Им пульс тела. Импульс и момент импульса в физике: формулы, описывающие закон сохранения этих величин

Импульс силы. Импульс тела

Основные динамические величины: сила, масса, импульс тела, момент силы, момент импульса.

Сила – это век­тор­ная ве­ли­чи­на, яв­ля­ю­ща­я­ся мерой дей­ствия на дан­ное тело дру­гих тел или полей.

Сила ха­рак­те­ри­зу­ет­ся:

· Мо­ду­лем

· На­прав­ле­ни­ем

· Точ­кой при­ло­же­ния

В си­сте­ме СИ сила из­ме­ря­ет­ся в нью­то­нах.

Для того чтобы по­нять, что такое сила в один нью­тон, нам нужно вспом­нить, что сила, при­ло­жен­ная к телу, из­ме­ня­ет его ско­рость. Кроме того, вспом­ним о инерт­но­сти тел, ко­то­рая, как мы пом­ним, свя­за­на с их мас­сой. Итак,

Один нью­тон – это такая сила, ко­то­рая ме­ня­ет ско­рость тела мас­сой в 1 кг на 1 м/с за каж­дую се­кун­ду.

При­ме­ра­ми сил могут слу­жить:

· Сила тя­же­сти – сила, дей­ству­ю­щая на тело в ре­зуль­та­те гра­ви­та­ци­он­но­го вза­и­мо­дей­ствия.

· Сила упру­го­сти – сила, с ко­то­рой тело со­про­тив­ля­ет­ся внеш­ней на­груз­ке. Ее при­чи­ной яв­ля­ет­ся элек­тро­маг­нит­ное вза­и­мо­дей­ствие мо­ле­кул тела.

· Сила Ар­хи­ме­да – сила, свя­зан­ная с тем, что тело вы­тес­ня­ет некий объем жид­ко­сти или газа.

· Сила ре­ак­ции опоры – сила, с ко­то­рой опора дей­ству­ет на тело, на­хо­дя­ще­е­ся на ней.

· Сила тре­ния – сила со­про­тив­ле­ния от­но­си­тель­но­му пе­ре­ме­ще­нию кон­так­ти­ру­ю­щих по­верх­но­стей тел.

· Сила по­верх­ност­но­го на­тя­же­ния – сила, воз­ни­ка­ю­щая на гра­ни­це раз­де­ла двух сред.

· Вес тела – сила, с ко­то­рой тело дей­ству­ет на го­ри­зон­таль­ную опору или вер­ти­каль­ный под­вес.

И дру­гие силы.

Сила из­ме­ря­ет­ся с по­мо­щью спе­ци­аль­но­го при­бо­ра. Этот при­бор на­зы­ва­ет­ся ди­на­мо­мет­ром (рис. 1). Ди­на­мо­метр со­сто­ит из пру­жи­ны 1, рас­тя­же­ние ко­то­рой и по­ка­зы­ва­ет нам силу, стрел­ки 2, сколь­зя­щей по шкале 3, план­ки-огра­ни­чи­те­ля 4, ко­то­рая не дает рас­тя­нуть­ся пру­жине слиш­ком силь­но, и крюч­ка 5, к ко­то­ро­му под­ве­ши­ва­ет­ся груз.

Рис. 1. Ди­на­мо­метр (Ис­точ­ник)

На тело могут дей­ство­вать мно­гие силы. Для того чтобы пра­виль­но опи­сать дви­же­ние тела, удоб­но поль­зо­вать­ся по­ня­ти­ем рав­но­дей­ству­ю­щей сил.

Рав­но­дей­ству­ю­щая сил – это сила, дей­ствие ко­то­рой за­ме­ня­ет дей­ствие всех сил, при­ло­жен­ных к телу (Рис. 2).

Зная пра­ви­ла ра­бо­ты с век­тор­ны­ми ве­ли­чи­на­ми, легко до­га­дать­ся, что рав­но­дей­ству­ю­щая всех сил, при­ло­жен­ных к телу – это век­тор­ная сумма этих сил.

Рис. 2. Рав­но­дей­ству­ю­щая двух сил, дей­ству­ю­щих на тело

Кроме того, по­сколь­ку мы с вами рас­смат­ри­ва­ем дви­же­ние тела в ка­кой-ли­бо си­сте­ме ко­ор­ди­нат, нам обыч­но вы­год­но рас­смат­ри­вать не саму силу, а ее про­ек­цию на ось. Про­ек­ция силы на ось может быть от­ри­ца­тель­ной или по­ло­жи­тель­ной, по­то­му что про­ек­ция – это ве­ли­чи­на ска­ляр­ная. Так, на ри­сун­ке 3 изоб­ра­же­ны про­ек­ции сил, про­ек­ция силы – от­ри­ца­тель­на, а про­ек­ция силы – по­ло­жи­тель­на.

Рис. 3. Про­ек­ции сил на ось

Итак, из этого урока мы с вами углу­би­ли свое по­ни­ма­ние по­ня­тия силы. Мы вспом­ни­ли еди­ни­цы из­ме­ре­ния силы и при­бор, с по­мо­щью ко­то­ро­го из­ме­ря­ет­ся сила. Кроме того, мы рас­смот­ре­ли, какие силы су­ще­ству­ют в при­ро­де. На­ко­нец, мы узна­ли, как можно дей­ство­вать в слу­чае, если на тело дей­ству­ет несколь­ко сил.

Масса , физическая величина, одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства. Соответственно различают Массу инертную и Массу гравитационную (тяжелую, тяготеющую).

Понятие Масса было введено в механику И. Ньютоном. В классической механике Ньютона Масса входит в определение импульса (количества движения) тела: импульс р пропорционален скорости движения тела v , p = mv (1). Коэффициент пропорциональности - постоянная для данного тела величина m - и есть Масса тела. Эквивалентное определение Массы получается из уравнения движения классической механики f = ma (2). Здесь Масса - коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a . Определенная соотношениями (1) и (2) Масса называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше Масса тела, тем меньшее ускорение оно приобретает, т. е. тем медленнее меняется состояние его движения (тем больше его инерция).

Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения Масса этих тел: m 1: m 2: m 3 ... = а 1: а 2: а 3 ... ; если одну из Масс принять за единицу измерения, можно найти Массу остальных тел.

В теории гравитации Ньютона Масса выступает в другой форме - как источник поля тяготения. Каждое тело создает поле тяготения, пропорциональное Массе тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна Массе тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой законом тяготения Ньютона:

(3)

где r - расстояние между телами, G - универсальная гравитационная постоянная, a m 1 и m 2 - Массы притягивающихся тел. Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли: Р = mg (4).

Здесь g = G*M/r 2 - ускорение свободного падения в гравитационном поле Земли, а r » R - радиусу Земли. Масса, определяемая соотношениями (3) и (4), называется гравитационной массой тела.

В принципе ниоткуда не следует, что Масса, создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная Масса и гравитационная Масса пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г.Галилея, установившего, что все тела на Земле падают с одинаковым ускорением. А.Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности. Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890-1906) прецизионная проверка равенства инертной и гравитационной Масс была произведена Л.Этвешем, который нашел, что Массы совпадают с ошибкой ~ 10 -8 . В 1959-64 годах американские физики Р.Дикке, Р.Кротков и П.Ролл уменьшили ошибку до 10 -11 , а в 1971 году советские физики В.Б.Брагинский и В.И.Панов - до 10 -12 .



Принцип эквивалентности позволяет наиболее естественно определять Массу тела взвешиванием.

Первоначально Масса рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчеркивает аддитивность Массы - Масса тела равна сумме Массы его частей. Масса однородного тела пропорциональна его объему, поэтому можно ввести понятие плотности - Массы единицы объема тела.

В классической физике считалось, что Масса тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения Массы (вещества), открытый М.В.Ломоносовым и А.Л.Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма Масс исходных компонентов равна сумме Масс конечных компонентов.

Понятие Масса приобрело более глубокий смысл в механике специальной теории относительности А. Эйнштейна, рассматривающей движение тел (или частиц) с очень большими скоростями - сравнимыми со скоростью света с ~ 3 10 10 см/сек. В новой механике - она называется релятивистской механикой - связь между импульсом и скоростью частицы дается соотношением:

(5)

При малых скоростях (v << c ) это соотношение переходит в Ньютоново соотношение р = mv . Поэтому величину m 0 называют массой покоя, а Массу движущейся частицы m определяют как зависящий от скорости коэффициент пропорциональности между p и v :

(6)

Имея в виду, в частности, эту формулу, говорят, что Масса частицы (тела) растет с увеличением ее скорости. Такое релятивистское возрастание Массы частицы по мере повышения ее скорости необходимо учитывать при конструировании ускорителей заряженных частиц высоких энергий. Масса покоя m 0 (Масса в системе отсчета, связанной с частицей) является важнейшей внутренней характеристикой частицы. Все элементарные частицы обладают строго определенными значениями m 0 , присущими данному сорту частиц.

Следует отметить, что в релятивистской механике определение Массы из уравнения движения (2) не эквивалентно определению Массы как коэффициента пропорциональности между импульсом и скоростью частицы, так как ускорение перестает быть параллельным вызвавшей его силе и Масса получается зависящей от направления скорости частицы.

Согласно теории относительности, Масса частицы m связана с ее энергией Е соотношением:

(7)

Масса покоя определяет внутреннюю энергию частицы - так называемую энергию покоя Е 0 = m 0 с 2 . Таким образом, с Массой всегда связана энергия (и наоборот). Поэтому не существует по отдельности (как в классической физике) закона сохранения Массы и закона сохранения энергии - они слиты в единый закон сохранения полной (т. е. включающей энергию покоя частиц) энергии. Приближенное разделение на закон сохранения энергии и закон сохранения Массы возможно лишь в классической физике, когда скорости частиц малы (v << c ) и не происходят процессы превращения частиц.

В релятивистской механике Масса не является аддитивной характеристикой тела. Когда две частицы соединяются, образуя одно составное устойчивое состояние, то при этом выделяется избыток энергии (равный энергии связи) DЕ , который соответствует Массе Dm = DE/с 2 . Поэтому Масса составной частицы меньше суммы Масс образующих его частиц на величину DE/с 2 (так называемый дефект масс). Этот эффект проявляется особенно сильно в ядерных реакциях. Например, Масса дейтрона (d ) меньше суммы Масс протона (p ) и нейтрона (n ); дефект Масс Dm связан с энергией Е g гамма-кванта (g ), рождающегося при образовании дейтрона: р + n -> d + g , E g = Dmc 2 . Дефект Массы, возникающий при образовании составной частицы, отражает органическую связь Массы и энергии.

Единицей Массы в СГС системе единиц служит грамм , а вМеждународной системе единиц СИ - килограмм . Масса атомов и молекул обычно измеряется в атомных единицах массы. Масса элементарных частиц принято выражать либо в единицах Массы электрона m e , либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, Масса электрона составляет 0,511 Мэв, Масса протона - 1836,1 m e , или 938,2 Мэв и т. д.

Природа Массы - одна из важнейших нерешенных задач современной физики. Принято считать, что Масса элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория Массы еще не создана. Не существует также теории, объясняющей, почему Масса элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

В астрофизике Масса тела, создающего гравитационное поле, определяет так называемый гравитационный радиус тела R гр = 2GM/c 2 . Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R =< R гр . Звезды таких размеров будут невидимы; поэтому их назвали "черными дырами". Такие небесные тела должны играть важную роль во Вселенной.

Импульс силы. Импульс тела

По­ня­тие им­пуль­са было вве­де­но еще в пер­вой по­ло­вине XVII века Рене Де­кар­том, а затем уточ­не­но Иса­а­ком Нью­то­ном. Со­глас­но Нью­то­ну, ко­то­рый на­зы­вал им­пульс ко­ли­че­ством дви­же­ния, – это есть мера та­ко­во­го, про­пор­ци­о­наль­ная ско­ро­сти тела и его массе. Со­вре­мен­ное опре­де­ле­ние: им­пульс тела – это фи­зи­че­ская ве­ли­чи­на, рав­ная про­из­ве­де­нию массы тела на его ско­рость:

Пре­жде всего, из при­ве­ден­ной фор­му­лы видно, что им­пульс – ве­ли­чи­на век­тор­ная и его на­прав­ле­ние сов­па­да­ет с на­прав­ле­ни­ем ско­ро­сти тела, еди­ни­цей из­ме­ре­ния им­пуль­са слу­жит:

= [ кг· м/с]

Рас­смот­рим, каким же об­ра­зом эта фи­зи­че­ская ве­ли­чи­на свя­за­на с за­ко­на­ми дви­же­ния. За­пи­шем вто­рой закон Нью­то­на, учи­ты­вая, что уско­ре­ние есть из­ме­не­ние ско­ро­сти с те­че­ни­ем вре­ме­ни:

На­ли­цо связь между дей­ству­ю­щей на тело силой, точ­нее, рав­но­дей­ству­ю­щей сил и из­ме­не­ни­ем его им­пуль­са. Ве­ли­чи­на про­из­ве­де­ния силы на про­ме­жу­ток вре­ме­ни носит на­зва­ние им­пуль­са силы. Из при­ве­ден­ной фор­му­лы видно, что из­ме­не­ние им­пуль­са тела равно им­пуль­су силы.

Какие эф­фек­ты можно опи­сать с по­мо­щью дан­но­го урав­не­ния (рис. 1)?

Рис. 1. Связь им­пуль­са силы с им­пуль­сом тела (Ис­точ­ник)

Стре­ла, вы­пус­ка­е­мая из лука. Чем доль­ше про­дол­жа­ет­ся кон­такт те­ти­вы со стре­лой (∆t), тем боль­ше из­ме­не­ние им­пуль­са стре­лы (∆ ), а сле­до­ва­тель­но, тем выше ее ко­неч­ная ско­рость.

Два стал­ки­ва­ю­щих­ся ша­ри­ка. Пока ша­ри­ки на­хо­дят­ся в кон­так­те, они дей­ству­ют друг на друга с рав­ны­ми по мо­ду­лю си­ла­ми, как учит нас тре­тий закон Нью­то­на. Зна­чит, из­ме­не­ния их им­пуль­сов также долж­ны быть равны по мо­ду­лю, даже если массы ша­ри­ков не равны.

Про­ана­ли­зи­ро­вав фор­му­лы, можно сде­лать два важ­ных вы­во­да:

1. Оди­на­ко­вые силы, дей­ству­ю­щие в те­че­ние оди­на­ко­во­го про­ме­жут­ка вре­ме­ни, вы­зы­ва­ют оди­на­ко­вые из­ме­не­ния им­пуль­са у раз­лич­ных тел, неза­ви­си­мо от массы по­след­них.

2. Од­но­го и того же из­ме­не­ния им­пуль­са тела можно до­бить­ся, либо дей­ствуя неболь­шой силой в те­че­ние дли­тель­но­го про­ме­жут­ка вре­ме­ни, либо дей­ствуя крат­ко­вре­мен­но боль­шой силой на то же самое тело.

Со­глас­но вто­ро­му за­ко­ну Нью­то­на, можем за­пи­сать:

∆t = ∆ = ∆ / ∆t

От­но­ше­ние из­ме­не­ния им­пуль­са тела к про­ме­жут­ку вре­ме­ни, в те­че­ние ко­то­ро­го это из­ме­не­ние про­изо­шло, равно сумме сил, дей­ству­ю­щих на тело.

Про­ана­ли­зи­ро­вав это урав­не­ние, мы видим, что вто­рой закон Нью­то­на поз­во­ля­ет рас­ши­рить класс ре­ша­е­мых задач и вклю­чить за­да­чи, в ко­то­рых масса тел из­ме­ня­ет­ся с те­че­ни­ем вре­ме­ни.

Если же по­пы­тать­ся ре­шить за­да­чи с пе­ре­мен­ной мас­сой тел при по­мо­щи обыч­ной фор­му­ли­ров­ки вто­ро­го за­ко­на Нью­то­на:

то по­пыт­ка та­ко­го ре­ше­ния при­ве­ла бы к ошиб­ке.

При­ме­ром тому могут слу­жить уже упо­ми­на­е­мые ре­ак­тив­ный са­мо­лет или кос­ми­че­ская ра­ке­та, ко­то­рые при дви­же­нии сжи­га­ют топ­ли­во, и про­дук­ты этого сжи­га­е­мо­го вы­бра­сы­ва­ют в окру­жа­ю­щее про­стран­ство. Есте­ствен­но, масса са­мо­ле­та или ра­ке­ты умень­ша­ет­ся по мере рас­хо­да топ­ли­ва.

МОМЕНТ СИЛЫ - величина, характеризующая вращательный эффект силы; имеет размерность произведения длины на силу. Различают момент силы относительно центра (точки) и относительно оси.

M. с. относительно центра О наз. векторная величина M 0 , равная векторному произведению радиуса-вектора r , проведённого из O в точку приложения силы F , на силуM 0 = [rF ] или в др. обозначениях M 0 = r F (рис.). Численно M. с. равен произведению модуля силы на плечо h , т. е. на длину перпендикуляра, опущенного из О на линию действия силы, или удвоенной площади

треугольника, построенного на центре O и силе:

Направлен вектор M 0 перпендикулярно плоскости, проходящей через O и F . Сторона, куда направляется M 0 , выбирается условно (M 0 - аксиальный вектор). При правой системе координат вектор M 0 направляют в ту сторону, откуда поворот, совершаемый силой, виден против хода часовой стрелки.

M. с. относительно оси z наз. скалярная величина M z , равная проекции на ось z вектора M. с. относительно любого центра О , взятого на этой оси; величину M z можно ещё определять как проекцию на плоскость ху , перпендикулярную оси z, площади треугольника OAB или как момент проекции F xy силы F на плоскость ху , взятый относительно точки пересечения оси z с этой плоскостью. T. о.,

В двух последних выражениях M. с. считается положительным, когда поворот силы F xy виден с положит. конца оси z против хода часовой стрелки (в правой системе координат). M. с. относительно координатных осей Oxyz могут также вычисляться по аналитич. ф-лам:

где F x , F y , F z - проекции силы F на координатные оси, х, у, z - координаты точки А приложения силы. Величины M x , M y , M z равны проекциям вектора M 0 на координатные оси.

В повседневной жизни для того, чтобы охарактеризовать человека, совершающего спонтанные поступки, иногда используют эпитет «импульсивный». При этом некоторые люди даже не помнят, а значительная часть и вовсе не знает, с какой физической величиной связано это слово. Что скрывается под понятием «импульс тела» и какими свойствами он обладает? Ответы на эти вопросы искали такие великие ученые, как Рене Декарт и Исаак Ньютон.

Как и всякая наука, физика оперирует четко сформулированными понятиями. На данный момент принято следующее определение для величины, носящей название импульса тела: это векторная величина, которая является мерой (количеством) механического движения тела.

Предположим, что вопрос рассматривается в рамках классической механики, т. е. считается, что тело движется с обычной, а не с релятивистской скоростью, а значит, она хотя бы на порядок меньше скорости света в вакууме. Тогда модуль импульса тела рассчитывается по формуле 1 (см. фото ниже).

Таким образом, по определению, эта величина равна произведению массы тела на его скорость, с которой сонаправлен ее вектор.

В качестве единицы измерения импульса в СИ (Международной системе единиц) принимается 1 кг/м/с.

Откуда появился термин «импульс»

За несколько веков до того, как в физике появилось понятие количества механического движения тела, считалось, что причиной любого перемещения в пространстве является особая сила — импетус.

В 14 веке в это понятие внес коррективы Жан Буридан. Он предположил, что летящий булыжник обладает импетусом, прямо пропорциональным скорости, который был бы неизменным, если бы отсутствовало сопротивления воздуха. В то же время, по мнению этого философа, тела с большим весом обладали способностью «вмещать» больше такой движущей силы.

Дальнейшее развитие понятию, позднее названного импульсом, дал Рене Декарт, который обозначил его словами «количество движения». Однако он не учитывал, что скорость имеет направление. Именно поэтому выдвинутая им теория в некоторых случаях противоречила опыту и не нашла признания.

О том, что количество движения должно иметь еще и направление, первым догадался английский ученый Джон Валлис. Произошло это в 1668 году. Однако понадобилась еще пара лет, чтобы он сформулировал известный закон сохранения количества движения. Теоретическое доказательство этого факта, установленного эмпирическим путем, было дано Исааком Ньютоном, который использовал открытые им же третий и второй законы классической механики, названные его именем.

Импульс системы материальных точек

Рассмотрим сначала случай, когда речь идет о скоростях, намного меньших, чем скорость света. Тогда, согласно законам классической механики, полный импульс системы материальных точек представляет векторную величину. Он равен сумме произведений их масс на скорости (см. формулу 2 на картинке выше).

При этом за импульс одной материальной точки принимают векторную величину (формула 3), которая сонаправлена со скоростью частицы.

Если речь идет о теле конечного размера, то сначала его мысленно разбивают на малые части. Таким образом, снова рассматривается система материальных точек, однако ее импульс рассчитывают не обычным суммированием, а путем интегрирования (см. формулу 4).

Как видим, временная зависимость отсутствует, поэтому импульс системы, на которую не воздействуют внешние силы (или их влияние взаимно компенсировано), остается неизменным во времени.

Доказательство закона сохранения

Продолжим рассматривать тело конечного размера как систему материальных точек. Для каждой из них Второй закон Ньютона формулируется согласно формуле 5.

Обратим внимание на то, что система замкнутая. Тогда, суммируя по всем точкам и применяя Третий закон Ньютона, получаем выражение 6.

Таким образом, импульс замкнутой системы является постоянной величиной.

Закон сохранения справедлив и в тех случаях, когда полная сумма сил, которые действуют на на систему извне, равна нулю. Отсюда следует одно важное частное утверждение. Оно гласит, что импульс тела является постоянной величиной, если воздействие извне отсутствует или влияние нескольких сил скомпенсировано. Например, в отсутствие трения после удара клюшкой шайба должна сохранять свой импульс. Такая ситуация будет наблюдаться даже невзирая на то, что на это тело действуют сила тяжести и реакции опоры (льда), так как они, хотя и равны по модулю, однако направлены в противоположные стороны, т. е. компенсируют друг друга.

Свойства

Импульс тела или материальной точки является аддитивной величиной. Что это значит? Все просто: импульс механической системы материальных точек складывается из импульсов всех входящих в систему материальных точек.

Второе свойство этой величины заключается в том, что она остается неизменной при взаимодействиях, которые изменяют лишь механические характеристики системы.

Кроме того, импульс инвариантен по отношению к любому повороту системы отсчета.

Релятивистский случай

Предположим, что речь идет о невзаимодействующих материальных точках, имеющих скорости порядка 10 в 8-й степени или чуть меньше в системе СИ. Трехмерный импульс рассчитывается по формуле 7, где под с понимают скорость света вакууме.

В случае, когда она замкнутая, верен закон сохранения количества движения. В то же время трехмерный импульс не является релятивистски инвариантной величиной, так как присутствует его зависимость от системы отсчета. Есть также четырехмерный вариант. Для одной материальной точки его определяют по формуле 8.

Импульс и энергия

Эти величины, а также масса тесно связаны друг с другом. В практических задачах обычно применяются соотношения (9) и (10).

Определение через волны де Бройля

В 1924 году была высказана гипотеза о том, что корпускулярно-волновым дуализмом обладают не только фотоны, но и любые другие частицы (протоны, электроны, атомы). Ее автором стал французский ученый Луи де Бройль. Если перевести эту гипотезу на язык математики, то можно утверждать, что с любой частицей, имеющей энергию и импульс, связана волна с частотой и длиной, выражаемыми формулами 11 и 12 соответственно (h — постоянная Планка).

Из последнего соотношения получаем, что модуль импульса и длина волны, обозначаемая буквой «лямбда», обратно пропорциональны друг другу (13).

Если рассматривается частица со сравнительно невысокой энергией, которая движется со скоростью, несоизмеримой со скоростью света, то модуль импульса вычисляется так же, как в классической механике (см. формулу 1). Следовательно, длина волны рассчитывается согласно выражению 14. Иными словами, она обратно пропорциональна произведению массы и скорости частицы, т. е. ее импульсу.

Теперь вы знаете, что импульс тела — это мера механического движения, и познакомились с его свойствами. Среди них в практическом плане особенно важен Закон сохранения. Даже люди, далекие от физики, наблюдают его в повседневной жизни. Например, всем известно, что огнестрельное оружие и артиллерийские орудия дают отдачу при стрельбе. Закон сохранения импульса наглядно демонстрирует и игра в бильярд. С его помощью можно предсказать направления разлета шаров после удара.

Закон нашел применение при расчетах, необходимых для изучения последствий возможных взрывов, в области создания реактивных аппаратов, при проектировании огнестрельного оружия и во многих других сферах жизни.

Его движения , т.е. величина .

Импульс — величина векторная, совпадающая по направлению с вектором скорости .

Единица измерения импульса в системе СИ: кг м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие . Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1

Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

откуда скорость вагона после попадания в него снаряда:

Переводим единицы в систему СИ: т кг.

Вычислим:

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.

ПРИМЕР 2

Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке . В этой точке он разорвался на две части. Меньшая часть массой m 1 =3 кг получила скорость v 1 =400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для :

Учитывая, что , а также что , находим скорость второго осколка:

Подставив в полученную формулу численные значения физических величин, вычислим:

Направление полета большей части снаряда определим, воспользовавшись :

Подставив в формулу численные значения, получим:

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.

ПРИМЕР 3

Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»:

Изменяются, так как на каждое из тел действуют силы взаимодействия, однако сумма импульсов остается постоянной. Это и называется законом сохранения импульса .

Второй закон Ньютона выражается формулой . Ее можно записать иным способом, если вспомнить, что ускорение равно быстроте изменения скорости тела. Для равноускоренного движения формула будет иметь вид:

Если подставить это выражение в формулу, получим:

,

Эту формулу можно переписать в виде:

В правой части этого равенства записано изменение произведения массы тела на его скорость. Произведение массы тела на скорость является физической величиной, которая называется импульсом тела или количеством движения тела .

Импульсом тела называют произведение массы тела на его скорость. Это векторная величина. Направление вектора импульса совпадает с направлением вектора скорости.

Другими словами, тело массой m , движущееся со скоростью обладает импульсом . За единицу импульса в СИ принят импульс тела массой 1 кг , движущегося со скоростью 1 м/с (кг·м/с). При взаимодействии друг с другом двух тел если первое действует на второе тело силой , то, согласному третьему закону Ньютона , второе действует на первое силой . Обозначим массы этих двух тел через m 1 и m 2 , а их скорости относительно какой-либо системы отсчета через и . Через некоторое время t в результате взаимодействия тел их скорости изменятся и станут равными и . Подставив эти значения в формулу, получим:

,

,

Следовательно,

Изменим знаки обеих частей равенства на противоположные и запишем в виде

В левой части равенства - сумма начальных импульсов двух тел, в правой части - сумма импульсов тех же тел через время t . Суммы равны между собой. Таким образом, несмотря на то. что импульс каждого тела при взаимодействии изменяется, полный импульс (сумма импульсов обоих тел) остается неизменным.

Действителен и тогда, когда взаимодействуют несколько тел. Однако, важно, чтобы эти тела взаимодействовали только друг с другом и на них не действовали силы со стороны других тел, не входящих в систему (либо чтоб внешние силы уравновешивались). Группа тел, не взаимодействущая с другими телами, называется замкнутой системой справедлив только для замкнутых систем.

Импульс - это одна из самых фундаментальных характеристик физической системы. Импульс замкнутой системы сохраняется при любых происходящих в ней процессах.

Знакомство с этой величиной начнем с простейшего случая. Импульсом материальной точки массы движущейся со скоростью называется произведение

Закон изменения импульса. Из этого определения можно с помощью второго закона Ньютона найти закон изменения импульса частицы в результате действия на нее некоторой силы Изменяя скорость частицы, сила изменяет и ее импульс: . В случае постоянной действующей силы поэтому

Скорость изменения импульса материальной точки равна равнодействующей всех действующих на нее сил. При постоянной силе промежуток времени в (2) может быть взят любым. Поэтому для изменения импульса частицы за этот промежуток справедливо

В случае изменяющейся со временем силы весь промежуток времени следует разбить на малые промежутки в течение каждого из которых силу можно считать постоянной. Изменение импульса частицы за отдельный промежуток вычисляется по формуле (3):

Полное изменение импульса за весь рассматриваемый промежуток времени равно векторной сумме изменений импульса за все промежутки

Если воспользоваться понятием производной, то вместо (2), очевидно, закон изменения импульса частицы записывается как

Импульс силы. Изменение импульса за конечный промежуток времени от 0 до выражается интегралом

Величина, стоящая в правой части (3) или (5), называется импульсом силы. Таким образом, изменение импульса Др материальной точки за промежуток времени равно импульсу силы, действовавшей на него в течение этого промежутка времени.

Равенства (2) и (4) представляют собой в сущности другую формулировку второго закона Ньютона. Именно в таком виде этот закон и был сформулирован самим Ньютоном.

Физический смысл понятия импульса тесно связан с имеющимся у каждого из нас интуитивным или почерпнутым из повседневного опыта представлением о том, легко ли остановить движущееся тело. Значение здесь имеют не скорость или масса останавливаемого тела, а то и другое вместе, т. е. именно его импульс.

Импульс системы. Понятие импульса становится особенно содержательным, когда оно применяется к системе взаимодействующих материальных точек. Полным импульсом Р системы частиц называется векторная сумма импульсов отдельных частиц в один и тот же момент времени:

Здесь суммирование выполняется по всем входящим в систему частицам, так что число слагаемых равно числу частиц системы.

Внутренние и внешние силы. К закону сохранения импульса системы взаимодействующих частиц легко прийти непосредственно из второго и третьего законов Ньютона. Силы, действующие на каждую из входящих в систему частиц, разобьем на две группы: внутренние и внешние. Внутренняя сила - это сила, с которой частица действует на Внешняя сила - это сила, с которой действуют на частицу все тела, не входящие в состав рассматриваемой системы.

Закон изменения импульса частицы в соответствии с (2) или (4) имеет вид

Сложим почленно уравнения (7) для всех частиц системы. Тогда в левой части, как следует из (6), получим скорость изменения

полного импульса системы Поскольку внутренние силы взаимодействия между частицами удовлетворяют третьему закону Ньютона:

то при сложении уравнений (7) в правой части, где внутренние силы встречаются только парами их сумма обратится в нуль. В результате получим

Скорость изменения полного импульса равна сумме внешних сил, действующих на все частицы.

Обратим внимание на то, что равенство (9) имеет такой же вид, как и закон изменения импульса одной материальной точки, причем в правую часть входят только внешние силы. В замкнутой системе, где внешние силы отсутствуют, полный импульс Р системы не изменяется независимо от того, какие внутренние силы действуют между частицами.

Полный импульс не меняется и в том случае, когда действующие на систему внешние силы в сумме равны нулю. Может оказаться, что сумма внешних сил равна нулю только вдоль какого-то направления. Хотя физическая система в этом случае и не является замкнутой, составляющая полного импульса вдоль этого направления, как следует из формулы (9), остается неизменной.

Уравнение (9) характеризует систему материальных точек в целом, но относится к определенному моменту времени. Из него легко получить закон изменения импульса системы за конечный промежуток времени Если действующие внешние силы неизменны в течение этого промежутка, то из (9) следует

Если внешние силы изменяются со временем, то в правой части (10) будет стоять сумма интегралов по времени от каждой из внешних сил:

Таким образом, изменение полного импульса системы взаимодействующих частиц за некоторый промежуток времени равно векторной сумме импульсов внешних сил за этот промежуток.

Сравнение с динамическим подходом. Сравним подходы к решению механических задач на основе уравнений динамики и на основе закона сохранения импульса на следующем простом примере.

щенный с сортировочной горки железнодорожный вагон массы движущийся с постоянной скоростью сталкивается с неподвижным вагоном массы и сцепляется с ним. С какой скоростью движутся сцепленные вагоны?

Нам ничего не известно о силах, с которыми взаимодействуют вагоны во время столкновения, кроме того факта, что на основании третьего закона Ньютона они в каждый момент равны по модулю и противоположны по направлению. При динамическом подходе необходимо задаваться какой-то моделью взаимодействия вагонов. Простейшее возможное предположение - что силы взаимодействия постоянны в течение всего времени, пока происходит сцепка. В таком случае с помощью второго закона Ньютона для скоростей каждого из вагонов спустя время после начала сцепки можно написать

Очевидно, что процесс сцепки заканчивается, когда скорости вагонов становятся одинаковыми. Предположив, что это произойдет спустя время х, имеем

Отсюда можно выразить импульс силы

Подставляя это значение в любую из формул (11), например во вторую, находим выражение для конечной скорости вагонов:

Конечно, сделанное предположение о постоянстве силы взаимодействия вагонов в процессе их сцепки весьма искусственно. Использование более реалистичных моделей приводит к более громоздким расчетам. Однако в действительности результат для конечной скорости вагонов не зависит от картины взаимодействия (разумеется, при условии, что в конце процесса вагоны сцепились и движутся с одной и той же скоростью). Проще всего в этом убедиться, используя закон сохранения импульса.

Поскольку никакие внешние силы в горизонтальном направлении на вагоны не действуют, полный импульс системы остается неизменным. До столкновения он равен импульсу первого вагона После сцепки импульс вагонов равен Приравнивая эти значения, сразу находим

что, естественно, совпадает с ответом, полученным на основе динамического подхода. Использование закона сохранения импульса позволило найти ответ на поставленный вопрос с помощью менее громоздких математических выкладок, причем этот ответ обладает большей общностью, так как при его получении не использовалась какая бы то ни было конкретная модель взаимодействия.

Проиллюстрируем применение закона сохранения импульса системы на примере более сложной задачи, где уже выбор модели для динамического решения затруднителен.

Задача

Разрыв снаряда. Снаряд разрывается в верхней точке траектории, находящейся на высоте над поверхностью земли, на два одинаковых осколка. Один из них падает на землю точно под точкой разрыва спустя время Во сколько раз изменится расстояние от этой точки по горизонтали, на которое улетит второй осколок, по сравнению с расстоянием, на котором упал бы неразорвавшийся снаряд?

Решение, Прежде всего напишем выражение для расстояния на которое улетел бы неразорвавшийся снаряд. Так как скорость снаряда в верхней точке (обозначим ее через направлена горизонтально, то расстояние равно произведению и на время падения с высоты без начальной скорости, равное на которое улетел бы неразорвавшийся снаряд. Так как скорость снаряда в верхней точке (обозначим ее через направлена горизонтально, то расстояние равно произведению на время падения с высоты без начальной скорости, равное тела, рассматриваемого как система материальных точек:

Разрыв снаряда на осколки происходит почти мгновенно, т. е. разрывающие его внутренние силы действуют в течение очень короткого промежутка времени. Очевидно, что изменением скорости осколков под действием силы тяжести за столь короткий промежуток времени можно пренебречь по сравнению с изменением их скорости под действием этих внутренних сил. Поэтому, хотя рассматриваемая система, строго говоря, не является замкнутой, можно считать, что ее полный импульс при разрыве снаряда остается неизменным.

Из закона сохранения импульса можно сразу выявить некоторые особенности движения осколков. Импульс - векторная величина. До разрыва он лежал в плоскости траектории снаряда. Поскольку, как сказано в условии, скорость одного из осколков вертикальна, т. е. его импульс остался в той же плоскости, то и импульс второго осколка также лежит в этой плоскости. Значит, и траектория второго осколка останется в той же плоскости.

Далее из закона сохранения горизонтальной составляющей полного импульса следует, что горизонтальная составляющая скорости второго осколка равна ибо его масса равна половине массы снаряда, а горизонтальная составляющая импульса первого осколка по условию равна нулю. Поэтому горизонтальная дальность полета второго осколка от

места разрыва равна произведению на время его полета. Как найти это время?

Для этого вспомним, что вертикальные составляющие импульсов (а следовательно, и скоростей) осколков должны быть равны по модулю и направлены в противоположные стороны. Время полета интересующего нас второго осколка зависит, очевидно, от того, вверх или вниз направлена вертикальная составляющая его скорости в момент разрыва снаряда (рис. 108).

Рис. 108. Траектория осколков после разрыва снаряда

Это легко выяснить, сравнив данное в условии время отвесного падения первого осколка с временем свободного падения с высоты А. Если то начальная скорость первого осколка направлена вниз, а вертикальная составляющая скорости второго - вверх, и наоборот (случаи а и на рис. 108). Под углом а к вертикали в ящик влетает пуля со скоростью и и почти мгновенно застревает в песке. Ящик приходит в движение, а затем останавливается. Сколько времени продолжалось движение ящика? Отношение массы пули к массе ящика равно у. При каких условиях ящик вообще не сдвинется?

2. При радиоактивном распаде покоившегося первоначально нейтрона образуются протон, электрон и антинейтрино. Импульсы протона и электрона равны а угол между ними а. Определите импульс антинейтрино.

Что называется импульсом одной частицы и импульсом системы материальных точек?

Сформулируйте закон изменения импульса одной частицы и системы материальных точек.

Рис. 109. К определению импульса силы из графика

Почему внутренние силы не входят явно в закон изменения импульса системы?

В каких случаях законом сохранения импульса системы можно пользоваться и при наличии внешних сил?

Какие преимущества дает использование закона сохранения импульса по сравнению с динамическим подходом?

Когда на тело действует переменная сила ее импульс определяется правой частью формулы (5) - интегралом от по промежутку времени, в течение которого она действует. Пусть нам дан график зависимости (рис. 109). Как по этому графику определить импульс силы для каждого из случаев а и