Интервалы выпуклости вогнутости и точки перегиба функции. Исследование функции на выпуклость и вогнутость

Осталось рассмотреть выпуклость, вогнутость и перегибы графика . Начнём с так полюбившихся посетителям сайта физических упражнений. Пожалуйста, встаньте и наклонитесь вперёд либо назад. Это выпуклость. Теперь вытяните руки перед собой ладонями вверх и представьте, что держите на груди большое бревно… …ну, если не нравится бревно, пусть будет ещё что/кто-нибудь =) Это вогнутость. В ряде источников встречаются синонимичные термины выпуклость вверх и выпуклость вниз , но я сторонник коротких названий.

! Внимание : некоторые авторы определяют выпуклость и вогнутость с точностью до наоборот . Это математически и логически тоже верно, но зачастую совершенно некорректно с содержательной точки зрения, в том числе на уровне нашего обывательского понимания терминов. Так, например, двояковыпуклой линзой называют линзу именно «с бугорками», но никак не со «вдавленностями» (двояковогнутость).
А, скажем, «вогнутая» кровать – она всё-таки явно не «торчит вверх» =) (однако если под неё залезть, то речь уже зайдёт о выпуклости;=)) Я придерживаюсь подхода, который соответствует естественным человеческим ассоциациям.

Формальное определение выпуклости и вогнутости графика достаточно труднО для чайника, поэтому ограничимся геометрической интерпретацией понятия на конкретных примерах. Рассмотрим график функции , которая непрерывна на всей числовой прямой:

Его легко построить с помощью геометрических преобразований , и, наверное, многие читатели в курсе, как он получен из кубической параболы.

Назовём хордой отрезок, соединяющий две различные точки графика.

График функции является выпуклым на некотором интервале, если он расположен не ниже любой хорды данного интервала. Подопытная линия выпукла на , и, очевидно, что здесь любая часть графика расположена НАД своей хордой . Иллюстрируя определение, я провёл три чёрных отрезка.

График функции являются вогнутым на интервале, если он расположен не выше любой хорды этого интервала. В рассматриваемом примере пациент вогнут на промежутке . Пара коричневых отрезков убедительно демонстрирует, что тут и любой кусок графика расположен ПОД своей хордой .

Точка графика, в которой он меняет выпуклость на вогнутость или вогнутость на выпуклость, называется точкой перегиба . У нас она в единственном экземпляре (первый случай), причём, на практике под точкой перегиба можно подразумевать как зелёную точку , принадлежащую самой линии, так и «иксовое» значение .

ВАЖНО! Перегибы графика следует изображать аккуратно и очень плавно . Недопустимы всевозможные «неровности» и «шероховатости». Дело за небольшой тренировкой.

Второй подход к определению выпуклости/вогнутости в теории даётся через касательные:

Выпуклый на интервале график расположен не выше касательной, проведённой к нему в произвольной точке данного интервала. Вогнутый же на интервале график – не ниже любой касательной на этом интервале.

Гипербола вогнута на интервале и выпукла на :

При переходе через начало координат вогнутость меняется на выпуклость, однако точку НЕ СЧИТАЮТ точкой перегиба, так как функция не определена в ней.

Более строгие утверждения и теоремы по теме можно найти в учебнике, а мы переходим к насыщенной практической части:

Как найти интервалы выпуклости, интервалы вогнутости
и точки перегиба графика?

Материал прост, трафаретен и структурно повторяет исследование функции на экстремум .

Выпуклость/вогнутость графика характеризует вторая производная функции .

Пусть функция дважды дифференцируема на некотором интервале. Тогда:

– если вторая производная на интервале, то график функции является выпуклым на данном интервале;

– если вторая производная на интервале, то график функции является вогнутым на данном интервале.

На счёт знаков второй производной по просторам учебных заведений гуляет доисторическая ассоциация: «–» показывает, что «в график функции нельзя налить воду» (выпуклость),
а «+» – «даёт такую возможность» (вогнутость).

Необходимое условие перегиба

Если в точке есть перегиб графика функции , то:
либо значения не существует (разберём, читайте!) .

Данная фраза подразумевает, что функция непрерывна в точке и в случае – дважды дифференцируема в некоторой её окрестности.

Необходимость условия говорит о том, что обратное справедливо не всегда. То есть из равенства (либо небытия значения ) ещё не следует существования перегиба графика функции в точке . Но и в той, и в другой ситуации называют критической точкой второй производной .

Достаточное условие перегиба

Если вторая производная при переходе через точку меняет знак, то в данной точке существует перегиб графика функции .

Точек перегиба (встретился уже пример) может не быть вовсе, и в этом смысле показательны некоторые элементарные образцы. Проанализируем вторую производную функции :

Получена положительная функция-константа, то есть для любого значения «икс» . Факты, лежащие на поверхности: парабола вогнута на всей области определения , точки перегиба отсутствуют. Легко заметить, что отрицательный коэффициент при «переворачивает» параболу и делает её выпуклой (о чём нам сообщит вторая производная – отрицательная функция-константа).

Экспоненциальная функция также вогнута на :

для любого значения «икс».

Точек перегиба у графика , разумеется, нет.

Исследуем на выпуклость/вогнутость график логарифмической функции :

Таким образом, ветка логарифма является выпуклой на интервале . Вторая производная определена и на промежутке , но рассматривать его НЕЛЬЗЯ , поскольку данный интервал не входит в область определения функции . Требование очевидно – коль скоро там нет графика логарифма, то ни о какой выпуклости/вогнутости/перегибах речи, естественно, не заходит.

Как видите, всё действительно очень напоминает историю с возрастанием, убыванием и экстремумами функции . Похож и сам алгоритм исследования графика функции на выпуклость, вогнутость и наличие перегибов :

2) Разыскиваем критические значения. Для этого берём вторую производную и решаем уравнение . Точки, в которых не существует 2-й производной, но которые входят в область определения самой функции – тоже считаются критическими!

3) Отмечаем на числовой прямой все найденные точки разрыва и критические точки (ни тех, ни других может не оказаться – тогда чертить ничего не надо (как и в слишком простом случае), достаточно ограничиться письменным комментарием) . Методом интервалов определяем знаки на полученных интервалах. Как только что пояснялось, рассматривать следует только те промежутки, которые входят в область определения функции . Делаем выводы о выпуклости/вогнутости и точках перегиба графика функции . Даём ответ.

Попытайтесь устно применить алгоритм для функций . Во втором случае, кстати, пример, когда в критической точке не существует перегиба графика. Впрочем, начнём с ненамного более сложных заданий:

Пример 1


Решение :
1) Функция определена и непрерывна на всей числовой прямой. Очень хорошо.

2) Найдём вторую производную. Можно предварительно выполнить возведение в куб, но значительно выгоднее использовать правило дифференцирование сложной функции :

Заметьте, что , а значит, функция является неубывающей . Хоть это и не относится к заданию, но на такие факты всегда желательно обращать внимание.

Найдём критические точки второй производной:

– критическая точка

3) Проверим выполнение достаточного условия перегиба. Определим знаки второй производной на полученных интервалах .

Внимание! Сейчас работаем со второй производной (а не с функцией!)

В результате получена одна критическая точка: .

3) Отметим на числовой прямой две точки разрыва, критическую точку и определим знаки второй производной на полученных интервалах:

Напоминаю важный приём метода интервалов , позволяющий значительно ускорить решение. Вторая производная получилась весьма громоздкой, поэтому не обязательно рассчитывать её значения, достаточно сделать «прикидку» на каждом интервале. Выберем, например, точку , принадлежащее левому промежутку,
и выполним подстановку:

Теперь анализируем множители:

Два «минуса» и «плюс» дают «плюс», поэтому , а значит, вторая производная положительна и на всём интервале .

Закомментированные действия несложно выполнить устно. Кроме того, множитель выгодно игнорировать вообще – он положителен при любом «икс» и не оказывает влияния на знаки нашей второй производной.

Итак, какую информацию нам предоставила ?

Ответ : график функции является вогнутым на и выпуклым на . В начале координат (ясно, что ) существует перегиб графика.

При переходе через точки вторая производная тоже меняет знак, но они не считаются точками перегиба, так как функция терпит в них бесконечные разрывы .

В разобранном примере первая производная сообщает нам о росте функции на всей области определения . Всегда бы такая халява =) Кроме того, очевидно наличие трёх асимптот . Данных получено много, что позволяет с высокой степенью достоверности представить внешний вид графика. До кучи, функция ещё и нечётная. Исходя из установленных фактов, попытайтесь выполнить набросок на черновике. Картинка в конце урока.

Задание для самостоятельного решения:

Пример 6

Исследовать график функции на выпуклость, вогнутость и найти точки перегиба графика, если они существует.

Чертежа в образце нет, но гипотезу выдвинуть не возбраняется;)

Шлифуем материал, не нумеруя пункты алгоритма:

Пример 7

Исследовать график функции на выпуклость, вогнутость и найти точки перегиба, если они существует.

Решение : функция терпит бесконечный разрыв в точке .

У нас как обычно, всё отлично:

Производные не самые трудные, главное быть внимательным с их «причёской».
В наведённом марафете обнаруживаются две критические точки второй производной:

Определим знаки на полученных интервалах:

В точке существует перегиб графика, найдём ординату точки:

При переходе через точку вторая производная не меняет знак, следовательно, в ней НЕТ перегиба графика.

Ответ : интервалы выпуклости: ; интервал вогнутости: ; точка перегиба: .

Рассмотрим заключительные примеры с дополнительными примочками:

Пример 8

Найти интервалы выпуклости, вогнутости и точки перегиба графика

Решение : с нахождением области определения особых проблем не возникает:
, при этом в точках функция терпит разрывы.

Идём проторенной дорогой:

– критическая точка.

Определим знаки , при этом рассматриваем интервалы только из области определения функции :

В точке существует перегиб графика, вычислим ординату:

Для определения выпуклости (вогнутости) функции на некотором интервале можно использовать следующие теоремы.

Теорема 1. Пусть функция определена и непрерывна на интервале и имеет конечную производную . Для того, чтобы функция была выпуклой (вогнутой) в , необходимо и достаточно, чтобы ее производная убывала (возрастала) на этом интервале.

Теорема 2. Пусть функция определена и непрерывна вместе со своей производной на и имеет внутри непрерывную вторую производную . Для выпуклости (вогнутости) функции в необходимо и достаточно, чтобы внутри

Докажем теорему 2 для случая выпуклости функции .

Необходимость. Возьмем произвольную точку . Разложим функцию около точки в ряд Тейлора

Уравнение касательной к кривой в точке, имеющей абсциссу :

Тогда превышение кривой над касательной к ней в точке равно

Таким образом, остаток равен величине превышения кривой над касательной к ней в точке . В силу непрерывности , если , то и для , принадлежащих достаточно малой окрестности точки , а потому, очевидно, и для любого отличного от значения , принадлежащего к указанной окрестности.

Значит, график функции лежит выше касательной и кривая выпукла в произвольной точке .

Достаточность. Пусть кривая выпукла на промежутке . Возьмем произвольную точку .

Аналогично предыдущему разложим функцию около точки в ряд Тейлора

Превышение кривой над касательной к ней в точке, имеющей абсциссу , определяемой выражением равно

Так как превышение положительно для достаточно малой окрестности точки , то положительна и вторая производная . При стремлении получаем, что для произвольной точки .

Пример. Исследовать на выпуклость (вогнутость) функцию .

Ее производная возрастает на всей числовой оси, значит по теореме 1 функция вогнута на .

Ее вторая производная , поэтому по теореме 2 функция вогнута на .

3.4.2.2 Точки перегиба

Определение. Точкой перегиба графика непрерывной функции называется точка, разделяющая интервалы, в которых функция выпукла и вогнута.

Из этого определения следует, что точки перегиба - это точки точки экстремума первой производной. Отсюда вытекают следующие утверждения для необходимого и достаточного условий перегиба.

Теорема (необходимое условие перегиба) . Для того чтобы точка являлась точкой перегиба дважды дифференцируемой функции , необходимо, чтобы ее вторая производная в этой точке равнялась нулю () или не существовала.

Теорема (достаточное условие перегиба). Если вторая производная дважды дифференцируемой функции при переходе через некоторую точку меняет знак, то есть точка перегиба.

Отметим, что в самой точке вторая производная может не существовать.

Геометрическая интерпретация точек перегиба иллюстрируется рис. 3.9

В окрестности точки функция выпукла и график ее лежит ниже касательной, проведенной в этой точке. В окрестности точки функция вогнута и график ее лежит выше касательной, проведенной в этой точке. В точке перегиба касательная разделяет график функции на области выпуклости и вогнутости.

3.4.2.3 Исследование функции на выпуклость и наличие точек перегиба

1. Найти вторую производную .

2. Найти точки, в которых вторая производная или не существует.


Рис. 3.9.

3. Исследовать знак второй производной слева и справа от найденных точек и сделать вывод об интервалах выпуклости или вогнутости и наличии точек перегиба.

Пример. Исследовать функцию на выпуклость и наличие точек перегиба.

2. Вторая производная равна нулю при .

3. Вторая производная меняет знак при , значит точка - точка перегиба.

На интервале , значит функция выпукла на этом интервале.

На интервале , значит функция вогнута на этом интервале.

3.4.2.4 Общая схема исследования функций и построения графика

При исследовании функции и построении ее графика рекомендуется использовать следующую схему:

  1. Найти область определения функции.
  2. Исследовать функцию на четность - нечетность. Напомним, что график четной функции симметричен относительно оси ординат, а график нечетной функции симметричен относительно начала координат.
  3. Найти вертикальные асимптоты.
  4. Исследовать поведение функции в бесконечности, найти горизонтальные или наклонные асимптоты.
  5. Найти экстремумы и интервалы монотонности функции.
  6. Найти интервалы выпуклости функции и точки перегиба.
  7. Найти точки пересечения с осями координат.

Исследование функции проводится одновременно с построением ее графика.

Пример. Исследовать функцию и построить ее график.

1. Область определения функции - .

2. Исследуемая функция - четная , поэтому ее график симметричен относительно оси ординат.

3. Знаменатель функции обращается в ноль при , поэтому график функции имеет вертикальные асимптоты и .

Точки являются точками разрыва второго рода, так как пределы слева и справа в этих точках стремятся к .

4. Поведение функции в бесконечности.

Поэтому график функции имеет горизонтальную асимптоту .

5. Экстремумы и интервалы монотонности. Находим первую производную

При , поэтому в этих интервалах функция убывает.

При , поэтому в этих интервалах функция возрастает.

При , поэтому точка является критической точкой.

Находим вторую производную

Так как , то точка является точкой минимума функции .

6. Интервалы выпуклости и точки перегиба.

Функция при , значит на этом интервале функция вогнута.

Функция при , значит на этих интервалах функция выпукла.

Функция нигде не обращается в ноль, значит точек перегиба нет.

7. Точки пересечения с осями координат.

Уравнение , имеет решение , значит точка пересечения графика функции с осью ординат (0, 1).

Уравнение не имеет решения, значит точек пересечения с осью абсцисс нет.

С учетом проведенного исследования можно строить график функции

Схематически график функции изображен на рис. 3.10 .


Рис. 3.10.
3.4.2.5 Асимптоты графика функции

Определение. Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точки () до этой прямой стремится к 0 при неограниченном удалении точки графика от начала координат.

График функции y =f(x) называется выпуклым на интервале (a; b) , если он расположен ниже любой своей касательной на этом интервале.

График функции y =f(x) называется вогнутым на интервале (a; b) , если он расположен выше любой своей касательной на этом интервале.

На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c) .

Примеры.

Рассмотрим достаточный признак, позволяющий установить, будет ли график функции в данном интервале выпуклым или вогнутым.

Теорема . Пусть y =f(x) дифференцируема на (a; b) . Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ""(x ) < 0, то график функции на этом интервале выпуклый, если же f ""(x ) > 0 – вогнутый.

Доказательство . Предположим для определенности, что f ""(x ) < 0 и докажем, что график функции будет выпуклым.

Возьмем на графике функции y = f(x) произвольную точку M 0 с абсциссой x 0 Î (a ; b ) и проведем через точку M 0 касательную. Ее уравнение . Мы должны показать, что график функции на (a; b) лежит ниже этой касательной, т.е. при одном и том же значении x ордината кривой y = f(x) будет меньше ордината касательной.

Итак, уравнение кривой имеет вид y = f(x) . Обозначим ординату касательной, соответствующую абсциссе x . Тогда . Следовательно, разность ординат кривой и касательной при одном и том же значении x будет .

Разность f(x) – f(x 0) преобразуем по теореме Лагранжа , где c между x и x 0 .

Таким образом,

К выражению, стоящему в квадратных скобках снова применим теорему Лагранжа: , где c 1 между c 0 и x 0 . По условию теоремы f ""(x ) < 0. Определим знак произведения второго и третьего сомножителей.

Таким образом, любая точка кривой лежит ниже касательной к кривой при всех значениях x и x 0 Î (a ; b ), а это значит, что кривая выпукла. Вторая часть теоремы доказывается аналогично.

Примеры .

Точка графика непрерывной функции, отделяющая его выпуклую часть от вогнутой, называется точкой перегиба .

Очевидно, что в точке перегиба касательная, если она существует, пересекает кривую, т.к. с одной стороны от этой точки кривая лежит под касательной, а с другой стороны – над нею.

Определим достаточные условия того, что данная точка кривой является точкой перегиба.

Теорема . Пусть кривая определяется уравнением y = f(x) . Если f ""(x 0) = 0 или f ""(x 0) не существует и при переходе через значение x = x 0 производная f ""(x ) меняет знак, то точка графика функции с абсциссой x = x 0 есть точка перегиба.

Доказательство . Пусть f ""(x ) < 0 при x < x 0 и f ""(x ) > 0 при x > x 0 . Тогда при x < x 0 кривая выпукла, а при x > x 0 – вогнута. Следовательно, точка A , лежащая на кривой, с абсциссой x 0 есть точка перегиба. Аналогично можно рассматривать второй случай, когда f ""(x ) > 0 при x < x 0 и f ""(x ) < 0 при x > x 0 .

Таким образом, точки перегиба следует искать только среди таких точек, где вторая производная обращается в нуль или не существует.

Примеры. Найти точки перегиба и определить интервалы выпуклости и вогнутости кривых.


АСИМПТОТЫ ГРАФИКА ФУНКЦИИ

При исследовании функции важно установить форму ее графика при неограниченном удалении точки графика от начала координат.

Особый интерес представляет случай, когда график функции при удалении его переменной точки в бесконечность неограниченно приближается к некоторой прямой.

Прямая называется асимптотой графика функции y = f(x) , если расстояние от переменной точки M графика до этой прямой при удалении точки M в бесконечность стремится к нулю, т.е. точка графика функции при своем стремлении в бесконечность должна неограниченно приближаться к асимптоте.

Кривая может приближаться к своей асимптоте, оставаясь с одной стороны от нее или с разных сторон, бесконечное множество раз пересекая асимптоту и переходя с одной ее стороны на другую.

Если обозначим через d расстояние от точки M кривой до асимптоты, то ясно, что d стремится к нулю при удалении точки M в бесконечность.

Будем в дальнейшем различать асимптоты вертикальные и наклонные.

ВЕРТИКАЛЬНЫЕ АСИМПТОТЫ

Пусть при x x 0 с какой-либо стороны функция y = f(x) неограниченно возрастает по абсолютной величине, т.е. или или . Тогда из определения асимптоты следует, что прямая x = x 0 является асимптотой. Очевидно и обратное, если прямая x = x 0 является асимптотой, т. о. .

Таким образом, вертикальной асимптотой графика функции y = f(x) называется прямая, если f(x) → ∞ хотя бы при одном из условий x x 0 – 0 или x x 0 + 0, x = x 0

Следовательно, для отыскания вертикальных асимптот графика функции y = f(x) нужно найти те значения x = x 0 , при которых функция обращается в бесконечность (терпит бесконечный разрыв). Тогда вертикальная асимптота имеет уравнение x = x 0 .

Примеры.

НАКЛОННЫЕ АСИМПТОТЫ

Поскольку асимптота – это прямая, то если кривая y = f(x) имеет наклонную асимптоту, то ее уравнение будет y = kx + b . Наша задача найти коэффициенты k и b .

Теорема . Прямая y = kx + b служит наклонной асимптотой при x → +∞ для графика функции y = f(x) тогда и только тогда, когда . Аналогичное утверждение верно и при x → –∞.

Доказательство . Пусть MP – длина отрезка, равного расстоянию от точки M до асимптоты. По условию . Обозначим через φ угол наклона асимптоты к оси Ox . Тогда из ΔMNP следует, что . Так как φ постоянный угол (φ ≠ π/2), то , но

С помощью онлайн-калькулятора можно найти точки перегиба и промежутки выпуклости графика функции с оформлением решения в Word . Является ли функция двух переменных f(x1,x2) выпуклой решается с помощью матрицы Гессе .

Правила ввода функций :

Направление выпуклости графика функции. Точки перегиба

Определение : Кривая y=f(x) называется выпуклой вниз в промежутке (a; b), если она лежит выше касательной в любой точке этого промежутка.

Определение : Кривая y=f(x) называется выпуклой вверх в промежутке (a; b), если она лежит ниже касательной в любой точке этого промежутка.

Определение : Промежутки, в которых график функции обращен выпуклостью вверх или вниз, называются промежутками выпуклости графика функции.

Выпуклость вниз или вверх кривой, являющейся графиком функции y=f(x) , характеризуется знаком ее второй производной: если в некотором промежутке f’’(x) > 0, то кривая выпукла вниз на этом промежутке; если же f’’(x) < 0, то кривая выпукла вверх на этом промежутке.

Определение: Точка графика функции y=f(x) , разделяющая промежутки выпуклости противоположных направлений этого графика, называется точкой перегиба.

Точками перегиба могут служить только критические точки II рода, т.е. точки, принадлежащие области определения функции y = f(x) , в которых вторая производная f’’(x) обращается в нуль или терпит разрыв.

Правило нахождения точек перегиба графика функции y = f(x)

  1. Найти вторую производную f’’(x) .
  2. Найти критические точки II рода функции y=f(x) , т.е. точки, в которой f’’(x) обращается в нуль или терпит разрыв.
  3. Исследовать знак второй производной f’’(x) в промежутка, на которые найденные критические точки делят область определения функции f(x) . Если при этом критическая точка x 0 разделяет промежутки выпуклости противоположных направлений, то x 0 является абсциссой точки перегиба графика функции.
  4. Вычислить значения функции в точках перегиба.

Пример 1 . Найти промежутки выпуклости и точки перегиба следующей кривой: f(x) = 6x 2 –x 3 .
Решение: Находим f ‘(x) = 12x – 3x 2 , f ‘’(x) = 12 – 6x.
Найдем критические точки по второй производной, решив уравнение 12-6x=0 . x=2 .


f(2) = 6*2 2 – 2 3 = 16
Ответ: Функция выпукла вверх при x∈(2; +∞) ; функция выпукла вниз при x∈(-∞; 2) ; точка перегиба (2;16) .

Пример 2 . Имеет ли точки перегиба функция: f(x)=x 3 -6x 2 +2x-1

Пример 3 . Найти промежутки, на которых график функции является выпуклым и выгнутым: f(x)=x 3 -6x 2 +12x+4