует всю информацию, которая должна быть заложена в долговременной памяти. Во-вторых, обеспечивает извлечение и воспроизведение нужной информации в конкретный момент. Предполагают, что способность к обучению определяется врожденной активностью соответствующих нейронов гиппокампа.

В связи с тем, что лимбической системе принадлежит важная роль в формировании мотиваций и эмоций, при нарушениях ее функций возникают изменения психоэмоциональной сферы. В частности, состояние тревожности и двигательного возбуждения. В этом случае назначают транквилизаторы , тормозящие образование и выделение в межнейронных синапсах лимбической системы серотонина. При депрессии применяются антидепрессанты , усиливающие образование и накопление норадреналина. Предполагают, что шизофрения, проявляющаяся патологией мышления, бредом, галлюцинациями, обусловлена изменениями нормальных связей между корой и лимбической системой. Это объясняется усилением образования дофина в пресинаптических окончаниях дофаминергических нейронов. Аминазин и другие нейролептики блокируют синтез дофамина и вызывают ремиссию. Амфетамины (фенамин) усиливают образование дофамина и могут вызвать возникновение психозов.