Источниками электромагнитных полей эмп являются. Источники электромагнитного излучения вокруг нас

К источникам ЭМП на произ­водстве относятся две большие группы:

* изделия, которые специально созданы для излучения электромагнитной энергии: радио- и телевизионные вещательные станции, радиолокационные установки, физиотерапевтические ап­параты, различные системы радиосвязи, технологические установки в промышленности. ЭМП широко используются в промышленности, например, в таких технологических процес­сах, как закалка и отпуск стали, накатка твердых сплавов на ре­жущий инструмент, плавка металлов и полупроводников и т. д.;

Электростатические поля (ЭСП) создаются в энергетических установках и при электротехнических процессах. В зависимости от источников образования они могут существовать в виде собственно электростатического поля (поля неподвижных зарядов) или стацио­нарного электрического поля (электрическое поле постоянного тока). В промышленности ЭСП широко используются для электро­газоочистки, электростатической сепарации руд и материалов, элек­тростатического нанесения лакокрасочных и полимерных материа­лов. Статическое электричество образуется при изготовлении, испытаниях, транспортировке и хранении полупроводниковых приборов и интегральных схем, шлифовке и полировке футляров радиотелевизионных приемников, в помещениях вычислительных центров, на участках множительной техники, а также в ряде других процессов, где используются диэлектрические материалы. Электро­статические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и неко­торых сыпучих материалов по трубопроводам, переливании жидко­стей-диэлектриков, скатывании пленки или бумаги в рулон.

Магнитные поля создаются электромагнитами, соленоидами, установками конденсаторного типа, литыми и металлокерамическими магнитами и др. устройствами.

В ЭМП различаются три зоны, которые формируются на раз­личных расстояниях от источника ЭМИ.

Первая зона – зона индукции (ближняя зона) охватывает проме­жуток от источника излучения до расстояния, равного примерно л/2п«1/6л. В этой зоне электромагнитная волна еще не сформиро­вана и поэтому электрическое и магнитное поля не взаимосвязаны и действуют независимо.

Вторая зона – зона интерференции (промежуточная зона) располагается на расстояниях примерно от л/2л до 2лл. В этой зоне про­исходит формирование ЭМВ и на человека действует электрическое и магнитное поля, а также оказывается энергетическое воздействие.

Третья зона – волновая зона (дальняя зона) располагается на расстояниях свыше 2лл. В этой зоне ЭМВ сформирована, электриче­ское и магнитное поля взаимосвязаны. На человека в этой зоне воз­действует энергия волны.

Воздействие неионизирующих излучений на человека. Электромагнитные поля биологически активны – живые существа реагируют на их действие. Однако у человека нет специального органа чувств для определения ЭМП (за исключением оптического диапазона). Наиболее чувствительны к электромагнитным полям центральная нервная система, сердечно-сосудистая, гормональная и репродук­тивная системы.

Длительное воздействие на человека электромагнитных полей промышленной частоты (50 Гц) приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в сердце, нарушение ритма сердечных сокращений. Могут наблюдаться функциональные нарушения в центральной нервной системе, а также изменения в составе крови.

Воздействие электростатического поля на человека связано с протеканием через него слабого тока. При этом электротравм никог­да не наблюдается. Однако вследствие рефлекторной реакции на протекающий ток возможна механическая травма от удара о распо­ложенные рядом элементы конструкций, падение с высоты и т.д. К ЭСП наиболее чувствительны центральная нервная система, сердечно-сосудистая система. Люди, работающие в зоне действия ЭСП, жалуются на раздражительность, головную боль, нарушение сна.

При воздействии магнитных полей могут наблюдаться наруше­ния функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в составе крови. При локаль­ном действии магнитных полей (прежде всего на руки) появляется ощущение зуда, Сходность и синюшность кожных покровов, отеч­ность и уплотнение, а иногда ороговение кожи.

Воздействие ЭМИ радиочастотного диапазона определяется плотностью потока энергии, частотой излучения, продолжительно­стью воздействия, режимом облучения (непрерывное, прерывистое, импульсное), размером облучаемой поверхности тела, индивидуаль­ными особенностями организма. Воздействие ЭМИ может проявля­ться в различной форме – от незначительных изменений в некото­рых системах организма до серьезных нарушений в организме. По­глощение организмом человека энергии ЭМИ вызывает тепловой эффект. Начиная с определенного предела организм человека не справляется с отводом теплоты от отдельных органов, и их темпера­тура может повышаться. В связи с этим воздействие ЭМИ особенно вредно для тканей и органов со слаборазвитой сосудистой системой и недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузыри). Облучение глаз может привести к ожогам роговицы, а облучение ЭМИ СВЧ-диапазона – к помутне­нию хрусталика – катаракте.

При длительном воздействии ЭМИ радиочастотного диапазона даже умеренной интенсивности могут произойти расстройства нер­вной системы, обменных процессов, изменения состава крови. Мо­гут также наблюдаться выпадение волос, ломкость ногтей. На ран­ней стадии нарушения носят обратимый характер, но в дальнейшем происходят необратимые изменения в состоянии здоровья, стойкое снижение работоспособности и жизненных сил.

Среди основных источников ЭМИ можно перечислить:

Электротранспорт (трамваи, троллейбусы, поезда,…)

Линии электропередач (городского освещения, высоковольтные,…)

Электропроводка (внутри зданий, телекоммуникации,…)

Бытовые электроприборы

Теле- и радиостанции (транслирующие антенны)

Спутниковая и сотовая связь (транслирующие антенны)

Персональные компьютеры

Воздействие электромагнитного поля на человека

Сегодня электромагнитное облучение в 100 миллионов раз превышает то, что испытывали наши деды. Длительное воздействие искусственных электромагнитных излучений серьезно ухудшают здоровье. Эпидемиологи установили, что раковые заболевания чаще встречаются среди людей, проживающих в непосредственной близости от источников сильных электромагнитных полей, таких, например, как высоковольтные линии электропередачи. Было доказано также влияние электромагнитных полей на выработку шишковидной железой мелатонина, - гормона, играющего не последнюю роль в иммунной системе (его также называют "гормон молодости").

Хаотичная энергия субчастиц искусственных электромагнитных полей, эта своего рода электромагнитная грязь, действует с огромной разрушительной силой на биоэлектромагнитное поле нашего тела, в пределах которого миллионы неуловимых электрических импульсов должны балансировать и регулировать деятельность каждой живой клетки.

Рабочая группа ВООЗ по гигиеническим аспектам использования видео- и радиотерминалов выявила нарушения состояния здоровья при использовании устройств, создающих электромагнитное излучение и его торсионную составляющую, наиболее серьезными из которых являются:

  • · онкологические заболевания (вероятность заболевания возрастает пропорционально длительности вляния ЭМИ и его торсионной компоненты на организм человека);
  • · угнетение репродуктивной системы (импотенция, уменьшение либидо, нарушение менструального цикла, замедление полового созревания, уменьшение способности оплодотворения и так далее);
  • · неблагоприятное течение беременности (при работе с персональным компьютером больше 20 часов (!) в неделю у женщин вероятность выкидыша возрастает в 2,7 раза, а рождение детей с врожденными дефектами в 2,3 раза больше, чем в контрольных группах, а вероятность патологического течения беременности увеличивается в 1,3 раза при длительности работы с электромагнитными или торсионными излучателями более 4 часов (!) в неделю);
  • · нарушение психоэмоциональной сферы (UF-синдром, стрессовый синдром, агрессивность, раздражительность и так далее);
  • · нарушения в высшей нервно-рефлекторной деятельности (нахождение ребенка более 50 (!) минут в день у экрана телевизора или компьютера уменьшает в 1,4 раза способность к запоминанию новой информации, что связано с влиянием ЭМИ и его торсионной компоненты на corpus callosum и другие нейроструктуры головного мозга);
  • · ухудшение зрения;
  • · нарушение имунной системы (иммуннодепресивное состояние).
  • · Лейкемия (рак крови) у людей, в силу своей профессии постоянно контактирующих с электромагнитными излучателями, которые также генерируют торсионные поля, в 4,3 раза превышает контрольные величины среди работников других специальностей, не связанных с ЭМИ (Университет Дж. Гопкинса, Балтимор, США). Дети, работающие за компьютером, или проводящие свое свободное время возле экрана телевизора больше 2 часов в день, имеют вероятность получить заболевание рака головного мозга в 8,2 раза больше, чем в контрольной группе. Поглощение ЭМИ мозгом происходит неравномерно и приводит к различным структурным изменениям в клетках, а под воздействием торсионной составляющей создает разнообразные виды клинической картины заболевания (болезнь Паркинсона, Альцгеймера и т. д.).

Все средства и методы защиты от ЭМП могут быть разделены на 3 группы: организационные, инженерно-технические и лечебно-профилактические. Организационные мероприятия как при проектировании, так и на действующих объектах предусматривают предотвращение попадания людей в зоны с высокой напряженностью ЭМП, создание санитарно-защитных зон вокруг антенных сооружений различного назначения. Для прогнозирования уровней электромагнитных излучений на стадии проектирования используются расчетные методы определения ППЭ и напряженности ЭМП.

Общие принципы, положенные в основу инженерно-технической защиты, сводятся к следующему: электрогерметизация элементов схем, блоков, узлов установки в целом с целью снижения или устранения электромагнитного излучения; защита рабочего места от облучения или удаление его на безопасное расстояние от источника излучения. Для экранирования рабочего места рекомендуется использовать различные типы экранов: отражающие (сплошные металлические из металлической сетки, металлизированной ткани) и поглощающие (из радиопоглощающих материалов).

В качестве средств индивидуальной защиты рекомендуется специальная одежда, выполненная из металлизированной ткани, и защитные очки.

В том случае, когда облучению подвергаются только отдельные части тела или лицо, возможно использование защитного халата, фартука, накидки с капюшоном, перчаток, очков, щитков.

Лечебно-профилактические мероприятия должны быть направлены прежде всего на раннее выявление нарушений в состоянии здоровья работающих. Предусмотрены предварительные и периодические медосмотры для лиц, работающих в условиях воздействия СВЧ (миллиметровых, сантиметровых, дециметровых диапазонов), 1 раз в 12 мес. Для лиц, работающих в условиях воздействия ЭМП УВЧ и ВЧ-диапазона (средние, длинные и короткие волны), периодические медосмотры работающих осуществляются 1 раз в 24 мес. В медицинском осмотре принимают участие терапевт, невропатолог, офтальмолог.

Также организационным мероприятиям по защите от действия электромагнитных полей относятся:

  • 1. Выбор режимов работы излучающего оборудования, обеспечивающих уровень излучения, не превышающий предельно допустимый.
  • 2. Ограничение места и времени нахождения людей в зоне действия поля.
  • 3. Обозначение и ограждение зон с повышенным уровнем излучения.
  • 4. Защита временем.

Применяется, когда нет возможности снизить интенсивность излучения в данной точке до предельно допустимого уровня. Путем обозначения, оповещения и т.п. ограничивается время нахождения людей в зоне выраженного воздействия электромагнитного поля. В действующих нормативных документах предусмотрена зависимость между интенсивностью плотности потока энергии и временем облучения.

5. Защита расстоянием.

Применяется, если невозможно ослабить воздействие другими мерами, в том числе и защитой временем. Метод основан на падении интенсивности излучения, пропорциональном квадрату расстояния до источника. Защита расстоянием положена в основу нормирования санитарно-защитных зон - необходимого разрыва между источниками поля и жилыми домами, служебными помещениями и т.п. Границы зон определяются расчетами для каждого конкретного случая размещения излучающей установки при работе её на максимальную мощность излучения. В соответствии с ГОСТ 12.1.026-80 зоны с опасными уровнями излучения ограждаются, на ограждениях устанавливаются предупреждающие знаки с надписями: «Не входить, опасно!».

К неионизирующим электромагнитным полям (ЭМП) и излучениям (ЭМИ) относятся: электростатические поля, постоянные магнитные поля (в т.ч. и геомагнитное поле земли), электрические и магнитные поля промышлен- ной частоты, электромагнитные излучения радиочастотного диапазона , элек- тромагнитные излучения оптического диапазона . К оптической области неио- низирующих излучений принято относить электромагнитные колебания с дли- ной волны от 10 до 34·104 нм. Из них диапазон длин волн от 10 до 380 нм относят к области ультрафиолетового (УФ) излучения, от 380 до 770 нм - к видимой области спектра и от 770 до 34·104 нм - к области инфракрасного (ИК) излучения. Глаз человека имеет наибольшую чувствительность к излуче- ниям с длиной волн 540…550 нм. Особый вид ЭМИ представляет собой лазер- ное излучение (ЛИ) оптического диапазона с длиной волны 102...106 нм. Отли- чие ЛИ от других видов ЭМИ заключается в том, что источник излучения ис- пускает электромагнитные волны строго одной длины волны и в одной фазе.

Электромагнитные поля и излучения являются источником негативного влияния на человека и окружающую среду. Они загрязняют не только произ-


Водственные среды, но и окружающую среду. Сейчас ученые и практикующие экологи называют электромагнитные загрязнения вялотекущей чрезвычайной ситуацией.

Магнитные поля (МП) могут быть постоянными, импульсными и перемен-

ными. Степень воздействия магнитного поля на работающих зависит от макси- мальной напряженности его в рабочей зоне. При действии переменных МП на- блюдаются характерные зрительные ощущения, которые исчезают в момент прекращения воздействия.

Проблема электромагнитного загрязнения возникла в результате резкого

увеличения в последние годы количества различных источников ЭМП техно- генного характера и повлекла за собой необходимость досконального изучения физических основ данного негативного фактора, а также выработки мероприя- тий по защите населения и окружающей среды в условиях действия электро- магнитного загрязнения, превышающего допустимые уровни.

Под электромагнитным загрязнением среды понимается состояние элек-

тромагнитной обстановки, характеризуемое наличием в атмосфере электромаг- нитных полей повышенной интенсивности, создаваемых техногенными и при- родными источниками излучения неионизирующей части электромагнитного спектра.


Под электромагнитным излучением (ЭМИ) понимается процесс образова- ния электромагнитного поля.

Электромагнитное поле (ЭМП) представляет собой особую форму мате-

рии, состоящую из взаимосвязанных электрического и магнитного полей.

Электрическое поле представляет собой систему из замкнутых силовых ли- ний, создаваемых заряженными электрическими телами различных знаков или переменным магнитным полем. Постоянное электрическое поле создается не- подвижными электрическими зарядами.

Магнитное поле представляет собой систему из замкнутых силовых линий,

создаваемых при движении по проводнику электрических зарядов. Постоян- ное магнитное поле создается равномерно движущимися в проводнике элек- трическими зарядами постоянного тока.

Физические причины существования переменного электромагнитного поля

связаны с тем, что изменяющиеся во времени электрическое поле порождаеют магнитное поле, а изменения магнитного поля - вихревое электрическое по- ле. Напряженности этих полей, расположенные перпендикулярно друг другу, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или рав- номерно движущихся зарядов неразрывно связаны с ними. При ускорении движения зарядов часть ЭМП отрывается от них и присутствует независимо в форме электромагнитных волн, не исчезая с устранением источника их образо-


Вания. Критерием интенсивности электрического поля является его напря- женность E с единицей измерения В/м. Критериями интенсивности магнитного поля является его напряженность Н с единицей измерения А/м. Основными параметрами источника ЭМП являются частота электромагнитного колеба- ния, измеряемая в герцах (Гц), и длина волны, измеряемая в метрах (м).

Техногенные источники электромагнитного поля производственной среды

(технологические источники) по частотам излучения подразделяются на две группы.

К первой группе относятся источники, генерирующие излучения в диапазо-

не от 0 Гц до 3 кГц. Этот диапазон условно называют промышленные частоты . Источники: системы производства, передачи и распределения электроэнергии (электростанции, трансформаторные подстанции, системы и линии электропе- редач); офисная и домашняя электро- и электронная техника; электросети ад- министративных зданий и сооружений. На объектах железнодорожного транс- порта это системы электроснабжения электрифицированных железнодорожных линий, силовые трансформаторные подстанции, транспорт на электроприводе, системы и линии электропередач депо, грузовых районов, пунктов обработки вагонов и ремонтных производств, электросети административных зданий. К примеру, электротранспорт является мощным источником магнитного поля в


диапазоне частот от 0 до 1000 Гц. Среднее значение магнитной составляющей

ЭМП электропоездов может достигать 200 мкТл (ПДУ = 0,2 мкТл).

Мощными источниками излучения электромагнитной энергии являются провода высоковольтных линий электропередач (ЛЭП) промышленной часто- ты 50 Гц. Напряженность ЭМП, создаваемого ЛЭП, зависит от величины на- пряжения (в России - от 330 до 1150 кВ), нагрузки, высоты подвески прово- дов, расстояния между проводами ЛЭП. Напряженность ЭМП непосредствен- но над проводами и в определенной зоне вдоль трассы ЛЭП может значительно превышать ПДУ электромагнитной безопасности населения, особенно по маг- нитной составляющей. Негативное влияние электрических сетей в производст- венных и административных зданиях обусловлено тем, что человек постоянно находится в помещении вблизи электропроводки, в том числе проложенной не- экранированно. Кроме этого, наличие в зданиях железосодержащих конструк- ций и коммуникаций создает эффект «экранированного помещения», что уси- ливает электромагнитный эффект при расположении в них большого количест- ва различных источников излучения, в том числе и сетей электропроводки.

Ко второй группе технологических источников относятся источники, гене- рирующие излучения в диапазоне от 3 кГц до 300 ГГц. Излучения этого диапа- зона условно называют радиочастотами.

Источниками излучения радиочастотного диапазона являются:


офисная электро- и электронная техника;

теле- и радиопередающие центры;

системы получения информации, сотовая и спутниковая связь, релейные

навигационные системы;

радиолокационные станции (РЛС) различного вида и назначения;

оборудование, использующее сверхвысокочастотное излучение (видео-

дисплейные терминалы, СВЧ-печи, медицинские диагностические уста-

РЛС, используемые для управления движением воздушного транспорта и имеющие остронаправленные антенны кругового обзора, работают круглосу- точно и создают ЭМП высокой интенсивности. Системы сотовой связи по- строены на принципе деления территории на зоны (соты) радиусом 0,5…2 км, в центре которых располагаются базовые станции (БС), обслуживающие мо- бильные средства связи. Антенны БС создают опасные уровни напряженности в радиусе 50 м.

На объектах железнодорожного транспорта широко используются мнемо- схемы (у диспетчеров), видеодисплейные терминалы (ВДТ) и персональные ЭВМ (в кассах продажи железнодорожных билетов, в диспетчерских пунктах, в бухгалтериях и др.).


ВДТ на основе электронно-лучевых трубок являются источниками ЭМИ весьма широкого диапазона частот: низкочастотное, средних частот, высоко- частотное излучение, рентгеновское, ультрафиолетовое, видимое, инфракрас- ное (достаточно высокой интенсивности). Зона превышения ПДУ может дос- тигать 2,5 м. Зоны превышения ПДУ вблизи установок закалки рельсов тока- ми высокой частоты (ТВЧ), индукционной сушки, электроламповых генераторов также оказываются более 3 м. Зона влияния электрического по- ля - пространство, в котором напряженность электрического поля превышает

5 кВ/м. Зона влияния магнитного поля - пространство, в котором напряжен- ность магнитного поля превышает 80 А/м.

Особую группу составляют источники ЭМИ военного характера, специаль-

но генерирующие ЭМП для вывода из строя объектов инфраструктуры и для нанесения поражения населению. К ним относятся: радиочастотное электро- магнитное оружие различных видов, лазерное оружие и др.

Не исключено воздействие ЭМИ на объекты и при террористических актах.

К объектам, которые могут подвергаться воздействию специально генерируе- мого мощного ЭМП могут относиться объекты так называемых «критических инфраструктур», от нормального функционирования которых зависит, в ос- новном, национальная безопасность и жизнедеятельность государства: прави- тельственная связь, телекоммуникации, системы энергоснабжения, водоснаб-


Жения, системы управления, транспортные системы, системы противоракетной обороны (ПРО), стратегические средства и т.д. Большинство объектов этих систем хранят и передают информацию с использованием электромагнитных полей. При воздействии электромагнитного потока высокой интенсивности на технологические элементы этих объектов может произойти уничтожение всей информации на данном объекте либо нарушение системы связи между этими объектами. И в том и в другом случае отдельные объекты и определенные

«критические инфраструктуры» нормально функционировать не будут.

Кроме этого, ЭМП высокой интенсивности могут вызывать расплавление металла различных технологических линий, что приведет, в свою очередь, к структурным изменениям в технологических устройствах и системах объектов.

Что такое ЭМП, его виды и классификация

На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". Коротко поясним, что это означает и какая связь существует между ними.

Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита, присутствует как раз электрическое поле.

Магнитное поле создается при движении электрических зарядов по проводнику.

Для характеристики величины электрического поля используется понятие напряженность электрического поля, обозначение Е, единица измерения В/м (Вольт-на-метр). Величина магнитного поля характеризуется напряженностью магнитного поля Н, единица А/м (Ампер-на-метр). При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, единица Тл(Тесла), одна миллионная часть Тл соответствует 1,25 А/м.

По определению, электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).

Электромагнитные волны характеризуются длиной волны, обозначение - l (лямбда). Источник, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуются частотой, обозначение - f.

Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны. В "ближней" зоне, или зоне индукции, на расстоянии от источника r < l ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату r -2 или кубу r -3 расстояния. В "ближней" зоне излучения электромагнитная волне еще не сформирована. Для характеристики ЭМП измерения переменного электрического поля Е и переменного магнитного поля Н производятся раздельно. Поле в зоне индукции служит для формирования бегущих составляющей полей (электромагнитной волны), ответственных за излучение. "Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3l . В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r -1.

В "дальней" зоне излучения есть связь между Е и Н: Е = 377Н, где 377 - волновое сопротивление вакуума, Ом. Поэтому измеряется, как правило, только Е. В России на частотах выше 300 МГц обычно измеряется плотность потока электромагнитной энергии (ППЭ), или вектор Пойтинга. Обозначается как S, единица измерения Вт/м2. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны.

Международная классификация электромагнитных волн по частотам

Наименование частотного диапазона

Границы диапазона

Наименование волнового диапазона

Границы диапазона

Крайние низкие, КНЧ

Декамегаметровые

Сверхнизкие, СНЧ

30 – 300 Гц

Мегаметровые

Инфранизкие, ИНЧ

Гектокилометровые

1000 - 100 км

Очень низкие, ОНЧ

Мириаметровые

Низкие частоты, НЧ

30 - 300 кГц

Километровые

Средние, СЧ

Гектометровые

Высокие частоты, ВЧ

Декаметровые

Очень высокие, ОВЧ

30 - 300 МГц

Метровые

Ультравысокие,УВЧ

Дециметровые

Сверхвысокие, СВЧ

Сантиметровые

Крайне высокие, КВЧ

30 - 300 ГГц

Миллиметровые

Гипервысокие, ГВЧ

300 – 3000 ГГц

Децимиллиметровые

2. Основные источники эмп

Среди основных источников ЭМИ можно перечислить:

    Электротранспорт (трамваи, троллейбусы, поезда,…)

    Линии электропередач (городского освещения, высоковольтные,…)

    Электропроводка (внутри зданий, телекоммуникации,…)

    Бытовые электроприборы

    Теле- и радиостанции (транслирующие антенны)

    Спутниковая и сотовая связь (транслирующие антенны)

  • Персональные компьютеры

2.1 Электротранспорт

Транспорт на электрической тяге – электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п. – является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. По данным (Stenzel et al.,1996), максимальные значения плотности потока магнитной индукции В в пригородных "электричках" достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл. Типичный результат долговременных измерений уровней магнитного поля, генерируемого железнодорожным транспортом на удалении 12 м от полотна, приведен на рисунке.

2.2 Линии электропередач

Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии достигает десятков метров. Дальность распространение электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП - например ЛЭП 220 кВ), чем выше напряжение - тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течении времени работы ЛЭП.

Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течении суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

Биологическое действие

Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля.

У растений распространены аномалии развития - часто меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки. Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакцией только у гиперчувствительных людей или у больных некоторыми видами аллергии. Например, хорошо известны работы английских ученых в начале 90-х годов показавших, что у ряда аллергиков по действием поля ЛЭП развивается реакция по типу эпилептической. При продолжительном пребывании (месяцы - годы) людей в электромагнитном поле ЛЭП могут развиваться заболевания преимущественно сердечно-сосудистой и нервной систем организма человека. В последние годы в числе отдаленных последствий часто называются онкологические заболевания.

Санитарные нормы

Исследования биологического действия ЭМП ПЧ, выполненные в СССР в 60-70х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого биологического действия магнитной составляющей при типичных уровнях не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены жесткие нормативы и по настоящее время являющиеся одними из самых жестких в мире. Они изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты"№ 2971-84. В соответствии с этими нормами проектируются и строятся все объекты электроснабжения.

Несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения в России не нормируется. Причина - нет денег для исследований и разработки норм. Большая часть ЛЭП строилась без учета этой опасности.

На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или "нормальный" уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 - 0,3 мкТл.

Принципы обеспечения безопасности населения

Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов.

Границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля - 1 кВ/м.

Границы санитарно-защитных зон для ЛЭП согласно СН № 2971-84

Напряжение ЛЭП

Размер санитарно-защитной (охранной) зоны

Границы санитарно-защитных зон для ЛЭП в г. Москве

Напряжение ЛЭП

Размер санитарно-защитной зоны

К размещению ВЛ ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых ВЛ 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м соответственно.

Как определить класс напряжения ЛЭП? Лучше всего обратиться в местное энергетическое предприятие, но можно попробовать визуально, хотя не специалисту это сложно:

330 кВ - 2 провода, 500 кВ - 3 провода, 750 кВ - 4 провода. Ниже 330 кВ по одному проводу на фазу, определить можно только приблизительно по числу изоляторов в гирлянде: 220 кВ 10 -15 шт., 110 кВ 6-8 шт., 35 кВ 3-5 шт., 10 кВ и ниже - 1 шт.

Допустимые уровни воздействия электрического поля ЛЭП

ПДУ, кВ/м

Условия облучения

внутри жилых зданий

на территории зоны жилой застройки

в населенной местности вне зоны жилой застройки; (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов) а также на территории огородов и садов;

на участках пересечения воздушных линий электропередачи с автомобильными дорогами 1 – IV категорий;

в ненаселенной местности (незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья);

в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения.

В пределах санитарно-защитной зоны ВЛ запрещается:

    размещать жилые и общественные здания и сооружения;

    устраивать площадки для стоянки и остановки всех видов транспорта;

    размещать предприятия по обслуживанию автомобилей и склады нефти и нефтепродуктов;

    производить операции с горючим, выполнять ремонт машин и механизмов.

Территории санитарно-защитных зон разрешается использовать как сельскохозяйственные угодья, однако рекомендуется выращивать на них культуры, не требующие ручного труда.

В случае, если на каких-то участках напряженность электрического поля за пределами санитарно-защитной зоны окажется выше предельно допустимой 0,5 кВ/м внутри здания и выше 1 кВ/м на территории зоны жилой застройки (в местах возможного пребывания людей), должны быть приняты меры для снижения напряженности. Для этого на крыше здания с неметаллической кровлей размещается практически любая металлическая сетка, заземленная не менее чем в двух точках В зданиях с металлической крышей достаточно заземлить кровлю не менее чем в двух точках. На приусадебных участках или других местах пребывания людей напряженность поля промышленной частоты может быть снижена путем установления защитных экранов, например это железобетонные, металлические заборы, тросовые экраны, деревья или кустарники высотой не менее 2 м.

Как электромагнитное поле влияет на здоровье человека. Как защититься от этого поля. Что является источниками электромагнитного поля. Ответ на это Вы найдете, прочитав эту книгу.

КАК ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ ВЛИЯЕТ НА ЗДОРОВЬЕ ЧЕЛОВЕКА .

Электросмог - это загрязнение окружающей среды электромагнитными полями различного происхождения. С этим явлением человек сталкивается каждый день – в квартире, на улице, в транспорте, в офисе, на даче – т.е. в любом месте своего пребывания. Такова цена современной жизни. Электросмог является одним из сильнейших биологически активных факторов, которые могут влиять на живой организм. С развитием техники он становится опаснее радиации. Электросмог, в отличие от загрязнения промышленными отходами, невидим, но он взаимодействует с электромагнитным полем человека и частично подавляет его. В результате этого взаимодействия собственное поле человека искажается, снижается иммунитет, нарушается информационный и клеточный обмен, что может привести к возникновению различных заболеваний.

Электромагнитная волна, как шнурок, состоит из двух хитро переплетенных неразлучных "ниточек" - электрической и магнитной. По очереди, поддерживая и "подбадривая" друг друга, они делают одно общее дело - создают электромагнитное поле. Еще сравнительно недавно считалось, что пакостить, покушаясь на наше здоровье, способна лишь электрическая составляющая, - магнитная же в местах обитания обычных смертных не представляет никакой угрозы их жизни и здоровью. Электрическую "вредину" изучили со всех сторон и загнали в "клетку" из жестких санитарных норм, опрометчиво решив, что защитились от вездесущего влияния электромагнитного поля. Но на исходе 80-х американцы, шведы, финны и датчане независимо друг от друга, заинтересовались здоровьем своих сограждан, проживающих по соседству с линиями электропередачи (ЛЭП). Тогда и выяснилось, что вторая участница -магнитная - не так проста, как показалось. Там, где она особенно усердствует, высок уровень заболеваемости раком. Особенно часто встречается лейкемия у детей. Эти данные относятся к случаю не кратковременного, а именно продолжительного облучения.

Чтобы испытать на себе все, на что способно электромагнитное поле, вовсе не обязательно сидеть верхом на электрогенераторе или жить под мачтами ЛЭП. Вполне достаточно бытовой электроники, которой наши квартиры напичканы до отказа. Все, что вы включаете в розетку, неизбежно награждает вас помимо тепла, света или музыки еще и электромагнитным полем. Оно может быть маленьким, например, от утюга. Или большим - от печки СВЧ. Один такой прибор, качественно произведенный, не страшен - воздействие электромагнитного поля простирается не далее 1,5-2 метров. Но когда телевизор, водруженный на холодильник, соседствует с электроплитой, снабженной вытяжкой, а рядом приветливо мигает лампочками микроволновка - маленькая кухня оказывается перенасыщенной электромагнитными полями. Как карты в пасьянсе они накладываются друг на друга, не оставляя хозяевам никаких шансов найти "тихий уголок".

Только абсолютно здоровый человек может позволить себе несколько раз в день окунаться в такую электромагнитную "ванну". Для беременной женщины, ребенка или старика будет лучше включить ту же печь и немедленно ретироваться.

Биологическое действие ЭМП.

Многочисленные исследования в области биологического действия ЭМП позволят определить наиболее чувствительные системы организма человека: нервная, иммунная, эндокринная и половая. Эти системы организма являются критическими. Реакции этих систем должны обязательно учитываться при оценке риска воздействия ЭМП на население. Биологический эффект ЭМП в условиях длительного многолетнего воздействия накапливается, в результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания. Электромагнитные поля могут быть особенно опасны для детей, беременных (эмбрион), людей с заболеваниями центральной нервной, гормональной, сердечно-сосудистой системы, аллергиков и людей с ослабленным иммунитетом.

Влияние на нервную систему.

Большое число исследований, выполненных в России, и сделанные монографические обобщения дают основание отнести нервную систему к одной из наиболее чувствительных систем в организме человека к воздействию ЭМП. Изменяется высшая нервная деятельность, память у людей, имеющих контакт с ЭМП. Эти лица могут иметь склонность к развитию стрессорных реакций. Определенные структуры головного мозга имеют повышенную чувствительность к ЭМП.

Влияние на иммунную систему.

В настоящее время накоплено достаточно данных, указывающих на отрицательное влияние ЭМП на иммунологическую реактивность организма. Результаты исследований ученых России дают основание считать, что при воздействии ЭМП нарушаются процессы иммуногенеза, чаще в сторону их угнетения. Установлено также, что у животных, облученных ЭМП, изменяется характер инфекционного процесса - течение инфекционного процесса отягощается.

Влияние на половую функцию.

Нарушения половой функции обычно связаны с изменением ее регуляции со стороны нервной и нейроэндокринной систем. С этим связаны результаты работы по изучению состояния гонадотропной активности гипофиза при воздействии ЭМП. Многократное облучение ЭМП вызывает понижение активности гипофиза.

Любой фактор окружающей среды, воздействующий на женский организм во время беременности и оказывающий влияние на эмбриональное развитие, считается тератогенным. Многие ученые относят ЭМП к этой группе факторов. Первостепенное значение в исследованиях тератогенеза имеет стадия беременности, во время которой воздействует ЭМП. Принято считать, что ЭМП могут, например, вызывать уродства, воздействуя в различные стадии беременности. Хотя периоды максимальной чувствительности к ЭМП имеются. Наиболее уязвимыми периодами являются обычно ранние стадии развития зародыша, соответствующие периодам имплантации и раннего органогенеза. Было высказано мнение о возможности специфического действия ЭМП на половую функцию женщин, на эмбрион. Отмечена более высокая чувствительность к воздействию ЭМП яичников, нежели семенников. Установлено, что чувствительность эмбриона к ЭМП значительно выше, чем чувствительность материнского организма, а внутриутробное повреждение плода ЭМП может произойти на любом этапе его развития. Результаты проведенных эпидемиологических исследований позволят сделать вывод, что наличие контакта женщин с электромагнитным излучением может привести к преждевременным родам, повлиять на развитие плода и, наконец, увеличить риск развития врожденных уродств.

Другие медико-биологические эффекты.

Как уже говорилось выше, с начала 60-х годов, в СССР были проведены широкие исследования по изучению здоровья людей, имеющих контакт с ЭМП на производстве. Результаты клинических исследований показали, что длительный контакт с ЭМП в СВЧ диапазоне может привести к развитию заболеваний, клиническую картину которого определяют, прежде всего, изменения функционального состояния нервной и сердечно-сосудистой систем.

Наиболее ранними клиническими проявлениями последствий воздействия ЭМ-излучения на человека являются функциональные нарушения со стороны нервной системы, проявляющиеся прежде всего в виде вегетативных дисфункций неврастенического и астенического синдрома. Лица, длительное время находившиеся в зоне ЭМ-излучения, предъявляют жалобы на слабость, раздражительность, быструю утомляемость, ослабление памяти, нарушение сна. Нередко к этим симптомам присоединяются расстройства вегетативных функций. Нарушения со стороны сердечно-сосудистой системы проявляются, как правило, нейроциркуляторной дистонией: лабильность пульса и артериального давления, наклонность к гипотонии, боли в области сердца и др. Отмечаются также фазовые изменения состава периферической крови с последующим развитием умеренной лейкопении. Изменения костного мозга носят характер реактивного компенсаторного напряжения регенерации. Обычно эти изменения возникают у лиц по роду своей работы постоянно находившихся под действием ЭМ-излучения с достаточно большой интенсивностью. Работающие с МП и ЭМП, а также население, живущее в зоне действия ЭМП, жалуются на раздражительность, тревожность. Через 1-3 года у некоторых появляется чувство внутренней напряженности, суетливость. Нарушаются внимание и память. Возникают жалобы на малую эффективность сна и на утомляемость. Учитывая важную роль коры больших полушарий и гипоталамуса в осуществлении психических функций человека, можно ожидать, что длительное повторное воздействие предельно допустимых ЭМ-излучения может повести к психическим расстройствам.

КАК ЗАЩИТИТЬ ОРГАНИЗМ ОТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ .

Защита человека от неблагоприятного биологического действия ЭМП строится по следующим основным направлениям: организационные мероприятия инженерно-технические мероприятия лечебно-профилактические мероприятия

К организационным мероприятиям по защите от действия ЭМП относятся: выбор режимов работы излучающего оборудования, обеспечивающего уровень излучения, не превышающий предельно допустимый, ограничение места и времени нахождения в зоне действия ЭМП (защита расстоянием и временем), обозначение и ограждение зон с повышенным уровнем ЭМП.

Защита временем применяется, когда нет возможности снизить интенсивность излучения в данной точке до предельно допустимого уровня. В действующих предельно-допустимых нормах предусмотрена зависимость между интенсивностью плотности потока энергии и временем облучения.

Защита расстоянием основывается на падении интенсивности излучения, которое обратно пропорционально квадрату расстояния и применяется, если невозможно ослабить ЭМП другими мерами, в том числе и защитой временем. Защита расстоянием положена в основу зон нормирования излучений для определения необходимого разрыва между источниками ЭМП и жилыми домами, служебными помещениями и т.п.

Инженерно-технические защитные мероприятия строятся на использовании явления экранирования ЭМП непосредственно в местах пребывания человека либо на мероприятиях по ограничению эмиссионных параметров источника поля. Последнее, как правило, применяется на стадии разработки изделия, служащего источником ЭМП. Обычно подразумевается два типа экранирования: экранирование источников ЭМП от людей и экранирование людей от источников ЭМП. Защитные свойства экранов основаны на эффекте ослабления напряженности и искажения электрического поля в пространстве вблизи заземленного металлического предмета.

От электрического поля промышленной частоты, создаваемого системами передачи электроэнергии, осуществляется путем установления санитарно-защитных зон для линий электропередачи и снижением напряженности поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов. Защита от магнитного поля промышленной частоты практически возможна только на стадии разработки изделия или проектирования объекта, как правило, снижение уровня поля достигается за счет векторной компенсации поскольку иные способы экранирования магнитного поля промышленной частоты чрезвычайно сложны и дороги.

При экранировании ЭМП в радиочастотных диапазонах используются разнообразные радиоотражающие и радиопоглощающие материалы. К радиоотражающим материалам относятся различные металлы. Чаще всего используются железо, сталь, медь, латунь, алюминий. Эти материалы используются в виде листов, сетки, либо в виде решеток и металлических трубок. Экранирующие свойства листового металла выше, чем сетки, сетка же удобнее в конструктивном отношении, особенно при экранировании смотровых и вентиляционных отверстий, окон, дверей и т.д. Защитные свойства сетки зависят от величины ячейки и толщины проволоки: чем меньше величина ячеек, чем толще проволока, тем выше ее защитные свойства. Отрицательным свойством отражающих материалов является то, что они в некоторых случаях создают отраженные радиоволны, которые могут усилить облучение человека.

Более удобными материалами для экранировки являются радиопоглощающие материалы. Листы поглощающих материалов могут быть одно - или многослойными. Многослойные – обеспечивают поглощение радиоволн в более широком диапазоне. Для улучшения экранирующего действия у многих типов радиопоглощающих материалов с одной стороны впрессована металлическая сетка или латунная фольга. При создании экранов эта сторона обращена в сторону, противоположную источнику излучения.

В некоторых случаях стены зданий покрывают специальными красками. В качестве токопроводящих пигментов в этих красках применяют коллоидное серебро, медь, графит, алюминий, порошкообразное золото. Обычная масляная краска обладает довольно большой отражающей способностью (до 30%), гораздо лучше в этом отношении известковое покрытие.

Радиоизлучения могут проникать в помещения, где находятся люди через оконные и дверные проемы. Для экранирования смотровых окон, окон помещений, застекления потолочных фонарей, перегородок применяется металлизированное стекло, обладающее экранирующими свойствами. Такое свойство стеклу придает тонкая прозрачная пленка либо окислов металлов, чаще всего олова, либо металлов – медь, никель, серебро и их сочетания. Пленка обладает достаточной оптической прозрачность и химической стойкостью. При нанесении пленки на обе поверхности стекла ослабление достигает 10000 раз.

Радиоэкранирующими свойствами обладают практически все строительные материалы. В качестве дополнительного организационно-технического мероприятия по защите населения при планировании строительства необходимо использовать свойство «радиотени» возникающего из-за рельефа местности и огибания радиоволнами местных предметов.

Как защититься от влияния электромагнитного поля эмп.

Сегодня в мире существует множество источников электромагнитного излучения различной мощности. Каких-либо однозначных мер защиты или ограничения их влияния не существует, можно лишь ограничить себя от воздействия. Рассмотрим основные источники, общие и специфические меры защиты от вредного действия ЭМП.

В городах присутствует достаточно высокий уровень излучения от электрического транспорта. Разработаны специальные нормы и ГОСТы для уменьшения вредного воздействия излучения на население. В основном, все они сводятся к «защите расстоянием», то есть организацией санитарной зоны около источников ЭМП, какими могут быть трамвайные и троллейбусные линиии, и линии метрополитена или электропоездов.

Те же меры защиты должны соблюдаться вблизи линий электропередач. В зависимости от мощности ЛЭП, ширина санитарной зоны увеличивается.

Наиболее мощное ЭМП создается теле-радиовещательными станциями. Иногда они располагаются непосредственно в жилой зоне. В таких случаях необходимо применение всех способов защиты. Здесь основной принцип обеспечение безопасности – соблюдение установленных Санитарными нормами и правилами предельно допустимых уровней электромагнитного поля.

ОСНОВНЫЕ ИСТОЧНИКИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ :

Электропроводка внутри зданий

Бытовые электроприборы

Офисная техника

Промышленное электрооборудование

Линии электропередач

Электротранспорт

Телевизионные станции

Радиовещательные станции

Спутниковая связь

Сотовая связь

Радиолокационные станции

Интенсивность излучения измеряется в Тл(Тесла) - единица измерения магнитной индукции в Международной системе единиц. Безопасный уровень излучения для здоровья человека – 0,2 мкТЛ.

Наиболее общими являются следующие источники электромагнитного излучения:

Электропроводка . Эта неотъемлемая часть жизнеобеспечения населения вносит наибольший вклад в электромагнитную обстановку жилых помещений. К электропроводке относят как кабельные линии, подводящие электричество ко всем квартирам и внутри их, так и распределительные щиты и трансформаторы. В помещениях смежных с этими источниками уровень магнитного поля обычно повышен, а уровень электрического поля не высокий и не превышает допустимых значений.

Рекомендации по защите. В данном случае используются только предупредительные меры защиты, такие как: исключение длительного пребывания в местах с повышенным уровнем магнитного поля промышленной частоты;

грамотное расположение мебели для отдыха в жилом помещении, обеспечивающие расстояние два-три метра до распределительных щитов и силовых кабелей;

при установке полов с электроподогревом останавливать свой выбор системы на той, которая обеспечивает более низкий уровень магнитного поля;

при наличии в помещении неизвестных кабелей или электрических шкафов, щитков обеспечить наибольшее удаление от них жилой зоны.

Не стоит размещать кровати, кресла, устраивать места отдыха у розеток, выключателей. Не рекомендуется использование выключателей, которые способны создавать приглушенный свет, кроме как в крайних положениях (on/off). В основе принципа их работы – изменение уровня сопротивления в сети, что приводит к существенным возмущениям фона ЭМ излучения. Избегайте нахождения у изголовья постелей проходящих электропроводов, особенно их сплетений. Избегайте чрезмерного натяжения, перегибания проводов. Это уменьшает площадь поперечного сечения материала, увеличивает его сопротивление, приводит к возмущениям фона ЭМП.

Необходимо проводить заземление на контур заземления здания (нельзя заземлять на батарею отопления, водопроводные трубы, «ноль» розетки). Стремитесь свести к минимуму количество электроприборов, вилки питания которых находятся в розетках, даже если прибор выключен. Эта мера существенно снижает плотность электросмога в помещении.

Бытовые электроприборы . Естественно, что все приборы, работающие на электрическом токе, являются источниками электромагнитных полей. Наиболее сильными источниками ЭМП являются микроволновые и электрические печи, кухонные вытяжки, пылесосы и холодильники с системой «no frost». Реально излучаемое ими поля разнится в зависимости от конкретных моделей, но следует заметить, что, чем выше мощность прибора, тем и магнитное поле, создаваемое им, выше. Значение же электрического поля гораздо меньше предельно допустимых значений.

Некоторые модели телевизоров достигают значения 2 мкТл; холодильники с системой «No frost» превышают значение 0,2 мкТл; электрический чайник создает излучение 0,6 мкТл; всем известная СВЧ печь излучает 8 мкТл; электроплита достигает значения 1-3 мкТл; а самыми мощными домашними источниками являются пылесос – 100 мкТл, электробритва и фен могут достигать значения в 1500 мкТл. Все эти значения, конечно, зависят от конкретной модели техники и расстояния до нее.

Современные микроволновые печи оборудованы достаточно совершенной защитой, которая не дает электромагнитному полю вырываться за пределы рабочего объема. Вместе с тем, нельзя говорить что поле совершенно не проникает вне микроволновой печи. По разным причинам часть электромагнитного поля предназначенного для курицы проникает наружу, особенно интенсивно, как правило, в районе правого нижнего угла дверцы. Надо помнить, что со временем степень защиты может снижаться, в основном из-за появления микрощелей в уплотнении дверцы. Это может происходить как из-за попадания грязи, так и из-за механических повреждений. Поэтому дверца и ее уплотнение требует аккуратности в обращении и тщательного ухода. Учитывая специфику микроволновой печи, целесообразно включив ее отойти на расстояние не менее 1,5 метра - в этом случае гарантированно электромагнитное поле вас не затронет вообще.

Рекомендации по защите. При приобретении бытовой техники необходимо обращать внимание на отметку о соответствии прибора требованиям «Межгосударственных санитарных норм допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях».

использование приборов с меньшей мощностью;

место отдыха необходимо достаточное его удаление от бытовых приборов, излучающих достаточно большой уровень магнитного поля, таких как холодильники «no frost», некоторые типы полов с электрическим подогревом, телевизоры, нагреватели, блоки питания и зарядные устройства;

размещение электрических приборов на некотором расстоянии друг от друга и удаление их от места отдыха.

Светильники в изголовьях постелей следует подключать к розеткам, расположенным как можно дальше от кроватей, и проводить соединение обязательно цельным проводом. Не стоит покупать какую бы то ни было мебель с агрегатами электропитания – кровати с встроенными светильниками, письменные столы и секретеры с лампами. Телевизор можно смотреть только на расстоянии, как минимум в 2 (лучше в 3) диагонали экрана. Никогда не садитесь напротив экрана. Лучше расположитесь несколько сбоку. Хорошо поставить перед экраном блюдечко с поваренной солью. Она впи­тает влагу из воздуха около экрана, в результате чего образуется сухой воз­душный слой, который станет хорошей защитой от электронов. Только не забы­вайте менять соль каждые два-три дня.

От вредного излучения помогает и зажженная свеча, так как над ее пла­менем образуется область с циркулиру­ющим воздухом, в которой электроны быстро теряют скорость и энергию.

Приборы, работающие длительное время (холодильники, ТВ, СВЧ-печи, компьютерную технику, электрообогреватели, кондиционеры и пр.) следует размещать на расстоянии не менее 1,5 м от мест постоянного пребывания или ночного отдыха.

Средства сотовой связи . Достаточно актуальным является вопрос биологической безопасности сотовой связи. Можно отметить лишь одно за все время существования сотовой связи ни один человек не получил явного ущерба здоровью из-за ее использования. Сотовая связь обеспечивается радиопередающими базовыми станциями и мобильными радиотелефонами пользователей-абонентов. Среди установленных в одном месте антенн базовой станции имеются как передающие, так и приемные антенны, которые не являются источниками ЭМП. Влияние сотовых телефонов на здоровье человека не выявлено, но что организм «откликается» на наличие излучения сотового телефона. Таким образом, можно только порекомендовать многочисленным пользователям сотовой связи соблюдать некоторые рекомендации.

Рекомендации по защите. Использовать сотовый телефон в случаях необходимости; не разговаривать непрерывно более трех-четырех минут; не допускать использования сотового телефона детьми; выбирать телефон с меньшей максимальной мощностью излучения; использовать в автомобиле комплект «hands-free», размещая его антенну в геометрическом центре крыши.

Стоит особенное внимание обратить на использование зарядных устройств для мобильных телефонов – необходимо отключать их от сети после использования.

Ещё одно мнение . При работе сотовой связи ее основные компоненты – сотовый телефон и базовая станция – создают электромагнитное поле. И пользователь сотового телефона, и человек, не использующий сотовый телефон, но живущий вблизи объектов сотовой связи, находятся в этом электромагнитном поле. Нельзя сказать, что электромагнитное поле сотового телефона «проходит мимо» организма человека. Любой, кто так скажет, либо сознательно вводит аудиторию в заблуждение, либо является дилетантом. При разговоре по сотовому телефону электромагнитное поле проникает в тело человека и поглощается, прежде всего, тканями головы – кожным покровом, ухом, частью головного мозга, включая зрительный анализатор. Это понимают все специалисты, более того, разработчики сотовых телефонов учитывают факт, что часть электромагнитной энергии «застрянет» в голове, и соответственно корректируют технические параметры антенны и передатчика радиотелефона. Проводится масса исследований, но окончательного вердикта ученых нет до сих пор. Причин этого много – сложность проблемы для исследователей, лоббистские задачи промышленности, интересы правительств разных стран и международных организаций и т.д. В общем, резонов достаточно, однако крайним оказывается потребитель. По мнению авторитетного американского журнала «Microwave News» все мы – и владельцы сотового телефона, и живущие на территориях, охваченных сетями сотовой связи, – являемся участниками уникального в истории массового эксперимента. Всемирная организация здравоохранения констатирует, что последствия воздействия ЭМП сотовой связи, как на отдельных людей, так и на популяцию людей в целом, еще не ясны. Поэтому, с одной стороны, необходимо активно продолжать исследования, с другой стороны – придерживаться предупредительного принципа в обеспечении безопасности. Этот принцип гласит, что если есть хотя бы подозрение на неблагоприятные последствия, пусть еще не доказанные окончательно, то необходимо предпринять все возможные усилия, чтобы этих последствий избежать.

Существуют классические методы защиты: время и расстояние. По-прежнему остается крайне актуальной разработка нормативной базы, которая учитывала бы прогноз развития патологии у пользователя в отдаленный период. Необходимо строго ограничить использование мобильной связи детьми и резко изменить направленность соответствующей рекламы.

Персональные компьютеры . Влияние компьютеров однозначно сказывается на здоровье человека, влияя как на общее состояние, так и на зрение и другие органы. Основным источником ЭМП в персональном компьютере является монитор на электроннолучевой трубке. По сравнению с ним, все остальные устройства ПК производят минимальное излучения, за исключением, быть может, источника бесперебойного питания. Современные технологии позволяют отказаться от использования мониторов на электроннолучевой трубке и использовать жидкокристаллические мониторы, которые как техническим параметрам, так и параметрам воздействия на здоровье человека значительно отличаются в лучшую сторону.

Линии электропередач – учитывая особенности этого источника, большое значение имеет расстояние до линии электропередач и время пребывания в зоне действия ЛЭП.

Электротранспорт – в трамвае интенсивность излучения находится в пределах 10-40 мкТл; в троллейбусе она составляет 20-80 мкТл; в электричке – 20 мкТл; самое большое значение дает метро – в среднем 100 мкТл.