III. Задачи на составление дифференциальных уравнений

Все связные (названные) в задачах величины, выражаются через аргумент x, функцию y и её производную: .

1.Принципы составления дифференциальных уравнений.

Для составления и интегрирования дифференциальных уравнений приводят различные задачи физики, биологии, химии и т.д.

Например, при решении задач искомая кривая представляется как график некоторой функции, как y=y(x)

Все связные (названные) в задачах величины, выражаются через аргумент x, функцию y и её производную: .

Полученное при таком условии соотношение и представляет собой дифференциальное уравнение.

Уравнение (1) является искомым уравнением для нахождения неизвестной функции у.

При решении физических задач процесс составления дифф. Уравнения разбивается на 3 этапа:

1)одну из величин выбираем в качестве независимой переменной 2-го в качестве зависимой переменной. Чаще всего в качестве независимой переменной выбираются время t, а в качестве искомых функций пространственные координаты x,y,z.

2)находим на сколько измениться искомая функция Х, если независимая переменная t получит достаточно малое приращение

, то есть пытаемся оценить разность ч/з величины, данные в задачи.

3)делим полученное неравенство на и переходим кlim, когда в результате предельного перехода получаем дифф. Уравнение из которого можно найти искомую функцию.

3 Теорема существования решения задачи Коши дифф ур первого порядка.

Условие (2) называется начальным условием или условиями Коши .(2)

Под задачей Коши будем понимать задачу об отыскании решения уравнения (1) удовлетв.данным (2)

Геометрически это означает, что из всего множества интегральных кривых нужно выделить ту интегральную кривую, которая проходит ч/з .

Естественно встаёт вопрос, есть ли вообще решение у уравнение (1), а если и есть, то сколько таких, удовл.условию (2).

Теорема 1.(теорема существования единственности решения) – если функция f и её частная производная непрерывна в областиD, то решения дифф.уравнения (1), удовлетв.начальным условиям (2) существенно и единственно.

Задачи с дифференциальными уравнениями

Решение : должен предупредить, что здесь опять возникают «накладки» с обозначениями, и я буду придерживаться собственной версии оформления, которая показалась мне наиболее удобной. Сначала рассмотрим некоторую конкретную точку , принадлежащую искомой линии, и соответствующую касательную. Выполним схематический чертёж. Из условия задачи следует, что точка пересечения касательной с осью лежит строго между точек и . Это принципиальный момент ! – так бывает далеко не всегда. И, конечно, нужно постараться, чтобы отрезок был примерно в 2 раза длиннее отрезка :

Первое, что приходит в голову – это найти длины отрезков и составить уравнение по формуле . Так решать можно,… но лучше не нужно. Вспоминаем школу: треугольники и подобны по двум углам (обозначены красными и зелёными дугами) , а значит, соответствующие стороны этих треугольников пропорциональны:

Грубо говоря, нижний треугольник в 2 раза больше, чем верхний.

В чём фишка? Фишка состоит в том, что длины отрезков найти значительно проще! Тем более, точки уже известны, и по существу, осталось найти «иксовую» координату точки . Находим:

Энтузиасты могут прорешать эту, более простую задачу по трафарету. И, конечно, в ней тоже не надо находить длины отрезков и – намного выгоднее снова рассмотреть подобные треугольники (которые расположены один над другим и так оказалось, что вообще равны) . Интересно, что в ходе решения опять появятся два диффура, из которых потребуется выбрать «правильный».

Для самостоятельного решения также предлагаю ещё одно задание:

Задача 5

Найти линию, проходящую через точку и обладающую тем свойством, что в любой её точке нормальный вектор с концом на оси имеет длину, равную , и отрезок образует острый угол с положительным направлением оси .

Систематизируем схему решения:

1) Во избежание неразберихи с «иксом» и «игреком» рассматриваем некоторую конкретную точку , принадлежащую искомой прямой. Вообще говоря, можно сразу работать с произвольной точкой , но тогда «глобальные» переменные придётся обозначить как-нибудь по-другому, например, через .

2) Составляем уравнение нормали , проходящей через точку .

3) Находим координаты точки пересечения нормали с осью ординат.

4) Находим длину вектора . А вот здесь уже без корня обойтись трудно.

5) Теперь переходим к рассмотрению произвольной точки , т.е. выполняем замены . Этот шаг можно выполнить и чуть раньше (до нахождения длины вектора).

6) Составляем и решаем дифференциальное уравнение. В ходе решения используем информацию о том, что отрезок образует острый угол с положительным направлением оси .

Однако здесь существует и более короткое решение, которым поделилась одна из читательниц сайта. В своё время (когда создавалась статья) из моего поле зрения выпала эта элементарная возможность, и поэтому в конце урока я, конечно же, добавил 2-й способ. Постарайтесь его увидеть! И спасибо за ваши письма – они действительно помогают улучшить учебные материалы.

Я не сторонник различного рода справочников, но для решения практических задач могут пригодиться следующие готовые формулы:


Длина отрезка касательной:
Подкасательная:
Длина отрезка нормали:
Поднормаль:

Но всё же старайтесь их выводить по ходу решения той или иной задачи.

Поскольку сайт посвящен математике, то бОльшую часть урока заняла математика =), но, разумеется, я не могу обойти стороной многочисленные прикладные задачи, которые рассматриваются даже в школе. Их часто (и может быть даже корректнее) называют задачами, которые ПРИВОДЯТ к понятию дифференциального уравнения . Отличительной особенностью этих задач (как правило) является тот факт, что условие опирается на сам СМЫСЛ производной , то есть речь в нём идёт о скорости изменения некоторого показателя.

Физика, химия,… да чего тут занудничать – биология:

Задача 6

Требуется составить дифференциальное уравнение динамики развития некоторого биологического вида и найти решение этого уравнения.

Состояние популяции можно охарактеризовать массой этой популяции (весом всего стада), причем масса является функцией времени . Считая, что скорость роста биомассы пропорциональна биомассе популяции с коэффициентом пропорциональности , найти массу стада в момент времени , если известно её значение при .

…надо сказать, автор задачи не стал мучить студентов-зоотехников и расписал всё подробнейшим образом. Давайте, тем не менее, остановимся на характерных признаках, позволяющих определить, что тут замешано дифференциальное уравнение:

– во-первых, нам явно придётся отыскать функцию массы стада, зависящую от времени;

– и, во-вторых, в условии прямо сказано о скорости роста этой самой массы.

А за скорость роста у нас отвечает производная функция , в данном случае функция

На самом деле решение очень простое и напоминает оно 1-ю задачу урока. По условию, скорость изменения массы стада пропорциональна этой массе:

В большинстве практических задач коэффициент пропорциональности равен константе, но вот здесь он представляет собой функцию: . Впрочем, это не имеет особого значения:

Разделяем и властвуем:

Общее решение:

По условию, в момент времени биомасса составляет . Решим задачу Коши:

Таким образом, закон изменения массы популяции:

Шустрая, однако, популяция – прямо какое-то стадо кроликов… или даже саранчи. …Хотя в задаче ничего не сказано о размерности величин. И поэтому, кстати, здесь будет корректно говорить о единицах времени и единицах массы .

Найдём то, что требовалось найти:
– масса стада в момент времени

Ответ :

…Наверное, вы ждёте - не дождетесь задач по физике…. Спешу обнадёжить вас принципом «антиРабиновича»: Дождётесь! =) Но перед этим примем йаду таблеточку:

Задача 7

Таблетка массой 0,5 г брошена в стакан воды. Скорость растворения таблетки пропорциональна массе таблетки. Через какое время растворится 99% вещества, если известно, что через 10 минут растворилось 80%?

Это очень простая… и не простая задача;) Постарайтесь самым тщательным образом разобраться в решении , задач в подобном техническом исполнении намного больше стакана – их пруд пруди. И кто позабыл – свойства степеней и логарифмов в помощь.

К сожалению, нельзя объять необъятное, и около 10 готовых задач по физике я загрузил в библиотеку, в основном, там задачи по механике. Физика не является моим профильным предметом, но вроде получилось неплохо….

Мн.: 1973.- 560 с.

Учебное пособие для математических, химических, биологических, геофизических факультетов университетов и педагогических институтов. Данной руководство по составление обыкновенных дифференциальных уравнений, а также простейший уравнений адресована широкому кругу лиц, встречающихся с составлением дифференциальных уравнений в учебной и производственной работе и практике. В приложениях математики к различным отраслям науки дифференциальные уравнения занимают важное место. Использование ПК - наиболее эффективное и распространенное средство решения прикладных задач естествознания и техники.

Формат: pdf

Размер: 5 Мб

Смотреть, скачать: yandex.disk

ОГЛАВЛЕНИЕ
Предисловие " . I 3
ГЛАВА I. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 5
§ 1. Дифференциальные уравнения 5
§ 2. Классификация дифференциальных уравнений. 5
§ 3. Общее семейство решений, частное и особое решения 6
§ 4. Элементарные дифференциальные уравнения 7.
§ 5. Выделение индивидуальных решений 8
§ 6. Построение решения в виде степенного ряда 10
§ 7. Метод последовательных приближений И
§ 8. Продолжение решений 12
ГЛАВА II. СОСТАВЛЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПО УСЛОВИЯМ ПРИКЛАДНЫХ ЗАДАЧ
§ 1. Общие принципы.. тз
§ 2. Методика составления дифференциальных уравнений 13
§ 3. Схема составления дифференциального уравнения 15
ГЛАВА III. ЗАДАЧИ, ПРИВОДЯЩИЕ К ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ПЕРВОГО ПОРЯДКА, РАЗРЕШЕННЫМ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Об)
§ 1. Притяжение стержня и материальной точки........ ^Чб"
§ 2. Движение тел постоянной массы 18
§ 3. Движение тел переменной массы (без учета внешних сил) ..... 26
§ 4. Растяжение упругой нитн.. 30
§ 5. Работа опорожнения сосудов 34
§ 6. Изменение яркости света в стеклянной пластине....... 35
§ 7. Нагрев тела 37
§ 8. Изменение состояния газов в сосудах 40
ГЛАВА IV. ЗАДАЧИ, ПРИВОДЯЩИЕ К ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ С РАЗДЕЛЯЮЩИМИСЯ ПЕРЕМЕННЫМИ
§ 1. Охлаждение тел, 43
§ 2. Нагрев тел. 46
§ 3. Распределение температуры внутри тел, 48
§ 4. Брус равного напряжения 51
§ 5. Давление зерна на стенки хранилища. 53
§ 6. Барометрическая формула и глубинное давление. 55
§ 7. Прямолинейное горизонтальное движение.....».? 58
§ 8. Вертикальное движение тел 65
§ 9. Падение тел переменной массы. . , SI
§ 10. Криволинейное движение (кривая погони) 83
§ 11. Вращение тел в жидкости. 86
§ 12. Закон всемирного тяготения 88
§ 13. Радиоактивный распад., 94
§ 14. Электрические заряды 95
§ 15. Поверхность фрезы,.. 99
§ 16. Трение ременной передачи,.., 101
§ 17. Истечение жидкости из сосудов 103
§ 18. Наполнение сосудов,... 108
§ 19. Установление уровня в сообщающихся сосудах.. 108
§ 20. Кривая депрессии «,.,.. ПО
§ 21. Обеднение раствора...... s .. 112
§ 22. Растворение твердых тел ИЗ
§ 23. Вентиляция производственного помещения. . . , . , . 119
§ 24. Газовые смеси. . 120
§ 25. Ионизация газов.,. 121
§ 26. Химические реакции 122
§ 27. Рост населения 133
§ 28. Процессы роста в природе н производстве 142
§ 29. Экология популяций 150
§ 30. Плотность муравьев вне муравейника. . . . * , . . 157
§ 31. Рост денежных вкладов 161
ГЛАВА V. ЗАДАЧИ, ПРИВОДЯЩИЕ К ОДНОРОДНЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ПЕРВОГО ПОРЯДКА,
§ 1. Изогональные траектории. ТБЗ
§ 2. Геометрические приложения. 165
§ 3. Зеркало, фокусирующее параллельные лучи. 170
§ 4. Траектории полета самолетов 171
ГЛАВА VI. ЗАДАЧИ, ПРИВОДЯЩИЕ К ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ В ПОЛНЫХ ДИФФЕРЕНЦИАЛАХ
§ 1. Параболическое зеркало 180
§ 2. Концентрация вещества в жидкости 182
ГЛАВА VII. ЗАДАЧИ, ПРИВОДЯЩИЕ К ЛИНЕЙНЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ПЕРВОГО ПОРЯДКА
§ 1. Геометрические приложения «ю
§ 2. Движение материальной точки 188
§ 3. Температура охлаждающего тела
§ 4. Нагрев тела при стационарном теплопотоке
§ 5. Электрические цепи
§ 6. Рационализаторские предложения
§ 7. Работа сердца
§ 8. Задача о сигарете.
ГЛАВА VIII. ЗАДАЧИ, ПРИВОДЯЩИЕ К СПЕЦИАЛЬНЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ПЕРВОГО ПОРЯДКА (УРАВНЕНИЯМ БЕРНУЛЛИ, РИККАТИ, ЛАГРАНЖА И КЛЕРО)
§ 1. Уравнение Бернулли
§ 2. Уравнение Риккати
| 3. Уравнение Лагранжа
§ 4. Уравнение Клеро
ГЛАВА IX. ЗАДАЧИ, ПРИВОДЯЩИЕ К ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ВТОРОГО ПОРЯДКА, РАЗРЕШЕННЫМ ОТНОСИТЕЛЬНО ВТОРОЙ ПРОИЗВОДНОЙ (у"=с)
§ I. Скольжение тела под наклоном!Ш
§ 2. Движение в горизонтальной плоскости при сопротивлении, пропорциональном силе тяжести 220
§ 3. Выброс вверх (без учета треиия) 231
§ 4. Распределение теплоты в стержне 231
§ 5. Расстояние между фермами железнодорожного моста. . . ... 233
ГЛАВА X. ЗАДАЧИ, ПРИВОДЯЩИЕ К НЕПОЛНЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ВТОРОГО ПОРЯДКА С 236^
I. Уравнения типа y"=f(x)
§ 1. Переходная кривая железнодорожного пути 237
§ 2. Прямолинейное движение материальной точки в горизонтальной плоскости 230
§ 3. Упругая линия балок 242
II. Уравнения типа «/"=/((«/)
§" 4. Геометрические приложения 255
§ 5. Движение материальной точки под действием силы притяжения. 256
III. Уравнения типа y"=f(y")
§ 6. Определение кривой по радиусу кривизны 257
§ 7. Горизонтальное движение тела при наличии трения 259
§ 8. Движение в вертикальной плоскости 274
§ 9. Равновесие тяжелой нити 280
§ 10. Гибкая иить равного сопротивления 283
IV. Уравнения типа y"=f(x,y")
§ II. Кривая и раднус кривизны 285
V. Уравнения типа y"-f(y, у")
§ 12. Нахождение уравнения кривой по нормали и радиусу кривизны. . . 286
ГЛАВА XI. ЗАДАЧИ, ПРИВОДЯЩИЕ К ЛИНЕЙНЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ВТОРОГО ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 288 \
I. Неполные линейные дифференциальные уравнения
§ I. Гармонические колебания 296
§ 2. Движение тела без трения 307
§ 3. Дифференциальный манометр 312
§ 4. Распределение теплоты в стержнях 313
§ 5. Продольный изгнб прямого стержня 320
§ 6. Движение шарика в трубке (задача Ампера) 328
II. Линейные дифференциальные уравнения
§ 7. Затухающие колебания 330
§ 8. Затухающие колебания в электрической цепи 335
§ 9. Колебания магнитной стрелки без и при наличии успокоителя 3
§ 10. Вынужденные колебания механических систем 350
ГЛАВА XII. ЗАДАЧИ, ПРИВОДЯЩИЕ К ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ВТОРОГО ПОРЯДКА С РАЦИОНАЛЬНЫМИ КОЭФФИЦИЕНТАМИ 363
I. Уравнение Эйлера ^*-^
§ 1. Распределение температуры в продольном ребре параболического сечсннн 303
II. Линейное однородное уравнение с рациональными коэффициентами
§ 2. Толстостенная цилиндрическая оболочка под давлением (задача Лямэ) . . 366
III. Линейное неоднородное уравнение с рацио и ильным и коэффициентами
§ 3. Скорость течения жидкости в трубопроводе Я74
§ 4. Изгиб круглой пластины, 970
ГЛАВА XIII. ЗАДАЧИ. ПРИВОДЯЩИЕ К СПЕЦИАЛЬНЫМ ЛИНЕЙНЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ (УРАВНЕНИЯМ БЕССЕЛЯ. ЛЕЖАНДРА И МАТЬЕ) Г 385 ^
I. Уравнение Бесселя
§ 1. Устойчивость стержня формы усеченного конуса, сжимаемого продольной силой 390
§ 2. Устойчивость цилиндрического стержня под действием собственного веса 392
§ 3. Устойчивость вращения гибкой нити 395
§ 4. Распределение температуры в кольцевом ребре прямоугольного профиля 398
П. Обобщенное уравнение Бесселя
§ 5. Маятник переменной длины 400
§ 6. Устойчивость стержня переменного сечения под действием переменной распределенной нагрузки 402
III. Дифференциальные уравнения в частных производных
§ 7. Колебания круглой мембраны 405
IV. Уравнение Лежандра
§ 8. Электрический потенциал двух равносильных зарядов 413
§ 9. Дифференциальное уравнение в частных производных потенциала. . . 415
§ 10. Потенциал притягивающих масс 417
V. Уравнение Матье
§ 11. Динамическая устойчивость стержня под действием переменной_продолыюй силы 424
ГЛАВА XIV. ЗАДАЧИ, ПРИВОДЯЩИЕ К СИСТЕМАМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЫ1ЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА (436
§ 1. Разложение вещества ^~4ЦЙ-"
§ 2. Относительная кривая погони (442
§ 3. Давление в системе двух соединенных цилиндров с газом 445
§ 4. Напряженное состояние диска под действием центробежных сил. . . 447
§ 5. Превращение одного вещества в другое 453
ГЛАВА XV. ЗАДАЧИ, ПРИВОДЯЩИЕ К НЕПОЛНЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ, высших ПОРЯДКОВ
§ 1. Линия прогиба неразрезиой балки от распределенной нагрузки. . . ТЗв
ГЛАВА XVI. ЗАДАЧИ. ПРИВОДЯЩИЕ К ЛИНЕЙНЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ТРЕТЬЕГО ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ (463 }
§ 1. Паровая машина с регулятором ^4вт
ГЛАВА XVII. ЗАДАЧИ, ПРИВОДЯЩИЕ К ЛИНЕЙНЫМ ОДНОРОДНЫМ ДИФФЕРЕЦИАЛЬНЫМ УРАВНЕНИЯМ ВЫСШЕГО ПОРЯДКА С ПОСТОЯННЫМИКОЭФФИЦИЕНТАМИ
§ 1. Колебания вала от действия центробежных сил, ^~?72
§ 2. Балка (железнодорожный рельс) на упругом основании 477
§ 3. Колебания однородной балки (приведение дифференциального уравнения в частных производных к обыкновенному) . . . 482
ГЛАВА XVIII. ЗАДАЧИ, ПРИВОДЯЩИЕ К ЛИНЕЙНЫМ НЕОДНОРОДНЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ ЧЕТВЕРТОГО ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 485
§ I. Деформация стенок цилиндрического резервуара 487
§ 2. Железнодорожная шпала 490
ГЛАВА XIX. ЗАДАЧИ. ПРИВОДЯЩИЕ К СИСТЕМАМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА 495
§ 1. Движение материальной точки под действием отталкивающей силы, пропорциональной расстоянию * 497
§ 2. Выброс тела под углом 500
§ 3. Сброс груза с самолета в заданную точку 503
§ 4. Движение планет 504
§ 5. Система двух связанных электрических контуров 509
§ 6. Изменение потенциала электрической линии по времени (приведение системы дифференциальных уравнений в частных производных к системе обыкновенных уравнений) 513
§ 7. Стационарные линейные дифференциальные уравнения с постоянными коэффициентами в теории систем современной техники и естествознания. . 519
ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 529
I. Дифференциальные уравнения первого порядка.... 529
II. Дифференциальные уравнения второго порядка.. 545
III. Системы дифференциальных уравнений первого порядка. . . . 555
IV. Системы дифференциальных уравнений второго порядка. 557

ПРЕДИСЛОВИЕ
В приложениях математики к различным отраслям науки дифференциальные уравнения занимают важное место. Использование ИК-- наиболее эффективное и распространенное средство решения прикладных задач естествознания и техники. Многие реальные процессы с помощью дифференциальных уравнений описываются просто н полно. Поэтому вполне понятно то внимание, которое уделяет-СИ вопросу составления дифференциальных уравнений.
Однако многочисленные и разнообразные приложения теории обыкновенных дифференциальных уравнений требуют в первую очередь знания соответствующих теоретических положений и законов естествознания, техники и других отраслей, которые изучаются обычно после дифференциальных уравнений. По этой причине в курсе дифференциальных уравнений решению практических задач на составление уделяется все еще недостаточное внимание. Прослу-Шйншие этот курс не имеют достаточного навыка в решении задач, выдвигаемых жизнью, производством. Кроме того, в учебниках и учебных пособиях вопросы-составления дифференциальных уравнений обычно ограничиваются элементарными задачами геометрического или кинематического типа. Поэтому целесообразно вернуться к составлению дифференциальных уравнений при изложении специальных дисциплин, а также в процессе практической или научно-исследовательской работы.
Цель автора - создание учебного пособия, которое широко охватило бы различные задачи естествознания и техники и способствовало овладению современной методикой составления дифференциальных уравнений прикладных задач, возникающих в процессе производства или научной деятельности.
Характерной особенностью освоения навыков составления дифференциальных уравнений является изучение многочисленных примеров. В связи с этим полнота изложения имеет здесь существенное значение.
Книга содержит 325 задач на составление дифференциальных уравнений, из которых 194 задачи анализируются подробно.
Рассматриваемые задачи классифицируются по их математическому пришаку: описываемые обыкновенными дифференциальными ураииениями первого, второго, третьего и четвертого порядков, системами этих уравнений первого и второго порядков, а также дифференциальными уравнениями в частных производных, приводящимися к обыкновенным дифференциальным уравнениям.
Для самостоятельного решения подобрана 131 задача, большинство на которых аналогичны разобранным и снабжены ответами, а более трудные - краткими пояснениями к решению.
Учебное пособие предназначено для студентов всех отделение математических, физических, механических, химических, биологических, геофизических, экономических факультетов университетов г. педагогических институтов, а также высших технических учебных заведений.
Книга рассчитана на широкий круг читателей, встречающихся с дифференциальными уравнениями в учебно-методической, производственной и научно-исследовательской практике.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Уравнения с разделяющимися переменными

Понятие дифференциального уравнения

Уравнение, содержащее независимую переменную х, искомую функцию у=f (x), а также ее производные у", у"", и т.д. называется обыкновенным дифференциальным уравнением. Общий вид дифференциального уравнения:

F (x, y, y", y"",…, y (n)) = 0,(29)

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в это уравнение.

Например, у"+ху-5=0 – уравнение первого порядка, у""+6у"+х=0 – уравнение второго порядка.

Общий вид уравнения первого порядка:

F (x, y, y") = 0 , (30)

Общим решением дифференциального уравнения называется функция, удовлетворяющая двум условиям: во-первых, эта функция должна удовлетворять данному дифференциальному уравнению, т.е. при подстановке в уравнение должна обращать его в тождество; во-вторых, количество произвольных постоянных в этой функции должно быть равным порядку данного уравнения.

Общее решение дифференциального уравнения n- го порядка имеет вид:

у = f (x, C 1 , C 2, ….,C n) , (31)

а общее решение дифференциального уравнения I порядка

у = f (x, C) , (32)

Из общего решения путем вычисления постоянных интегрирования, исходя из заданных дополнительных условий, можно найти частные решения данного уравнения.

Дифференциальными уравнениями описывают различные процессы в физике, химии, биологии, фармации.

Из уравнений первого порядка рассмотрим уравнения с разделяющимися переменными .

Уравнение с разделяющимися переменными имеет вид у"= (х,у), причем его правая часть может быть представлена в виде произведения двух отдельных функций: . Тогда

Преобразуем это уравнение, разделив переменные справа и слева:

Общий вид уравнения с разделенными переменными

f (y)dy= (x)dx .

Уравнение решается непосредственным интегрированием: слева по переменной у и справа по переменной х С :

или F (y)=Ф (х)+С.

Решая это уравнение, находим:

Таким образом, алгоритм решения дифференциального уравнения с разделяющимися переменными следующий:

а) если уравнение содержит производную, то представить ее в виде ;

б) преобразовать уравнение, перенося все члены его, содержащие у , в левую часть, содержащие х – в правую;

в) проинтегрировать по общим правилам левую часть по аргументу у и правую – по аргументу х с прибавлением постоянной интегрирования С.

г) решая полученное уравнение, найти искомую функцию.



Пример16. Найти общее решение уравнения y"=2xy и частное решение, соответствующее условию

y=2 при x=0 , (33)

Решение. Представим производную y" в виде отношения дифференциалов:

Разделим переменные:

Проинтегрируем полученное уравнение:

ln y=x +C .

Так как в уравнение входит lny , то постоянную удобнее выразить в виде логарифма:

lny=х +lnC

lny- lnС=x

ln =х

Потенцируя это равенство, получим:

Отсюда , и для общего решения имеем

у=Се , (34)

Для нахождения частного решения подставим начальное условие (33) в (34):

Т.е. С=2 и искомое частное решение будет иметь вид

Задача о скорости размножения бактерий. Скорость размножения бактерий пропорциональна их количеству. В начальный момент имелось 100 бактерий, в течение трех часов их число удвоилось. Найти зависимость количества бактерий от времени.

Решение. Пусть N – количество бактерий в момент времени t. Тогда согласно условию

где k - коэффициент пропорциональности. Уравнение (36) представляет собой уравнение с разделяющимися переменными и его решение имеет вид:

Из начального условия известно, что . Следовательно,

Из дополнительного условия . Тогда

Таким образом, для искомой функции получаем:

Задача об увеличении количества фермента. В культуре пивных дрожжей быстрота прироста действующего фермента пропорциональна его начальному количеству x. Первоначальное количество фермента а в течение часа удвоилось. Найти зависимость x(t).

Решение. По условию задачи дифференциальное уравнение процесса имеет вид

где k – коэффициент пропорциональности. Общее решение уравнения (39) (уравнение с разделяющимися переменными) имеет вид:

Постоянную С найдем из начального условия :

Известно также, что . Значит

Отсюда и окончательно имеем

3. Цель деятельности студентов на занятии:

Студент должен знать:

1. Определения производной и дифференциала функции.

2. Физический и геометрический смыслы производной.

3. Таблицу производных основных элементарных функций.

4. Правила дифференцирования.

5. Аналитический и геометрический смыслы дифференциала.

6. Понятия неопределенного и определенного интегралов.

7. Таблицу основных интегралов.

8. Основные свойства неопределенного и определенного интегралов.

9. Основные методы интегрирования.

10. Определение обыкновенного дифференциального уравнения.

11. Понятие общего и частного решений дифференциального уравнения.

12. Определение дифференциального уравнения с разделяющимися переменными и алгоритм его решения.

Студент должен уметь:

1.Вычислять производные и дифференциалы функций.

2.Применять дифференциал функции в приближенных вычислениях.

3.Вычислять неопределенные и определенные интегралы различными методами.

4.Вычислять средние значения функций, площади плоских фигур, работу переменной силы.

5.Находить решения дифференциальных уравнений с разделяющимися переменными.

Теоретическая часть:

1. Задачи, приводящие к понятию производной функции.

2. Геометрический и физический смыслы производной.

3.Производная сложной функции.

4.Дифференциал функции. Геометрический и аналитический смыслы дифференциала.

5.Применение дифференциала функции в приближенных вычислениях.

6.Первообразная функции. Неопределенный интеграл. Основные свойства неопределенного интеграла.

7.Основные методы интегрирования.

8.Задачи, приводящие к понятию определенного интеграла.

9.Формула Ньютона-Лейбница. Основные свойства определенного интеграла.

10.Приложения определенного интеграла: вычисление площадей плоских фигур, вычисление средних значений функций, вычисление работы переменной силы.

11.Дифференциальные уравнения первого порядка с разделяющимися переменными.

Практическая часть:

1.Найдите производные и дифференциалы функций:

2)y= ; 5) у=arccosx ;

3) y=e 3x+1 ; 6) y= ;

2.Решите задачу:

Определить ускорение точки в указанные моменты времени, если скорость точки, движущейся прямолинейно, задается уравнениями:

а) V = t 2 + 2 t, t = 3 c ; б) V = 4 sin , t = .

3. Вычислите приращение функции, соответствующее изменению аргумента от х 1 до х 2 :

1) у = 2 х 3 - 4х; х 1 = 1; х 2 = 1, 02 ;

2) у = 3 х 2 - 2х; х 1 = 2; х 2 = 2 ,001 ;

4.Найдите интегралы, используя метод разложения:

2) ; 4) ;

5.Найдите интегралы методом замены переменной:

6. Найдите интегралы методом интегрирования по частям:

7. Вычислите определенные интегралы методом замены переменной:

8.Вычислите определенные интегралы методом интегрирования по частям:

9. Вычислите площади фигур, ограниченных линиями:

1) у=х 2 и у= х 3 .

2) и у=х.

10. Найдите средние значения функций:

1) у=соsх на отрезке .

2) на отрезке .

11. Вычислите работу переменной силы:

1) при перемещении материальной точки вдоль оси абсцисс из положения с абсциссой в положение с абсциссой

3) при условии: ;

4) при условии: .

5.Перечень вопросов для проверки исходного уровня знаний:

1. Дайте определение производной функции.

2. Сформулируйте основные правила дифференцирования.

3. Запишите формулу производной сложной функции.

4.В чем заключаются физический и геометрический смыслы производной функции?

5. Что называется дифференциалом функции?

6. В чем заключается геометрический смысл дифференциала функции?

7.Дайте определение первообразной функции.

8.Приведите основные свойства неопределенного интеграла.

9.Запишите формулу интегрирования по частям.

10.Дайте геометрическую интерпретацию определенного интеграла.

11.Запишите формулу Ньютона-Лейбница

12.Дайте определение обыкновенного дифференциального уравнения.

13.Чем отличаются частное и общее решения дифференциального уравнения?

6. Перечень вопросов для проверки конечного уровня знаний:

1. В чем состоит физический смысл производной второго порядка?

2. В чем заключается аналитический смысл дифференциала?

3. Как используется дифференциал для вычисления погрешностей?

4.Какие две основные задачи, связанные с физическим и геометрическим истолкованием производной, решаются с помощью интегрирования?

5.Как проверить правильность нахождения неопределенного интеграла?

6.Можно ли результат вычисления определенного интеграла проверить дифференцированием?

7.На чем основано применение определенного интеграла для вычисления площадей плоских фигур?

9.Приведите последовательность решения дифференциального уравнения первого порядка с разделяющимися переменными.

7. Хронокарта учебного занятия:

1. Организационный момент – 5 мин.

2. Разбор темы – 30 мин.

3.Решение примеров и задач-60 мин.

4. Текущий контроль знаний -35 мин.

5. Подведение итогов занятия – 5 мин.

8. Перечень учебной литературы к занятию:

1. Морозов Ю.В. Основы высшей математики и статистики. М., «Медицина», 2004, §§ 2.1-2.7, 2.10-2.16, 5.1-5.4, 6.1-6.7, 7.1, 7.2.

2.Павлушков И.В. и др. Основы высшей математики и математической статистики. М., «ГЭОТАР-Медиа», 2006, §§2.1, 2.2, 4.1, 4.2, 5.1-5.6, 6.1-6.3.