Импульса нервные клетки окружены. Что такое нервный импульс

Мотонейрон.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов – нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления – аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну, подобно электрическим проводам присоединенным к домам.. Таким образом, один мотонейрон управляет целой группой волокон (так называемая нейромоторная единица ), которая работает как единое целое.

Мышца состоит из множества нейромоторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Рассмотрим более детальное строение клетки нейрона.

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон .

Нейроны – специализированные клетки, способные принимать, обрабатывать, передавать и хранить информацию, организовывать реакцию на раздражения, устанавливать контакты с другими нейронами, клетками органов.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый эндоплазматический ретикулум с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов).

Дендриты - ветвящиеся короткие отростки, воспринимающие сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей. Дендрит проводит нервные импульсы к телу нейрона.

Аксоны – длинный отросток, для проведения возбуждения от тела нейрона.

Уникальными способностями нейрона являются:

- способность генерировать электрические заряды
- передавать информацию с помощью специализированных окончаний – синапсов.

Нервный импульс.

Итак, как же происходит передача нервного импульса?
Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений, которые распространяются по всему нейрону. Передающиеся электрические изменения называются нервным импульсом.

В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, гораздо медленнее «бегущий» нервный импульс в процессе распространения постоянно восстанавливается (регенерирует).
Концентрации ионов (электрически заряженных атомов) – главным образом натрия и калия, а также органических веществ – вне нейрона и внутри него неодинаковы, поэтому нервная клетка в состоянии покоя заряжена изнутри отрицательно, а снаружи положительно; в результате на мембране клетки возникает разность потенциалов (т.н. «потенциал покоя» равен примерно –70 милливольтам). Любые изменения, которые уменьшают отрицательный заряд внутри клетки и тем самым разность потенциалов на мембране, называются деполяризацией.
Плазматическая мембрана, окружающая нейрон, – сложное образование, состоящее из липидов (жиров), белков и углеводов. Она практически непроницаема для ионов. Но часть белковых молекул мембраны формирует каналы, через которые определенные ионы могут проходить. Однако эти каналы, называемые ионными, открыты не постоянно, а, подобно воротам, могут открываться и закрываться.
При раздражении нейрона некоторые из натриевых (Na+) каналов открываются в точке стимуляции, благодаря чему ионы натрия входят внутрь клетки. Приток этих положительно заряженных ионов снижает отрицательный заряд внутренней поверхности мембраны в области канала, что приводит к деполяризации, которая сопровождается резким изменением вольтажа и разрядом – возникает т.н. «потенциал действия», т.е. нервный импульс. Затем натриевые каналы закрываются.
Во многих нейронах деполяризация вызывает также открытие калиевых (K+) каналов, вследствие чего ионы калия выходят из клетки. Потеря этих положительно заряженных ионов вновь увеличивает отрицательный заряд на внутренней поверхности мембраны. Затем калиевые каналы закрываются. Начинают работать и другие мембранные белки – т.н. калий-натриевые насосы, обеспечивающие перемещение Na+ из клетки, а K+ внутрь клетки, что, наряду с деятельностью калиевых каналов, восстанавливает исходное электрохимическое состояние (потенциал покоя) в точке стимуляции.
Электрохимические изменения в точке стимуляции вызывают деполяризацию в прилегающей точке мембраны, запуская в ней такой же цикл изменений. Этот процесс постоянно повторяется, причем в каждой новой точке, где происходит деполяризация, рождается импульс той же величины, что и в предыдущей точке. Таким образом, вместе с возобновляющимся электрохимическим циклом нервный импульс распространяется по нейрону от точки к точке.

Мы выяснили как нервный импульс проходит по нейрону, теперь разберемся с тем как же передается импульс от аксона к мышечному волокну.

Синапс.

Аксон размещается в мышечном волокне в своеобразных карманах, образующийся из выпячиваний аксона и цитоплазмы клеточного волокна.
Между ними образовывается нервно-мышечный синапс.

Нервно-мышечный синапс – нервное окончание между аксоном мотонейрона и мышечным волокном.

  1. Аксон.
  2. Клеточная мембрана.
  3. Синаптические везикулы аксона.
  4. Белок-рецептор.
  5. Митохондрия.

Синапс состоит из трех частей:
1) пресинаптического(отдающий) элемента, содержащего синаптические пузырьки (везикулы) с медиатором
2) синаптической щели (щель передачи)
3) постсинаптического(воспринимающий) элемента с белками-рецепторами, обеспечивающими взаимодействие медиатора с постсинаптической мембраной и белками-ферментами, разрушающими или инактивирующими медиатор.

Пресинаптический элемент – элемент который отдает нервный импульс.
Постсинаптический элемент – элемент принимающий нервный импульс.
Синаптическая щель – промежуток в котором происходит передача нервного импульса.

Когда нервный импульс в виде потенциала действия (трансмембранный ток, обусловленный ионами натрия и калия) «приходит» к синапсу, в пресинаптический элемент поступают ионы кальция.

Медиатор биологически активное вещество, выделяемое нервными окончаниями и передающее нервный импульс в синапсе. В передаче импульса к мышечному волокну используется медиаторацетилхолин.

Ионы кальция обеспечивают разрыв пузырьков и выход медиатора в синаптическую щель. Пройдя через синаптическую щель, медиатор связывается с белками-рецепторами на постсинаптической мембране. В результате этого взаимодействия на постсинаптической мембране возникает новый нервный импульс, который передается другим клеткам. После взаимодействия с рецепторами медиатор разрушается и удаляется белками-ферментами. Информация передается другим нервным клеткам в закодированном виде (частотные характеристики потенциалов, возникающих на постсинаптической мембране; упрощенным аналогом такого кода является штрих-код на упаковках товаров). «Расшифровка» происходит в соответствующих нервных центрах.
Не связавшийся с рецептором медиатор либо разрушается специальными ферментами, либо захватывается обратно в пузырьки пресинаптического окончания.

Завораживающее видео о том как проходит нервный импульс:

Еще более красивое видео

Синапс

Как проводится нервный импульс (слайд шоу)

Человека выступает своеобразным координатором в нашем организме. Она передаёт команды от мозга мускулатуре, органам, тканям и обрабатывает сигналы, идущие от них. В качестве своеобразного носителя данных используется нервный импульс. Что он собой представляет? С какой скоростью работает? На эти, а также на ряд других вопросов можно будет найти ответ в этой статье.

Чем является нервный импульс?

Так называют волну возбуждения, что распространяется по волокнам как ответ на раздражение нейронов. Благодаря этому механизму обеспечивается передача информации от различных рецепторов к центральной нервной системе. А от неё, в свою очередь, к разным органам (мышцы и железы). А что же этот процесс являет собой на физиологическом уровне? Механизм передачи нервного импульса заключается в том, что мембраны нейронов могут менять свой электрохимический потенциал. И интересующий нас процесс совершается в области синапсов. Скорость нервного импульса может меняться в рамках от 3 до 12 метров за секунду. Более детально о ней, а также о факторах, что на неё влияют, мы ещё поговорим.

Исследование строения и работы

Впервые прохождение нервного импульса было продемонстрировано немецкими учеными Э. Герингом и Г. Гельмгольцем на примере лягушки. Тогда же и было установлено, что биоэлектрический сигнал распространяется с указанной ранее скоростью. Вообще, такое является возможным благодаря особенному построению В некотором роде они напоминают электрический кабель. Так, если проводить параллели с ним, то проводниками являются аксоны, а изоляторами - их миелиновые оболочки (они являют собой мембрану шванновской клетки, которая намотана в несколько слоев). Причем скорость нервного импульса зависит в первую очередь от диаметра волокон. Вторым по важности считается качество электрической изоляции. Кстати, в качестве материала организмом используется липопротеид миелин, который обладает свойствами диэлектрика. При прочих равных условиях, чем больше будет его слой, тем быстрее будут проходить нервные импульсы. Даже на данный момент нельзя сказать, что эта система полноценно исследована. Многое, что относится к нервам и импульсам, ещё остаётся загадкой и предметом исследования.

Особенности строения и функционирования

Если говорить про путь нервного импульса, то необходимо отметить, что волокно покрывается не по всей своей длине. Особенности построения таковы, что сложившуюся ситуацию лучше всего будет сравнить с созданием изолирующих керамических муфт, что плотно нанизываются на стержень электрического кабеля (хотя в данном случае на аксон). Как результат - есть небольшие неизолированные электрические участки, с которых ионный ток может спокойно вытечь из аксона в окружающую среду (или наоборот). При этом раздражается мембрана. Вследствие этого вызывается генерация в участках, что не изолированы. Этот процесс называется перехватом Ранвье. Наличие такого механизма позволяет сделать так, чтобы нервный импульс распространялся значительно быстрее. Давайте об этом поговорим на примерах. Так, скорость проведения нервного импульса в толстом миелинизированном волокне, диаметр которого колеблется в рамках 10-20 микрон, составляет 70-120 метров за секунду. Тогда как у тех, у кого неоптимальная структура, этот показатель меньше в 60 раз!

Где они создаются?

Нервные импульсы возникают в нейронах. Возможность создания таких «посланий» является одним из основных их свойств. Нервный импульс обеспечивает быстрое распространение однотипных сигналов по аксонам на большое расстояние. Поэтому это самое важное средство организма для обмена информацией в нём. Данные о раздражении передаются с помощью изменения частоты их следования. Здесь работает сложная система периодики, которая может насчитывать сотни нервных импульсов в одну секунду. По несколько подобному принципу, хотя и значительно усложненному, работает компьютерная электроника. Так, когда нервные импульсы возникают в нейронах, то они кодируются определённым образом, а только потом уже передаются. При этом информация группируется в специальные «пачки», которые имеют разное число и характер следования. Всё это, сложенное вместе, и составляет основу для ритмической электрической активности нашего мозга, что можно зарегистрировать благодаря электроэнцефалограмме.

Типы клеток

Говоря про последовательность прохождения нервного импульса, нельзя обойти вниманием (нейроны), по которым и происходит передача электрических сигналов. Так, благодаря им обмениваются информацией разные части нашего организма. В зависимости от их структуры и функционала выделяют три типа:

  1. Рецепторные (чувствительные). Ими кодируются и превращаются в нервные импульсы все температурные, химические, звуковые, механические и световые раздражители.
  2. Вставочные (также называются кондукторными или замыкательными). Они служат для того, чтобы перерабатывать и переключать импульсы. Наибольшее их число находится в головном и спинном мозге человека.
  3. Эффекторные (двигательные). Они получают команды от центральной нервной системы на то, чтобы были совершены определённые действия (при ярком солнце закрыть рукой глаза и так далее).

Каждый нейрон имеет тело клетки и отросток. Путь нервного импульса по телу начинается именно с последнего. Отростки бывают двух типов:

  1. Дендриты. На них возложена функция восприятия раздражения расположенных на них рецепторов.
  2. Аксоны. Благодаря им нервные импульсы передаются от клеток к рабочему органу.

Говоря про проведение нервного импульса клетками, сложно не рассказать об одном интересном моменте. Так, когда они находятся в покое, то, скажем так, натриево-калиевый насос занимается перемещением ионов таким образом, чтобы достичь эффекта пресной воды внутри и соленой внешне. Благодаря получаемому дисбалансу разницы потенциалов на мембране можно наблюдать до 70 милливольт. Для сравнения - это 5% от обычных Но как только меняется состояние клетки, то получившееся равновесие нарушается, и ионы начинают меняться местами. Так происходит, когда через неё проходит путь нервного импульса. Благодаря активному действию ионов это действие и называют ещё потенциалом действия. Когда он достигает определённого показателя, то начинаются обратные процессы, и клетка достигает состояния покоя.

О потенциале действия

Говоря про преобразование нервного импульса и его распространение, следует отметить, что оно могло бы составлять жалкие миллиметры в секунду. Тогда бы сигналы от руки до мозга доходили бы за минуты, что явно нехорошо. Вот тут и играет свою роль в усилении потенциала действия рассмотренная ранее оболочка из миелина. А все её «пропуски» размещены таким образом, чтобы они только позитивно сказывались на скорости передачи сигналов. Так, когда импульсом достигается конец основной части одного тела аксона, то он передаётся либо следующей клетке, либо (если говорить о мозге) многочисленным ответвлениям нейронов. Вот в последних случаях работает немного другой принцип.

Как всё работает в мозгу?

Давайте поговорим, какая передаточная последовательность нервного импульса работает в наиболее важных частях нашей ЦНС. Здесь нейроны от своих соседей отделяются небольшими щелями, что называются синапсами. Потенциал действия не может переходить через них, поэтому он ищет иной способ, чтобы попасть к следующей нервной клетке. На конце каждого отростка есть небольшие мешочки, что называются пресинаптическими пузырьками. В каждом из них имеются особые соединения - нейромедиаторы. Когда к ним поступает потенциал действия, то высвобождаются из мешочков молекулы. Они пересекают синапс и присоединяются к особенным молекулярным рецепторам, что расположены на мембране. При этом нарушается равновесия и, вероятно, появляется новый потенциал действия. Достоверно это ещё не известно, нейрофизиологи занимаются изучениями вопроса и по сей день.

Работа нейромедиаторов

Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:

  1. Они будут диффундированы.
  2. Подвергнутся химическому расщеплению.
  3. Вернутся назад в свои пузырьки (это называется обратным захватом).

В конце 20-го века сделали поразительное открытие. Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом. Так, к примеру, ряд антидепрессантов вроде "Прозака" блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.

Сейчас исследователи, которые изучают пограничные состояния человеческой психики, пробуют разобраться, как же это всё влияет на рассудок человека. Ну а пока же у нас нет ответа на такой фундаментальный вопрос: что же заставляет нейрон создавать потенциал действия? Пока механизм «запуска» этой клетки для нас является секретом. Особенно интересным с точки зрения данной загадки является работа нейронов главного мозга.

Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп. На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение - необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека. Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.

Некоторые теоретические особенности

В статье «нервный импульс» и «потенциал действия» использовались в качестве синонимов. Теоретически это верно, хотя в некоторых случаях необходимо учитывать некоторые особенности. Так, если вдаваться в детали, то потенциал действия является только частью нервного импульса. При детализированном рассмотрении ученых книг можно узнать, что так называют только изменение заряда мембраны с положительного на отрицательный, и наоборот. Тогда как под нервным импульсом понимают сложный структурно-электрохимический процесс. Он распространяется по мембране нейрона как бегущая волна изменений. Потенциал действия - всего лишь электрический компонент в составе нервного импульса. Он характеризирует изменения, что происходят с зарядом локального участка мембраны.

Где же создаются нервные импульсы?

Откуда они начинают свой путь? Ответ на этот вопрос может дать любой студент, который прилежно изучал физиологию возбуждения. Есть четыре варианта:

  1. Рецепторное окончание дендрита. Если оно есть (что не факт), то возможным является наличие адекватного раздражителя, что создаст сначала генераторный потенциал, а потом уже и нервный импульс. Подобным образом работают болевые рецепторы.
  2. Мембрана возбуждающего синапса. Как правило, такое возможно только при наличии сильного раздражения или их суммирования.
  3. Триггерная зона дентрида. В этом случае локальные возбуждающие постсинаптические потенциалы формируются как ответ на раздражитель. Если первый перехват Ранвье миелинизирован, то они на нём суммируются. Благодаря наличию там участка мембраны, которая обладает повышенной чувствительностью, здесь возникает нервный импульс.
  4. Аксонный холмик. Так называют место, где начинается аксон. Холмик - это наиболее частый создать импульсов на нейроне. Во всех остальных местах, которые рассматривались ранее, их возникновение гораздо менее вероятное. Это происходит из-за того, что здесь мембрана имеет повышенную чувствительность, а также пониженный Поэтому, когда начинается суммирование многочисленных возбуждающих постсинаптических потенциалов, то раньше всего на них реагирует холмик.

Пример распространяющегося возбуждения

Рассказ медицинскими терминами может вызвать непонимание отдельных моментов. Чтобы устранить это, стоит кратко пройтись по изложенным знаниям. В качестве примера возьмем пожар.

Вспомните сводки из новостей прошлого лета (также это скоро можно будет услышать опять). Пожар распространяется! При этом деревья и кустарники, которые горят, остаются на своих местах. А вот фронт огня идёт всё дальше от места, где был очаг возгорания. Аналогичным образом работает нервная система.

Часто бывает необходимо успокоить начавшееся возбуждение нервной системы. Но это не так легко сделать, как и в случае с огнем. Для этого совершают искусственное вмешательство в работу нейрона (в лечебных целях) или используют различные физиологические средства. Это можно сравнить с заливанием пожара водой.

Что такое нервный импульс

Природа устроена очень просто.
Иначе ничего бы не работало.
Вот только простоты этой много.
Отсюда и все сложности.

Хотя сегодня о мозге и его строении известно очень много, однако на главный вопрос: «Как это работает?» пока ответа нет. Мозг представляется нам чёрным ящиком, на вход которого через рецепторы – органы чувств поступают «какие-то» сигналы, отображающие обстоятельства внешнего мира, а мозг в свою очередь, обрабатывает их, хранит и посылает «какие-то» управляющие команды к рабочим (исполнительным) органам.

Безответными остаются вопросы, как эта информация отображается, записывается (фиксируется) и извлекается.

Но, как бы то ни было, Наука не стоит на месте, и ученые значительно продвинулись в исследованиях мозга.

Есть идеи о том как функционируют нейроны, есть попытки построить логическую модель работы мозга. Правда, стоит коснуться вопросов передачи информации между нейронами и мы тут же натыкаемся на скромные уклончивые намеки на некие способы передачи возбуждения, химические и электрические способы передачи сигнала. Как бы вскользь при этом упоминается электрическая природа нервных импульсов.

Отсутствие конкретики дает простор для мистического и околонаучного фантазирования. Поэтому для понимания биофизических эффектов в мозге постоянно делаются попытки введения новых постулатов, например, о наличии в природе неких жизненных сил или торсионных полей.

Итак, современная модель работы мозга.
На сегодня доподлинно известно, что мозг состоит из большого количества отдельных логических элементов-нейронов. Каждый нейрон может возбуждаться сигналами, поступающими на его входы (аксоны ) с выходов (дендритов ) других нейронов, непосредственно связанных с ним. Возбудившись, этот нейрон пребывает в возбуждённом (!!! а не заряженном) состоянии и передает возбуждение через свои выходы на входы следующих логических элементов — нейронов.

Нейрон – специализированная нервная клетка с собственной оболочкой, набором внутриклеточных органелл и нейрофибриллами. От ее тела отходят длинный осевой отросток-аксон и короткие ветвящиеся дендриты. Дендриты получая нервные импульсы от других нейронов переводят их на аксон, по которому возбуждение распространяется без затухания до других нейронов или эффекторов - разного рода исполнительных органов (желез, мышц и т. п.). Словарь - Справочник Энтомолога Я бы еще выделил синапс. Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками.

Это практически все, что известно науке о работе нейрона. Все остальные знания сводятся к классификации нейронов по видам, размерам, количеству хвостиков и другим очень важным свойствам. Ну и естественно огромное количество выводов сделанных на основе по сути ошибочной идеи об электрической природе нервных импульсов.

А теперь давайте сделаем два предположения.
Первое – информация (возбуждение) от нейрона к нейрону передается в виде акустической (звуковой) волы.
Второе – нейрон представляет собой единичную колебательную систему (колебательный контур) и способен настраиваться на одну или несколько резонансных частот и находиться в автоколебательном состоянии, тем самым обеспечивая запоминание (хранение) информации.
Тогда нервный импульс есть не что иное как акустическая волна передаваемая по дендритам и аксонам нейрона. Само же тело нейрона представляет акустический колебательный контур или резонатор который в случае передачи информации способен осуществлять модуляцию проходящего через него нервного импульса, а в случае хранения информации находиться в автоколебательном состоянии на определенной частоте. Или, предположим, для выполнения функции записи, клетка меняет свои резонансные параметры и продолжает оставаться спокойной, а откликается только в случае обращения к ней.

Рассмотрим, как это все работает на примере РИСУНКА……

R1-Rn — рецепторы. Информация с рецепторов проходит через входы- дендриты, через тело нейрона на выход-аксон. Задача нервной системы донести информацию от рецептора до мозга. В простейшей схеме, изображенной на рисунке 1. это возможно только при условии, что сигналы индивидуально различимы. То есть выходной сигнал несет в себе информацию о конкретном рецепторе, с которого начался нервный импульс. Предположим, что в нашем случае, нервные импульсы различаются частотой.

А теперь намного усложним задачу. Предположим, что нервный импульс предается от рецептора через последовательность нейронов, например, два. см. рис.2.
В данном примере нервный импульс на выходе схемы должен содержать информацию не только о рецепторе, с которого он поступил, но и обо всех нейронах, через которые он предавался. Можно предположить, что каждый нейрон участвующий в передаче импульса привносит в него свою информационную составляющую. Например, модуляцию частотного сигнала, идущего от рецептора.

Все нервные импульсы неповторимы как штрих-коды на товарах в супермаркете, как отпечатки пальцев. Они уникальны и несут в себе информацию о факте раздражения рецептора и о пройденном пути.
В нервной системе человека ежесекундно проносятся миллионы нервных импульсов. Предложенная выше схема позволяет объяснить как совершенно разные импульсы могут передаваться по одним и тем же нервным каналам, как может работать служба рассылки импульсов.

Что нам дают подобные предположения.

  • Во-первых, акустическая идея дает нам маломальски правдоподобную, с точки зрения физики, теорию передачи информации внутри живого организма.
  • Во-вторых, объясняет способы хранения информации в мозге.
  • В-третьих, дает возможность объяснения непостижимых на сей момент времени жизненных феноменов, дает инструмент самопознания.
  • В-четвёртых, это новая парадигма в медицине, особенно в терапии.

Риторический вопрос, что является причиной болезни, патология органа или патология управляющего органом сигнала? Теоретически возможно и то и другое, причем в равной степени вероятности. Так что же лечит современная терапия (с хирургией понятнее)? И может быть плацебо и гомеопатия, над которыми вежливо посмеиваются «настоящие» доктора, есть не такая уж и глупость основанная на самовнушении пациента, а как раз и есть лечение путем корректировки системы управления. Лечения опосредованного, через внешние функции мозга, но что если возможно лечение путем . Например, вспомним современные стимуляторы деятельности сердца, работающие на батарейках. А если стимулировать работу сердца не электрическими импульсами по принципу « », а свойственным ему от природы управляющим (акустическим волновым) сигналом. Может тогда и операция не нужна, достаточно приложить акустический генератор к любой части тела или к любому нейрону и сигнал сам найдет свою цель.

Проведение нервных импульсов по нервным волокнам и через синапсы. Высоковольтный потенциал, возникающий при возбуждении рецептора в нервном волокне, в 5-10 раз больше порога раздражения рецептора. Проведение волны возбуждения по нервному волокну обеспечивается тем, что каждый последующий его участок раздражается высоковольтным потенциалом предыдущего участка. В мякотных нервных волокнах этот потенциал распространяется не непрерывно, а скачкообразно; он перескакивает через один или даже несколько перехватов Ранвье, в которых усиливается. Продолжительность проведения возбуждения между двумя соседними перехватами Ранвье равняется 5-10% длительности высоковольтного потенциала.


Проведение нервного импульса по нервному волокну происходит только при условии его анатомической непрерывности и нормального физиологического его состояния. Нарушение физиологических свойств нервного волокна сильным охлаждением или отравлением ядами и наркотиками прекращает проведение нервного импульса даже при анатомической его непрерывности.

Нервные импульсы проводятся изолированно по отдельным двигательным и чувствительным нервным волокнам, которые входят в состав смешанного нерва, что зависит от изолирующих свойств покрывающих их миелиновых оболочек. В безмякотных нервных волокнах биоток распространяется непрерывно вдоль волокна и благодаря соединительнотканой оболочке не переходит с одного волокна на другое. Нервный импульс может распространяться по нервному волокну в двух направлениях: центростремительном и центробежном. Следовательно, существуют три правила проведения нервного импульса в нервных волокнах: 1) анатомической непрерывности и физиологической целости, 2) изолированного проведения и 3) двустороннего проведения.

Через 2-3 дня после отделения нервных волокон от тела нейрона они начинают перерождаться, или дегенерировать, и проведение нервных импульсов прекращается. Нервные волокна и миелин разрушаются и сохраняется только соединительнотканая оболочка. Если соединить перерезанные концы нервных волокон, или нерва, то после дегенерации тех участков, которые отделены от нервных клеток, начинается восстановление, или регенерация, нервных волокон со стороны тел нейронов, из которых они прорастают в сохранившиеся соединительнотканые оболочки. Регенерация нервных волокон приводит к восстановлению проведения импульсов.

В отличие от нервных волокон через нейроны нервной системы нервные импульсы проводятся только в одном направлении - от рецептора к работающему органу. Это зависит от характера проведения нервного импульса через синапсы. В нервном волокне над пресинаптической мембраной есть множество мельчайших пузырьков ацетилхолина. При достижении биотоком пресинаптической мембраны часть этих пузырьков лопается, и ацетилхолин проходит через мельчайшие отверстия в пресинаптической мембране в синаптическую щель.
В постсинаптической мембране имеются участки, обладающие особым сродством к ацетилхолину, который вызывает временное появление пор в постсинаптической мембране, отчего она становится временно проницаемой для ионов. В результате в постсинаптической мембране возникает возбуждение и высоковольтный потенциал, который распространяется по следующему нейрону или по иннервируемому органу. Следовательно, передача возбуждения через синапсы происходит химическим путем посредством посредника, или медиатора, ацетилхолина, а проведение возбуждения по следующему нейрону снова осуществляется электрическим путем.

Действие ацетилхолина на проведение нервного импульса через синапс кратковременно; он быстро разрушается, гидролизуется ферментом холинэстеразой.

Так как химическая передача нервного импульса в синапсе происходит в течение доли мсек, то в каждом синапсе нервный импульс на это время задерживается.

В отличие от нервных волокон, в которых информация передается по принципу «все или ничего», т. е. дискретно, в синапсах информация передается по принципу «больше или меньше», т. е. градуально. Чем больше до некоторого предела образуется медиатора ацетилхолина, тем выше частота высоковольтных потенциалов в последующем нейроне. После этого предела возбуждение переходит в торможение. Таким образом, цифровая информация, передаваемая по нервным волокнам, переходит в синапсах в измерительную информацию. Измерительные электронные машины,

в которых имеются определенные соотношения между реально измеряемыми количествами и теми величинами, которые они представляют, называются аналоговыми, работающими по принципу «больше или меньше»; можно считать, что в синапсах происходит аналогичный процесс и совершается его переход в цифровой. Следовательно, нервная система функционирует по смешанному типу: в ней совершаются и цифровые и аналоговые процессы.

8317 0

Нейроны

У высших животных нервные клетки образуют органы центральной нервной системы (ЦНС) - головной и спинной мозг — и периферической нервной системы (ПНС), которая включает в себя нервы и их отростки, соединяющие ЦНС с мышцами, железами и рецепторами.

Структура

Нервные клетки не воспроизводятся митозом (делением клеток). Нейроны называют амитотическими клетками - если они разрушены, они уже не восстановятся. Ганглии — это пучки нервных клеток вне ЦНС. Все нейроны состоят из перечисленных ниже элементов.

Тело клетки . Это ядро и цитоплазма.

Аксон. Это длинный, тонкий отросток, который передает информацию от тела клетки к другим кяеткам через соединения, называемые синапсами. Некоторые аксоны имеют длину меньше сантиметра, а другие — более 90 см. Большинство аксонов находятся в защитном веществе, называемом миелиновой оболочкой, которая помогает ускорить процесс передачи нервных импульсов. Сужения на аксоне через определенный промежуток называются перехватами Ранвье.

Дендриты. Это сеть коротких волокон, которые отходят от аксона или тела клетки и соединяют концы аксонов от других нейронов. Дендриты получают информацию для клетки, получая и проводя сигналы. У каждого нейрона могут быть сотни дендритов.

Структура нейрона

Функции

Нейроны контактируют друг с другом электрохимическим способом, передавая импульсы по всему телу.

Миелиновая оболочка

. Шванновские клетки обвивают спиралью один или более аксонов (а) , образуя миелиновую оболочку.
. Она состоит из нескольких слоев (возможно, 50-100) плазматических мембран (б) , между которыми циркулирует жидкая цитозоль (цитоплазма, лишенная ипохондрий и др. элементов эндоплазматической сети), за исключением самого верхнего слоя (в) .
. Миелиновая оболочка вокруг длинного аксона разделена на сегменты, каждый из которых образован отдельной Шванновской клеткой.
. Соседние сегменты разделены сужениями, называемым перехватами Ранвье (г) , где аксон не имеет миелиновой оболочки.

Нервные импульсы

У высших животных сигналы посылаются по всему телу и от головного мозга в виде электрических импульсов, передаваемых через нервы. Нервы создают импульсы, когда происходит физическое, химическое или электрическое изменение мембраны клетки.

1 Покоящийся нейрон

Покоящийся нейрон имеет отрицательный заряд внутри мембраны клетки (а) и позитивный заряд вне этой мембраны (б). Такое явление называется остаточным потенциалом мембраны.

Он поддерживается двумя факторами:

Различная проницаемость клеточной мембраны для ионов натрия и калия, у которых одинаковый положительный заряд. Натрий диффузирует (проходит) в клетку медленнее, чем калий выходит из нее.

Обмен натрий-калий, при котором из клетки выходит больше положительных ионов, чем входит в нее. В результате вне клеточной мембраны скапливается большая часть положительных ионов, чем внутри нее.

2 Стимулированный нейрон

Кода нейрон стимулируется, проницаемость какого-либо участка (в) клеточной мембраны изменяется. Положительные ионы натрия (г) начинают проникать в клетку быстрее, чем в покоящемся положении, что приводит к повышению положительного потенциала внутри клетки. Это явление называется деполяризацией.

3 Нервный импульс

Деполяризация постепенно распространяется на всю клеточную мембрану (д). Постепенно заряды по сторонам клеточной мембраны меняются (не некоторое время). Это явление называется обратной поляризацией. Это и есть, по сути, нервный импульс, передающийся вдоль клеточной мембраны нервной клетки.

4 Реполяризация

Проницаемость клеточной мембраны снова меняется. Положительные ионы натрия (Na+) начинают выходит из клетки (е). Наконец, вне клетки снова образуется положительный заряд, а внутри нее - положительный. Этот процесс называется реполяризацией.