История открытия закона всемирного тяготения - описание, особенности и интересные факты. Факт девятый: аномалии гравитации

Структура поля силы тяжести никак не исходит из величины массы планеты. Наоборот, именно интенсивность этого гравитационного поля (как одного из вида гравитации), выраженная величиной полевого заряда (ускорения свободного падения), формирует массу планеты.

И это ещё раз подчёркивает абсурдность выражения силы тяжести формулой, называемой в традиционной физической теории формулой всемирной гравитации, через равенство: Fт. = m*g= G*(m*Mз)/R 2 , где «R» - радиус Земли плюс высота тела над поверхностью Земли, а Мз - масса Земли, но фактически обозначающая её вес (что опять абсурдно).

Обратите внимание на то, что кроме определения «массы» Земли из приведённого равенства, выражают из него и заряд поля силы тяжести (ускорение свободного падения) в виде «g=G*Mз/Rз. 2 », называя такую формулу неким самостоятельным выражением для ускорения свободного падения. При этом забывается о том, что ускорение свободного падения выражается, естественно, без всякого учёта масс, исходя из формулы пути падения тела «gt ²/2 » (и g о t ²/4 в физике различения) и - из формулы оборотного маятника (g о=4пи R 2).

На основе абсурдной формулы g=G*Mз/Rз. 2 была выведена соответственно также абсурдная формула Шварцшильда, утверждающая о стремлении звёзд к их сжатию и, в дальнейшем, - к некоему гравитационному коллапсу. Такое абсурдное утверждение привело и к абсурдной теории неких «чёрных дыр». И всё эти несуразности высказываются на фоне фактов уменьшения веса тел при приближении их к центру Земли и - независимости характера падения тел от их массы.

Несмотря на то, что Ньютон в силу его времени и не был знаком с фактом физических полей, он в действительности обозначил всемирную гравитационную структуру, как силовое или наружное проявление всей пространственно-временной космической структуры. Ведь он выявил зависимость величин пространственных зарядов вращения (называемых центростремительным вращательным ускорением для Луны и ускорением свободного падения для Земли) от квадрата радиуса между ними без всякого учёта масс.

Такая структурная пространственная зависимость, выражающая взаимно-центрическое наружно силовое взаимодействие полей и есть законом всемирной гравитации . Но, рассматривая взаимодействия тел, а не полей, обозначающих тела и отдельные заряды, И.Ньютон выразил и закон всемирной гравитации не вращательно и структурно, а линейно и математически: произведением гравитационных зарядов тел (заменённых затем массами).

Эти заряды в законе Кулона - уже электрические заряды, а в опыте Кавендиша - это наружно-молекулярные заряды тел. И вот дальнейшая замена гравитационных зарядов И.Ньютона, обозначающих наружную полевую или пространственную характеристику (в том числе и конкретного тела) на массы, характеризующие внутреннюю полевую характеристику уже исключительно тел, и привела к абсурду равенства «Fт. = m*g= G*(m*Mз)/R 2 ».

Ведь масса (не различаемая фактически в традиционной физике от силы тяжести) - это производное образование от внутреннего молекулярного заряда вещества тела. Т.о., на начальное искажение закона всемирной гравитации, выразившееся в линейном, а не во вращательно структурном рассмотрении силы было наложено искажение уже в виде подмены наружного понятия гравитационного заряда внутренним физическим понятием массы.

Этим и получилось двойное искажение закона всемирной гравитации. В связи с этим он и не имеет никакого отношения к образованию силы тяжести, поскольку, во-первых, всемирная гравитация или тяготение означает вращательно структурное, а не линейное рассмотрение силы. А, во-вторых, и линейное рассмотрение силы выражает не внутреннюю характеристику тел и внутреннее полевое взаимодействие, а - внешнее пространственно-полевое взаимодействие гравитационных зарядов (рассмотрением их вращательной полевой характеристикой, в размерности вращательного ускорения).

И, действительно, сила тяжести, действующая лишь на крупных космических телах, а не в космосе, никак не имеет отношения именно к всемирной или к всеобщей гравитации. Образование силы тяжести, естественно, относится к гравитации, но - уже опосредованно через массу.

При этом и образование силы тяжести, как и любой силы , исходя из сравнения вращательных полевых зарядов самим же Ньютоном, необходимо рассматривать не линейно или линейными векторами, а - вращательно структурно или спиральными векторами. О полевом или сферическом происхождении силы говорит и третий закон Ньютона, как о спиральных векторах действия и противодействия .

Да и сам путь падения тела, переходящий в вектор силы тяжести, - это длина развёрнутой окружности с радиусом, равным дуге полуокружности, описываемой средним радиусом Земли. Т.о., в рассмотрении закона всемирной гравитации, относящегося к окружному взаимно-центрическому полевому пространству и к вращательно-структурному выражению силы, допустили его объединение с линейным выражением силы (например, в законе Кулона и в подобном ему выражении силы наружно-молекулярного взаимодействия свинцовых шаров Г.Кавендишем).

А это выражение силы относится уже к предмассовому переходному пространству (занимающему около 20% от всего наблюдаемого космического объёма) и относится потому к проявлению всемирной гравитационной или наружно силовой структуры , но никак не к закону всемирной гравитации. И затем уже это линейное обозначение силы объединили с выражением силы тяжести (причём не в виде «F=m*g0», а в виде «F=m*g» без различения смысла ускорения свободного падения и смысла понятия массы). Сила же тяжести тем более не относится к закону всемирной гравитации, обозначая лишь непосредственно массовое пространство или пространство масс, занимающее лишь около 5% от всего наблюдаемого космического объёма.

И только в массовом пространстве всемирные сферические линии получают окружное, а затем и прямолинейное искривление. Потому и прямая линия, как это ни странно, означает наибольшее, но - именно пространственное искривление.

Также и И.Ньютон в силу его эпохи усматривал всемирную категорию или всеобщность, исходя лишь из земного окружения, как из указанных пяти процентов. В нынешнее же время космических исследований такое восприятие гравитации и всемирного закона гравитации уже не допустимо.

Эта статья уделит внимание истории открытия закона всемирного тяготения. Здесь мы ознакомимся с биографическими сведениями из жизни ученого, открывшего эту физическую догму, рассмотрим ее основные положения, взаимосвязь с квантовой гравитацией, ход развития и многое другое.

Гений

Сэр Исаак Ньютон - ученый родом из Англии. В свое время много внимания и сил уделил таким науками, как физика и математика, а также привнес немало нового в механику и астрономию. По праву считается одним из первых основоположников физики в ее классической модели. Является автором фундаментального труда «Математические начала натуральной философии», где изложил информацию о трех законах механики и законе всемирного тяготения. Исаак Ньютон заложил этими работами основы классической механики. Им было разработано и интегрального типа, световая теория. Он также внес большой вклад в физическую оптику и разработал множество других теорий в области физики и математики.

Закон

Закон всемирного тяготения и история его открытия уходят своим началом в далекий Его классическая форма - это закон, при помощи которого описывается взаимодействие гравитационного типа, не выходящее за пределы рамок механики.

Его суть заключалась в том, что показатель силы F гравитационной тяги, возникающей между 2 телами или точками материи m1 и m2, отделенными друг от друга определенным расстоянием r, соблюдает пропорциональность по отношению к обоим показателям массы и имеет обратную пропорциональность квадрату расстояния между телами:

F = G, где символом G мы обозначаем постоянную гравитации, равную 6,67408(31).10 -11 м 3 /кгс 2 .

Тяготение Ньютона

Прежде чем рассмотреть историю открытия закона всемирного тяготения, ознакомимся более детально с его общей характеристикой.

В теории, созданной Ньютоном, все тела с большой массой должны порождать вокруг себя особое поле, которое притягивает другие объекты к себе. Его называют гравитационным полем, и оно имеет потенциал.

Тело, обладающее сферической симметрией, образует за пределом самого себя поле, аналогичное тому, которое создает материальная точка той же массы, расположенная в центре тела.

Направление траектории такой точки в поле гравитации, созданным телом с гораздо более большой массой, подчиняется Объекты вселенной, такие как, например, планета или комета, также подчиняются ему, двигаясь по эллипсу или гиперболе. Учет искажения, которое создают другие массивные тела, учитывается с помощью положений теории возмущения.

Анализируя точность

После того, как Ньютон открыл закон всемирного тяготения, его необходимо было проверить и доказать множество раз. Для этого совершались ряды расчетов и наблюдений. Придя к согласию с его положениями и исходя из точности его показателя, экспериментальная форма оценивания служит ярким подтверждением ОТО. Измерение квадрупольных взаимодействий тела, что вращается, но антенны его остаются неподвижными, показывают нам, что процесс наращивания δ зависит от потенциала r -(1+δ) , на расстоянии в несколько метров и находится в пределе (2,1±6,2).10 -3 . Ряд других практических подтверждений позволили этому закону утвердиться и принять единую форму, без наличия модификаций. В 2007 г. данную догму перепроверили на расстоянии, меньшем сантиметра (55 мкм-9,59 мм). Учитывая погрешности эксперимента, ученые исследовали диапазон расстояния и не обнаружили явных отклонений в этом законе.

Наблюдение за орбитой Луны по отношению к Земле также подтвердило его состоятельность.

Евклидово пространство

Классическая теория тяготения Ньютона связана с евклидовым пространством. Фактическое равенство с достаточно большой точностью (10 -9) показателей меры расстояния в знаменателе равенства, рассмотренного выше, показывает нам эвклидову основу пространства Ньютоновской механики, с трехмерной физической формой. В такой точке материи площадь сферической поверхности имеет точную пропорциональность по отношению к величине квадрата ее радиуса.

Данные из истории

Рассмотрим краткое содержание истории открытия закона всемирного тяготения.

Идеи выдвигались и другими учеными, живших перед Ньютоном. Размышления о ней посещали Эпикура, Кеплера, Декарта, Роберваля, Гассенди, Гюйгенса и других. Кеплер выдвигал предположение о том, что сила тяготения имеет обратную пропорцию расстоянию от звезды Солнца и распространение имеет лишь в эклиптических плоскостях; по мнению Декарта, она была последствием деятельности вихрей в толще эфира. Существовал ряд догадок, который содержал в себе отражение правильных догадок о зависимости от расстояния.

Письмо от Ньютона Галлею содержало информацию о том, что предшественниками самого сэра Исаака были Гук, Рен и Буйо Исмаэль. Однако до него никому не удалось четко, при помощи математических методов, связать закон тяготения и планетарное движение.

История открытия закона всемирного тяготения тесно связанна с трудом «Математические начала натуральной философии» (1687). В этой работе Ньютон смог вывести рассматриваемый закон благодаря эмпирическому закону Кеплера, уже бывшему к тому времени известным. Он нам показывает, что:

  • форма движения любой видимой планеты свидетельствует о наличичи центральной силы;
  • сила притяжения центрального типа образует эллиптические или гиперболические орбиты.

О теории Ньютона

Осмотр краткой истории открытия закона всемирного тяготения также может указать нам на ряд отличий, которые выделяли ее на фоне предшествующих гипотез. Ньютон занимался не только публикацией предлагаемой формулы рассматриваемого явления, но и предлагал модель математического типа в целостном виде:

  • положение о законе тяготения;
  • положение о законе движения;
  • систематика методов математических исследований.

Данная триада могла в достаточно точной мере исследовать даже самые сложные движения небесных объектов, таким образом создавая основу для небесной механики. Вплоть до начала деятельности Эйнштейна в данной модели наличие принципиального набора поправок не требовалось. Лишь математические аппараты пришлось значительно улучшить.

Объект для обсуждений

Обнаруженный и доказанный закон в течение всего восемнадцатого века стал известным предметом активных споров и скрупулезных проверок. Однако век завершился общим согласием с его постулатами и утверждениям. Пользуясь расчетами закона, можно было точно определить пути движения тел на небесах. Прямая проверка была совершена в 1798 году. Он сделал это, используя весы крутильного типа с большой чувствительностью. В истории открытия всемирного закона тяготения необходимо выделить особое место толкованиям, введенным Пуассоном. Он разработал понятие потенциала гравитации и Пуассоново уравнение, при помощи которого можно было исчислять данный потенциал. Такой тип модели позволял заниматься исследованием гравитационного поля в условиях наличия произвольного распределения материи.

В теории Ньютона было немало трудностей. Главной из них можно было считать необъяснимость дальнодействия. Нельзя было точно ответить на вопрос о том, как силы притяжения пересылаются сквозь вакуумное пространство с бесконечной скоростью.

«Эволюция» закона

Последующие двести лет, и даже больше, множеством ученых-физиков были предприняты попытки предложить разнообразные способы по усовершенствованию теории Ньютона. Данные усилия окончились триумфом, совершенным в 1915 году, а именно сотворением Общей теории относительности, которую создал Эйнштейн. Он смог преодолеть весь набор трудностей. В согласии с принципом соответствия теория Ньютона оказалась приближением к началу работы над теорией в более общем виде, которое можно применять при наличии определенных условий:

  1. Потенциал гравитационной природы не может быть слишком большим в исследуемых системах. Солнечная система является примером соблюдения всех правил по движению небесного типа тел. Релятивистское явление находит себя в заметном проявлении смещения перигелия.
  2. Показатель скорости движения в данной группе систем является незначительным в сравнении со световой скоростью.

Доказательством того, что в слабом стационарном поле гравитации расчеты ОТО принимают форму ньютоновых, служит наличие скалярного потенциала гравитации в стационарном поле со слабо выраженными характеристиками сил, который способен удовлетворить условия уравнения Пуассона.

Масштаб квантов

Однако в истории ни научное открытие закона всемирного тяготения, ни Общая теория относительности не могли служить окончательной гравитационной теорией, поскольку обе недостаточно удовлетворительно описывают процессы гравитационного типа в масштабах квантов. Попытка создания квантово-гравитационной теории является одной из самых главных задач физики современности.

Со точки зрения квантовой гравитации взаимодействие между объектами создается при помощи взаимообмена виртуальными гравитонами. В соответствии с принципом неопределенности, энергетический потенциал виртуальных гравитонов имеет обратную пропорциональность промежутку времени, в котором он существовал, от точки излучения одним объектом до момента времени, в котором его поглотила другая точка.

Ввиду этого получается, что в малом масштабе расстояний взаимодействие тел влечет за собой и обмен гравитонами виртуального типа. Благодаря данным соображениям можно заключить положение о законе потенциала Ньютона и его зависимости в соответствии обратному показателю пропорциональности по отношению к расстоянию. Наличие аналогии между законами Кулона и Ньютона объясняется тем, что вес гравитонов равняется нулю. Это же значение имеет и вес фотонов.

Заблуждение

В школьной программе ответом на вопрос из истории, как Ньютон открыл закон всемирного тяготения, служит история о падающем плоде яблока. Согласно этой легенде, оно свалилось на голову ученому. Однако это - массово распространенное заблуждение, и в действительности все смогло обойтись без подобного случая возможной травмы головы. Сам Ньютон иногда подтверждал данный миф, но в действительности закон не был спонтанным открытием и не пришел в порыве сиюминутного озарения. Как было написано выше, он разрабатывался долгое время и был представлен впервые в трудах о «Математических началах», вышедших на обозрение публике в 1687 году.

Не смотря на то, что гравитация – это слабейшее взаимодействие между объектами во Вселенной, ее значение в физике и астрономии огромно, так как она способна оказывать влияние на физические объекты на любом расстоянии в космосе.

Если вы увлекаетесь астрономией, вы наверняка задумывались над вопросом, что собой представляет такое понятие, как гравитация или закон всемирного тяготения. Гравитация – это универсальное фундаментальное взаимодействие между всеми объектами во Вселенной.

Открытие закона гравитации приписывают знаменитому английскому физику Исааку Ньютону. Наверное, многим из вас известна история с яблоком, упавшим на голову знаменитому ученому. Тем не менее, если заглянуть вглубь истории, можно увидеть, что о наличии гравитации задумывались еще задолго до его эпохи философы и ученые древности, например, Эпикур. Тем не менее, именно Ньютон впервые описал гравитационное взаимодействие между физическими телами в рамках классической механики. Его теорию развил другой знаменитый ученый – Альберт Эйнштейн, который в своей общей теории относительности более точно описал влияние гравитации в космосе, а также ее роль в пространственно-временном континууме.

Закон всемирного тяготения Ньютона говорит, что сила гравитационного притяжения между двумя точками массы, разделенными расстоянием обратно пропорциональна квадрату расстояния и прямо пропорциональна обеим массам. Сила гравитации является дальнодействующей. То есть, в независимости от того, как будет двигаться тело, обладающее массой, в классической механике его гравитационный потенциал будет зависеть сугубо от положения этого объекта в данный момент времени. Чем больше масса объекта, тем больше его гравитационное поле – тем более мощной гравитационной силой он обладает. Такие космически объекты, как галактики, звезды и планеты обладают наибольшей силой притяжения и соответственно достаточно сильными гравитационными полями.

Гравитационные поля

Гравитационное поле Земли

Гравитационное поле – это расстояние, в пределах которого осуществляется гравитационное взаимодействие между объектами во Вселенной. Чем больше масса объекта, тем сильнее его гравитационное поле – тем ощутимее его воздействие на другие физические тела в пределах определенного пространства. Гравитационное поле объекта потенциально. Суть предыдущего утверждения заключается в том, что если ввести потенциальную энергию притяжения между двумя телами, то она не изменится после перемещения последних по замкнутому контуру. Отсюда выплывает еще один знаменитый закон сохранения суммы потенциальной и кинетической энергии в замкнутом контуре.

В материальном мире гравитационное поле имеет огромное значения. Им обладают все материальные объекты во Вселенной, у которых есть масса. Гравитационное поле способно влиять не только на материю, но и на энергию. Именно за счет влияния гравитационных полей таких крупных космических объектов, как черные дыры, квазары и сверхмассивные звезды, образуются солнечные системы, галактики и другие астрономические скопления, которым свойственна логическая структура.

Последние научные данные показывают, что знаменитый эффект расширения Вселенной так же основан на законах гравитационного взаимодействия. В частности расширению Вселенной способствуют мощные гравитационные поля, как небольших, так и самых крупных ее объектов.

Гравитационное излучение в двойной системе

Гравитационное излучение или гравитационная волна – термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном. Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением. Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.

Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект. Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение. Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.

В современной физике существует два понятия механики: классическая и квантовая. Квантовая механика была выведена относительно недавно и принципиально отличается от механики классической. В квантовой механике у объектов (квантов) нет определенных положений и скоростей, все здесь базируется на вероятности. То есть, объект может занимать определенное место в пространстве в определенный момент времени. Куда переместиться он дальше, достоверно определить нельзя, а только с высокой долей вероятности.

Интересный эффект гравитации заключается в том, что она способна искривлять пространственно-временной континуум. Теория Эйнштейна гласит, что в пространстве вокруг сгустка энергии или любого материального вещества пространство-время искривляется. Соответственно меняется траектория частиц, которые попадают под воздействие гравитационного поля этого вещества, что позволяет с высокой долей вероятности предсказать траекторию их движения.

Теории гравитации

Сегодня ученым известно свыше десятка различных теорий гравитации. Их подразделяют на классические и альтернативные теории. Наиболее известными представителем первых является классическая теория гравитации Исаака Ньютона, которая была придумана известным британским физиком еще в 1666 году. Суть ее заключается в том, что массивное тело в механике порождает вокруг себя гравитационное поле, которое притягивает к себе менее крупные объекты. В свою очередь последние также обладают гравитационным полем, как и любые другие материальные объекты во Вселенной.

Следующая популярная теория гравитации была придумана всемирно известным германским ученым Альбертом Эйнштейном в начале XX века. Эйнштейну удалось более точно описать гравитацию, как явление, а также объяснить ее действие не только в классической механике, но и в квантовом мире. Его общая теория относительности описывает способность такой силы, как гравитация, влиять на пространственно-временной континуум, а также на траекторию движения элементарных частиц в пространстве.

Среди альтернативных теорий гравитации наибольшего внимания, пожалуй, заслуживает релятивистская теория, которая была придумана нашим соотечественником, знаменитым физиком А.А. Логуновым. В отличие от Эйнштейна, Логунов утверждал, что гравитация – это не геометрическое, а реальное, достаточно сильное физическое силовое поле. Среди альтернативных теорий гравитации известны также скалярная, биметрическая, квазилинейная и другие.

  1. Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
  2. Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.
  3. Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей – Юпитер.
  4. Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.
  5. Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
  6. Сила гравитации на Земле одинакова не во всех уголках нашей планеты. К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.

Как гооворил персонаж из советской киноклассики - «Не пора ли, друзья мои, нам замахнуться на Вильяма Исаака, понимаете ли, м-м, нашего Шекспир а Ньютона?»

Думаю, самая пора.

Ньютона считают одним из величайших научных умов за всю историю человечества. Именно «Математические начала натуральной философии» заложили основу "научного мировоззрения", которое плавно переросло в воинствуюищй материализм, который стал основой научной парадигмы на целые столетия.

Право на единственность истины аргументировалась "точным знаиием" о явлениях окружающего мира. Фундаментом этих самых "неороивержимых, точных знаний" стал Закон Всемирного Тяготения имени Исаака Ньютона. Вот именно по фундаменту мы и вдарим! - Покажем, что никакго закона тяготения в природе, на самом деле не существует, а все здание современной физики построено даже не на песке, а на болотной хляби.

Для того, чтобы продемонстрировать несостоятельность гипотезы Ньютона о взаимном притяжении материи, достаточно одного-единственного исключения. Мы приведем несколько, и начнем с наиболее наглядного и легко проверяемого - с движения Луны по своей орбите. Формулы, известные каждому из курса средней школы, и расчет доступен пятикласснику. Данные для расчета можно взять хоть из "Википедии", а потом проверить по научным справочникам.

Согласно Закону, движение небесных тел по орбитам обусловлено силой притяжения между массами тел и скоростью тел относительно друг друга. Так вот, посмотрим куда направлена равндействующая сил притяжения от Земли и Солнца, действующая на Луну в момент, когда Луна пролетает между Землей и Солнцем (хотя бы в момент солнечного затмения).

Сила притяжения, как известно, определяется формулой:

G - гравитационная постоянная

m, M - массы тел

R - расстояние между телами

Возьмем из справочников:

гравитационная постоянная, равная примерно 6,6725×10 −11 м³/(кг·с²).

масса Луны - 7,3477×10 22 кг

масса Солнца - 1,9891×10 30 кг

масса Земли - 5,9737×10 24 кг

расстояние между Землей и Луной = 380 000 000 м

расстояние между Луной и Солнцем = 149 000 000 000 м

подставив в формулу эти данные получим:

Сила притяжения между Землей и Луной = 6,6725×10 - 11 х 7,3477×10 22 х 5,9737×10 24 / 380000000 2 = 2,028×10 20 H

Сила притяжения между Луной и Солнцем = 6,6725×10 - 11 х 7,3477·10 22 х 1,9891·10 30 / 149000000000 2 = 4,39×10 20 H

Таким образом, согласно строгим научным данныим и расчетам, сила притяжения между Солнцем и Луной, в момент прохождения Луны между Землей и Солнцем, более чем в два раза выше, чем между Землей и Луной. И далее Луна должна продолжить свой путь по орбите вокруг Солнца, если б был справедлив тот самый закон всемирного тяготения. То есть, писаный Ньютоном закон для Луны не указ.

Также отметим, что и Луна не проявляет своих притягивающих свойств по отношению к Земле: еще во времена Лапласа ученых ставило в тупик поведение морских приливов, которые никак не зависят от Луны.

Еще один факт. Луна, двигаясь вокруг Земли, должна была бы воздействовать на траекторию последней - таская Землю из стороны в сторону своим тяготением, в результате траектория Земли должна быть зигзагообразной, строго по эллипсу должен двигаться центр масс системы Луна-Земля:

Но, увы, ничего подобного не обнаружено, хотя современные методы позволяют это смещение в сторонру Солнца и обратно, со скоростью около 12 метров в секунду надежно установить. Если б оно существовало на самом деле.

Не обнаружено и уменьшения веса тел при погружении в сверхглубокие шахты.

Первая попытка проверки теории тяготения масс была предпринята на берегу Индийского океана, где с одной стороны находится высочайшая в мире каменная гряда Гималаев, а с другой - чаша океана, заполненная куда менее массивной водой. Но, увы. отвес в сторону Гималаев не отклоняется!

Более того, сверхчувствительеные приборы - гравиметры, не обнаруживают разницы в тяжести пробного тела на одинаковой высоте над горами или над морями - хоть там будь глубина несколько километров. И тогда ученый мир, чтоб спасти прижившуюся теорию придумал для нее подпорку - мол причиной тому "изостазия" - мол под морями располагаются более плотные породы, а под горами - рыхлые, причем плотность их аккурат такая, чтоб подогнать все под нужный ученым ответ. Это просто песня!

Но если б это в научном мире был единственный пример подгонки окружающей реальности под представления о ней высоколобых мужей. Можно еще привести вопиющий пример придуманной "элементаеной частицы" - нейтрино, которое было выдумано для объяснения "дефекта масс" в ядерной физике. Еще раньше придумли "скрытыю теплоту кристаллизации" в теплотехнике.

Но мы отвлеклись от "всемирного тяготения". Еще пример того, где предсказания этой теории никак не могут обнаружить - отсутствие надежно установленных спутников у астероидов. Астероидов по небу летают тучи, а вот спутников ни у единого из них нет! Предпринятые попытки вывести на орбиту астероидов искусственные спутники окончились крахом. Первая попытка - зонд NEAR подгоняли к астероиду Эрос американцы. Впустую. Вторая попытка - зонд ХАЯБУСА («Сокол»), японцы отправили к астероиду Итокава, и тоже ничего не вышло.

Подобных примеров можно привести еще массу, но не будем перегружать ими текст. Обратимся к другой проблеме научного знания: а всегда ли есть возможность установить истину в принципе - хоть когда либо вообще.

Нет, не всегда. Приведем пример на основе все того же "всемирного тяготения". Как известно, скорость света конечна, в результате удаленные объекты мы видим не там, где они расположены в данный момент, а видим их в той точке, откуда стартовал увиденный нами луч света. Многих звезд, возможно вообще нет, идет только их свет - избитая тема. А вот тяготение - оно с какой скоростью распространяется? Еще Лапласу удалось установить, что тяготение от Солнца исходит не оттуда, где мы его видим, а из другой точки. Проанализировав данные, накопленные к тому времени, Лаплас установил, что "гравитация" распространяется быстрее света, как минимум, на семь порядков! Современные измерения отодвинули скорость распространения гравитации еще дальше - как минимум, на 11 порядков быстрей скорости света.

Есть большие подозрения, что "гравитация" распространяется вообще мгновенно. Но если это на самом деле имеет место быть, то как это установить - ведь любые измерения теоретически невозможны без какой-либо погрешности. Так что мы никогда не узнаем - конечна ли эта скорость, или бесконечна. А мир, в котором она имеет предел и мир в котором она беспредельна - это "две большие разницы", и мы никогда не будем знать в каком же мы мире живем! Вот он предел, который положен научному знанию. Принять ту или иную точку зрения - это длео веры, совершенно иррациональной, не поддающейся никакой логике. Как не поддается никакой логике вера в "научную картину мира", которая базируется на "законе всемирного тяготения", который существует лишь в зомбированных головах, и который никак не обраруживается в окружающем мире...

Сейчас оставим ньютоновский закон, а в заключение приведем нагляднейший пример того, что законы, открытые на Земле, вовсе не универсальны для остальной Вселенной.

Взглянем на ту же Луну. Желательно в полнолуние. Почему Луна выглядит как диск - скорее блин, чем колобок, форму которого она имеет.

Ведь она - шар, а шар, если освещен со стороны фотографа, выглядит примерно так: в центре - блик, далее освещенность падет, к краям диска изображение темнее.

У луны же на небе освещенность равномерная - что в центре, что по краям, достаточно взглянуть на небо. Можно воспользоваться хорошим биноклем или фотоаппаратом с сильным оптическим "зумом", пример такой фотографии приведен в начале статьи. Снято было с 16-ти кратным приближением. Это изображение можно обработать в любом графическом редакторе, усилив контрастность, чтоб убедиться - все так и есть. более того, якркость по краям диска вверху и внизу даже чуть выше, чем в центре, где она по теории дожна быть максимальной.

Здесь мы имее пример того, что законы оптики на Луне и на Земле совершенно разные! Луна почему-то весь пдающий свет отражает в сторону Земли. У нас нет никаких оснований распространять закономерности, выявленные в услових Земли, на всю Вселенную. Не факт, что физические "константы" являются константами на самом деле и не изменяются со временем.

Все выше сказанное показывает, что "теории" "черных дыр, "бозоны хиггса" и многое прочее - это даже не научная фантастика, а просто бред, больший чем теория о том, что земля покоится на черепахах, слонах и китах...