И схлопывание кавитационных пузырьков заполненных. Что такое кавитация? Результат работы кавитации

На сегодняшний день существует довольно много публикаций, посвященных проблеме кавитации и методам ее устранения, но лишь некоторые из них поясняют причины, по которым пузырьки оказывают такое разрушительное воздействие.

Появлению кавитации в центробежных насосах обычно предшествует кипение. Это вовсе не значит, что кипение само по себе представляет опасность, однако если образующиеся пузырьки не взрываются, то в этом случае они могут дать начало очень мощной силе. Кипение – это один из процессов, при котором происходит изменение состояния жидкости и переход в пар.

Вода в жидком состоянии и пузырьки водяного пара, образующиеся во время кипения, состоят из одних и тех же молекул. Главная разница между ними заключается в уровне энергии молекул и суммарного пространства, которое они занимают в результате полученной энергии. Молекулы пара имеют значительно более высокий уровень энергии. Для их быстрых и длинных перемещений требуется намного больше пространства, чем для молекул жидкости.

Кипение и образование пузырьков пара происходит, когда энергия молекул воды в жидком состоянии становится выше давления воды и атмосферного давления, действующего на ее поверхность. Обычно данный процесс поясняют с точки зрения нагревания, однако в насосной отрасли самое главное значение имеет изменение давления.

При атмосферном давлении на уровне моря 760 мм ртутного столба вода в котелке закипает при температуре 100ºС. Объем пузырька пара, который образуется при температуре кипения 100ºС, будет в 1673 раза больше, чем объем пузырька воды при такой же температуре. Когда он достигает поверхности воды, то взрывается, и высвобождается энергия тепла и давления. Основным источником энергии при этом все же является тепло. Взрывная волна, образующаяся при разрыве пузырька, имеет маленькую силу, поскольку давление в пузырьке составляет менее одной атмосферы, а энергия рассеивается во всех направлениях над поверхностью воды.

Если подогреть тот же котелок, например, в южной части Кисловодска, где высота над уровнем моря доходит до 1600 м, то вода в нем закипит уже при температуре 95ºС. Снижение точки кипения связано с более высоким положением над уровнем меря и более низким атмосферным давлением 632 мм ртутного столба. Когда давление на поверхность воды ниже, требуется меньше тепловой энергии, чтобы начался переход воды из одного состояние в другое. И по мере снижения давления будет требоваться все меньше тепла, и при уровне давления приблизительно 4,5 мм ртутного столба вода легко закипает при температуре замерзания.

Эта же закономерность работает и в обратном порядке: если увеличится давление на поверхность воды более чем на одну атмосферу, точка кипения тоже возрастет. Если давление становится выше во время кипения, то пузырьки пара не взрываются. Они схлопываются и возвращаются в исходное жидкое состояние.

Такой же процесс происходит в центробежном насосе во время кавитации. Кавитация всасывания, самая часто возникающая и легко прогнозируемая форма, возникает, когда давление эффективного положительного напора на всасывающей стороне насоса падает ниже давления пара воды, содержащейся во всасывающей части насоса (давление пара – это давление, необходимое, чтобы вода оставалась в жидком состоянии при заданной температуре). Наиболее восприимчивыми к воздействию этого типа кавитации оказываются те части лопастей крыльчатки, которые находятся в области самого низкого давления, то есть расположенные рядом с впуском. В этой части лопасти имеют максимальный изгиб, и когда вода их обтекает, давление на их поверхность становится ниже.

При достаточно низком давлении могут образоваться пузырьки (в результате кипения), которые схлопываются меньше чем за секунду, когда они попадают в область с чуть более высоким давлением. Высвобождаемая энергия при схлопывании пузырька водяного пара кардинально отличается от той, которая создается при его взрыве. В отличие от пузырька пара, который взрывается на поверхности воды, схлопнувшийся пузырек фактически возвращается обратно в жидкое состояние. Хотя во время этого процесса выделяется тоже тепло, но основным источником энергии в этом случае служат ударные волны, образующиеся в результате схлопывания пузырьков.

Ударные волны формируются при столкновении молекул воды, которые устремляются к месту схлопывания пузырька, чтобы заполнить образовавшуюся пустоту. Сила ударной волны зависит при этом от нескольких факторов. Исследования показывают, что время существования пузырька (от момента образования до схлопывания) составляет три миллисекунды (0,003 секунды), поэтому этот процесс происходит очень быстро. Чем быстрее сталкиваются молекулы воды, тем больше выделяется энергии.

Размер кавитационного пузырька пара может быть значительно больше, чем того пузырька, который образуется во время стандартного процесса кипения при нормальном атмосферном давлении. Например, при температуре 20ºС (стандартная температура в насосе) пузырек пара, сформированный в результате кавитации, почти в 35 раз крупнее образовавшегося при температуре 100ºС! И чем крупнее размеры пузырька, тем большая масса воды участвует в столкновении.

Вместе эти факторы (скорость и масса) дают общую кинетическую энергию схлопывающегося пузырька (KE = ½ mv²). Высокая скорость, возникающая в результате быстрого схлопывания пузырька, и большая масса из-за размеров пузырька приводят к высвобождению огромной энергии. При этом, происходит еще более важный процесс, который усиливает разрушительную силу схлопывающегося пузырька.

На рисунке 1 представлена серия фотографий, на которых изображено постепенное схлопывание пузырька пара. На этапе 1 пузырек имеет почти круглую форму, которая начинает сплющиваться на этапе 2. Этот процесс продолжается до этапа 18, за которым следует полное схлопывание.

Рисунок 1. Из книги «Кавитация и динамика пузырька», написанной Кристофером Бренненом
и опубликованной в 1995 году издательством «Oxford University Press»

Следует отметить интересный момент, происходящий на этапе 7, во время которого начинает формироваться углубление в нижней части пузырька. Это образование под названием «входная микроструя» формируется на одной из плоских поверхностей и продолжает увеличиваться в размерах до этапа 13. На этапе 14 эта струя пробивается через верхнюю поверхность пузырька и направляет силу схлопывания в одном направлении.

Исследование также показало, что если пузырек схлопывается возле стенок твердых предметов (лопасти или защитного кожуха), действие микроструи практически всегда направлено на стенки. Иначе говоря, вся энергия схлопывания направляется на какую-то микроскопическую область поверхности крыльчатки, и в результате начинается разрушение металла.

Именно сочетание высококонцентрированной энергии и ее сфокусированности в одном направлении наделяет схлопывающийся пузырек такой разрушительной силой. И даже если пузырьки схлопываются далеко от поверхности крыльчатки, и не разрушается металл, ударные волны все равно вызывают сильную вибрацию, которая может привести к появлению других повреждений насоса.

Инженер компании
ООО "Промышленные насосы"
Сергей Егоров

4 Октября 2013

Таинственный киногерой

В конце XIX века английский военно-морской флот должны были пополнить два совершенных для того времени корабля. "Дерингу" и "Турбинии" оставалось пройти последнее испытание - на быстроходность, которая, кстати, выдвигалась конструкторами как главное их преимущество. Увы, расчетной скорости достичь не удалось. Детальное исследование возможных причин неудачи показало: гребные винты на быстром ходу очень интенсивно изнашиваются, покрываясь выбоинами, кавернами, а виной всему - многочисленные паровоздушные пузырьки, возникающие на лопастях.

При таких обстоятельствах техника впервые познакомилась с кавитацией. Именно техника. Потому что науке это явление было известно уже двадцать лет. Его теоретически предсказал английский физик О. Рейнольдс. И будь конструкторы внимательнее к фундаментальным исследованиям своего соотечественника, возможно, не случилось бы конфуза.

Да, теоретик мог бы предостеречь инженеров от чрезмерных надежд. Но не более того. Если бы его спросили: как построить действительно сверхбыстроходный корабль, обойдя каким-либо образом кавитацию, у учёного вряд ли нашёлся бы ответ.

И по сей день, спустя больше века как открыта кавитация, наука, исследующая это явление, в долгу перед техникой. Даже сделать точный расчёт того порога, за которым наступает разрушительная для машины или конструкции кавитация, не всегда возможно. По прежнему крошит, изъявляет она металл гребных винтов, лопасти насосов и турбин, бетонные тела плотин, каналов, шлюзов.

Еще труднее - а заманчивые мысли об этом родились не вчера - превратить разрушительные силы кавитации и сделать их союзниками.

Почему пасует перед самыми главными секретами кавитации могучая современная наука?

Вначале давайте вспомним то, что она знает об этом явлении достаточно определённо. Кавитационные пузырьки возникают в жидкости, если в ней создать пониженное давление. Это бывает, например, при обтекании с большой скоростью какого-либо твердого тела или, что по сути, равнозначно, когда само тело быстро движется в жидкости. Звуковые и ультразвуковые волны, проходя через жидкость, так же создают области пониженного давления, вызывают кавитацию. Живут кавитационные пузырьки очень недолго. С огромной быстротой, за ничтожные доли секунды они схлопываются. Это схлопывание, подобно взрыву, порождает ударную волну. Пусть это всего лишь микровзрывы. В краткие мгновения их происходит сотни, тысячи. Они накладываются друг на друга, умножая свои силы. В разных точках жидкости температура мгновенно подскакивает до тысяч градусов, давление - до многих десятков атмосфер. У пузырьков могут возникать тончайшие лучи-жала, действующие на твердую поверхность подобно разящему броню кумулятивному снаряду! Вот откуда невероятные силы у невесомых пузырьков.

Чаще всего, к сожалению, эти силы разрушительные. Только в немногих случаях они начинают сегодня работать с пользой - например, очищают поверхность деталей, помогают выявить природный рисунок у отделочных камней, перемешивают "несовместимые" жидкости вроде бензина и воды. Чтобы лучше бороться с вредной, разрушительной кавитацией и полнее использовать её на благо, есть только один путь - глубже проникнуть в её тайны.

В чём отличие кавитационного пузырька от обычного? Что происходит внутри? По каким законам идет в нем превращение энергии? Знай сегодня ученые ответы на эти вопросы, глядишь, завтра реальными бы стали и сверхбыстроходные корабли. Но пока есть только многочисленные, спорящие между собой гипотезы. И, значит, инженер не в силах с нужной точностью рассчитать новую конструкцию или машину, в которой хотел бы запрячь силы кавитации.

Сколь недостаточны пока знания об этом явлении, говорит такой пример. Почти полвека назад открыли сонолюминисценцию - свечение жидкостей под действием ультразвука, а также звукохимические реакции, идущие только при облучении реагентов звуком. Оба этих явления очень энергоёмки, и вызвать их способна только кавитация. Эффекты и стали своеобразным тестом на кавитацию. Однако механизм, природа их до сих пор остается загадкой.

Почему же кавитация столь неприступна? Какие преграды стоят на пути к ее тайнам? Чтобы яснее представить происходящие С кавитационным пузырьком превращения, надо первым делом внимательно проследить за тем, как он рождается, движется, исчезает, словом, за всеми этапами его жизни.

Кавитационный пузырёк стал одним из главных героев научного кино. В десятках лабораторий мира он отснят на бесчисленных метрах киноплёнки. Но увы, за мгновениями его жизни не успевает даже сверхскоростная киносъёмка. Наш киногерой живёт всего лишь стотысячные или даже миллионные доли секунды! Надо ещё учесть: размеры пузырьков состовляют сотые, тысячные доли миллиметра. Наконец, кавитация - это не один и даже не тысяча рождающихся в одно мгновение пузырьков. В одне кубическом сантиметре так называемого кавитационного поля их пульсирует сразу около миллиарда! Не случайно одним из первых героев голографического кино, едва появилось оно в лабораторном, экспериментальном варианте, опять-таки стал кавитационный пузырек... А загадок не убавлялось.

Ежи в пробирке

В науке часто бывает так: для решения какой-либо сложной проблемы, над которой многие годы бьются лучшие умы, вооруженные самой совершенной техникой, не хватает какой-то очень простой идеи, какого-нибудь элементарного, почти школьного опыта. В проблеме кавитации этот, возможно, решающий шаг посчастливилось сделать ученым сектора химической физики из Всесоюзного научно-исследовательского института органического синтеза.

В то время как одни исследователи уповали на все более совершенную аппаратуру, новейшие методы решения необычайно сложных систем дифференциальных уравнений движения пузырьков, специалисты ВНИИОСа искали нелобовое, обходное решение. В чем состоял задуманный ими маневр? Рассуждали примерно так. Толком разглядеть кавитационные пузырьки мешает их мизерность и крайне малое время жизни. Зависит это от частоты колебаний, которыми возбуждают кавитацию. Сумей исследователи получить кавитацию, скажем, при частотах 10-100 Гц - пузырьки согласно расчетам могли бы жить уже десятые доли секунды и иметь размеры до сантиметра. Вот тогда мы бы увидели своего киногероя действительно крупным планом.

Неужели эта нехитрая идея никому прежде не приходила в голову? Разумеется, приходила. Попыток было много. Статья с результатами последней из них, которую предприняли американские исследователи, лежала на столе заведующего сектором М. А. Маргулиса. И в ней ничего утешительного. В который раз получено подтверждение привычной точки зрения: кавитация - явление пороговое, то есть возникает начиная с определенной частоты, и частота эта исчисляется, увы, килогерцами... И все-таки что-то заставило воспроизвести заведомо неудачный опыт. К этому подталкивали и хорошая злость на неподдающуюся проблему, и исследовательский азарт, упорство, интуиция.

Проделать эксперимент американцев не составляло особого труда. Схема его была проста: колеблющийся стержень опускают в сосуд с жидкостью, а спектрометр, если возникнет кавитация, должен зарегистрировать свечение. Все сделали как надо - ничего похожего на кавитацию. Попробовали увеличить амплитуду колебаний стержня,- мол, возбуждение станет интенсивнее. Сверхчувствительный спектрометр "молчит". Бурление, турбулентность в жидкости усиливается, но растяжения нет как нет. Жидкость как бы слишком эластична, она хотя и завихряется, но все же успевает обтекать небыстро колеблющийся стержень. А ведь надо, чтобы она воспринимала колебания стержня словно удары. Как этого достичь?

Достаточно было исключить обтекание колеблющегося стержня, и низкочастотная кавитация открыта

Новый эксперимент поставили с аппаратурой, какая, наверное, найдется даже в школьном кабинете физики: пробирка, штатив, выточенный из оргстекла стержень, 25-ваттный динамик, старенький ламповый усилитель... Единственная его тонкость - колеблющийся стержень в виде поршня изготовили так, что зазор со стенками пробирки составлял всего десятую долю миллиметра. При этом жидкость уже не могла столь легко, как прежде, обтекать стержень.

Звуковой генератор включен на частоте 90 Гц. О том, что происходило дальше, М. А. Маргулис рассказывает:

С минуту ничего особенного мы не замечали. Затем на небольшом участке у стенки пробирки, заполненной жидкостью, под колеблющимся поршнем возникли мелкие сферические пузырьки. Число их быстро нарастало. Они образовывали крупный сгусток, внешне напоминающий ежа. Этот еж заметно пульсировал. Стали постепенно прибавлять частоту. При 200 Гц и выше можно было создать уже двух и даже больше необыкновенных ежей. Они рождались в разных частях пробирки. Время от времени они устремлялись друг к другу, сливались и тут же с треском разлетались. Сразу же бросалось в глаза, что ежи не похожи на конгломераты - скопления отдельных пульсирующих пузырьков, а представляют собой крупные, причудливой формы пузырьки...

Но не все успевал схватывать невооруженный взгляд. Ученые воспользовались привычным своим инструментом - скоростной киносъемкой. Прокрутили отснятый ролик, но... никаких ежей не обнаружили. Протуберанцы, довольно толстые отростки, затейливо изогнутые щупальца, которые словно бы выстреливались из тела крупного пузырька, никак не походили на иголки симпатичного обитателя леса. И ученые дали этому необычному созданию более прозаическое имя - большой деформированный пузырек (сокращенно БДП). На экране удалось разглядеть, как от БДП отрывались, а затем устремлялись обратно мелкие прозрачные пузырьки сферической формы.

Что это было? Кавитация, порождающая тысячеградусные температуры, колоссальные давления? Или, быть может, какое-то новое, впервые наблюдаемое явление? Для проверки, как мы уже знаем, есть особые тесты, своеобразные лакмусовые бумажки, выявляющие кавитацию - звукохимические реакции и свечение жидкостей.

Разрушая преграды

В первом же проверочном эксперименте низкочастотный звук легко запустил цепную реакцию превращения малеиновой кислоты в фумаровую. Сомнения еще оставались - реакция эта хотя и слывет у химиков сложной и капризной, но для инициирования требует сравнительно небольшой энергии. Но когда в лабораторной пробирке двухвалентное железо превратилось в трехвалентное, когда молекулы воды стали расщепляться в ней, словно орехи под ударом молотка, двух мнений быть уже не могло - возбуждена самая настоящая кавитация. Сами исследователи поначалу с трудом верили своиv же результатам. Однако многократные проверки подтверждали: звукохимические реакции можно вести уже при частоте звука в 7 Гц, а некоторые растворы начинали светиться при 30 Гц.

Мы ведем рассказ об открытии, которое можно назвать горячим. Исследования низкочастотной кавитации еще только начались.

Однако уже с первых дней они приносят интереснейшие результаты. Например, едва ученые увидели БДП своими глазами и убедились, что они кавитируют, как рухнула одна из самых авторитетных теорий кавитации. Считалось, что на поверхности рождающегося кавитационного пузырька возникают разноименные заряды. В определенный момент наступает электронный пробой. Отсюда - большое энерговыделение, свечение, инициирование труднейших химических реакций. Единственное условие для такого хода вещей - кавитационный пузырек должен быть... безукоризненно правильной линзообразной формы. На экране же, как мы знаем, исследователи увидели скорее какое-то фантастической формы растение.

"Досталось" не только электрической, но и другой - тепловой теории кавитации. Она гласила: в процессе быстрого сжатия и схлопывания кавитационного пузырька парогазовая смесь нагревается до тысячеградусных температур. При этом она, естественно, начинает светиться подобно нити накаливания обычной электролампочки, а плазменная температура расщепляет молекулы, инициирует самые невероятные химические реакции. Однако теперь в результате тщательнейших исследований установлено: сонолюминесценция - это такое же холодное свечение, как у мерцающих в ночи светляков.

Почти каждый новый эксперимент показывал привычную уже кавитацию с неожиданной стороны, открывал необыкновенные ее способности. Скажем, разрушительная сила высокочастотной кавитации была хорошо известна. Гладкую поверхность металлов она в считанные минуты могла превратить в шероховатую, выкрашивая довольно крупные частицы. Низкочастотная кавитация оказалась, напротив, орудием тонким, деликатным. Ей не составляло труда сгладить, отполировать самую шершавую поверхность, выкалывая лишь микроскопические частички металла.

Низкочастотная кавитация легко и быстро готовила эмульсии из несмешивающихся в обычных условиях жидкостей, дробила погруженные в жидкость гранулы твердого вещества, запускала самые энергоемкие химические реакции... Конечно, все это умеет и ультразвуковая, высокочастотная кавитация. Но чтобы создать ее, как известно, необходима особая аппаратура, генераторы. Теперь же подключай источник колебаний в сеть, какая питает домашний радиоприемник, и все полезные способности кавитации - к твоим услугам. Допустим, надо с предельной тщательностью и быстротой перемешивать вещества в химическом реакторе емкостью в несколько железнодорожных цистерн. Задача эта - самая рядовая, обычная для химической, фармацевтической, микробиологической промышленности. Традиционное решение: в качестве мешалки берут нечто вроде пропеллера или винтового шнека, изготовленные из самых дорогих, химически стойких сплавов. А можно вмонтировать в реактор несложный источник колебаний, включить его в розетку обычной сети - эффект, как свидетельствуют расчеты, будет еще лучший.

Вряд ли кто сможет сегодня предсказать разнообразные практические приложения "второго" открытия кавитации. Пока оно лишь расчищает дорогу для более глубокого понимания этого интереснейшего явления, опрокидывает барьеры, многие десятилетия стоявшие на пути исследователей. Понимание подлинного механизма кавитации, как и откуда возникают ее необычайные силы, еще впереди. А за ним, как всегда бывает в науке,- новые возможности для инженера, конструктора, технолога, которые сегодня невозможно и предвидеть.

Л. ГАЛАМАГА, инженер-физик
Рисунки А. МАТРОСОВА

Кавитация как источник энергии

Кавитация в жидкости возникает как режим предкипения при нарушении (разрыве) ее сплошности. В образовавшиеся каверны поступает пар, в частности воды. Пузырьки пара вследствие малой кривизны поверхности имеют давление больше, чем жидкость, и поэтому растут. При некотором критическом размере, попадая в холодную зону пузырьки мгновенно схлопываются вследствие конденсации пара из-за мгновенного объединения вихрей электрино. В результате такого микровзрыва образуется сферическая ударная волна, распространяющаяся от эпицентра к периферии микрозоны взрыва. За фронтом ударной волны имеется зона разрежения, которая заполняет эту микрозону после ухода (вслед за уходом) ударной волны. Активированные на фронте волны молекулы воды попадают в зону разрежения и «лопаются» под действием разности давлений внутри и вне их, превышающей прочность молекул. Освободившиеся электроны сразу начинают свою работу по взаимодействию с положительными ионами: атомами кислорода, водорода и фрагментами воды – по генерации энергии – горению. Давление и температура в окружающей электрон сфере из ионов достигает предельных из известных в природе значений:

Р е = 1,459079 × 10 28 Дж/м 3 (Па);

Т е = 8, 563135 × 10 7 К.

Вполне естественны при этом процесс мгновенного нагревания воды в микрозоне за счет указанного выше, щадящего распада вещества на элементарные частицы, и процесс свечения потоков электрино – фотонов в оптическом диапазоне частот в микропламени кавитационных взрывов. При недостаточно интенсивной кавитации эти эффекты могут отсутствовать, но действие ударной волны в любом случае сохраняется, в том числе, как разрушающее различные материалы.

На кавитации основано действие известных водяных теплогенераторов, в которых количество полученной теплоты превосходит затраченную энергию в 10-15 и более раз за счет, по сути, атомной реакции воды.

При атмосферном давлении кавитация в воде начинается при 60-65 0 С (в среднем 63 0 С). С повышением температуры рост пузырьков пара интенсифицируется, они растут и лопаются (не схлопываются, а разрываются), давая начало режиму кипения, которое имеет развитый характер, как известно, при 100 0 С. Для получения тепловой энергии за счет кавитации, как видно, необходимо поддерживать режим именно кавитации как предкипения, не давая ему перерасти в развитое кипение, то есть отводить теплоту.

Кавитация при нагреве, например, вина до ~60 0 С дала в свое время возможность Пастеру уничтожить все бактерии за счет именно микровзрывов и ударных волн (вакуумные бомбы), а не за счет, как считают, термического действия, так как бактерии переносят и более высокие температуры. Впрочем, Пастер в то время этого понять не мог.

Кавитации способствуют звуковые и ультразвуковые колебания и волны. Однако, их механизм действия в свете традиционной науки остается не совсем ясным. Почему при движении источника колебаний порядка 1 м/с звуковая волна разгоняется в воздухе, например, до 300 м/с, а в воде – до 1400 м/с? Почему волна идет в направлении, заданном источником колебаний, а не от большего давления на фронте волны в сторону меньших давлений? Ответ на эти вопросы дан выше. Причиной распространения скорости звука, превышающей скорость движения источника колебаний (молекула, атом, стержень, поршень, язык и т.п.), является электродинамическое взаимодействие осцилляторов (молекул) источника колебаний с осцилляторами (молекулами) среды. При искусственном механическом сближении осцилляторов на некоторое расстояние меньше критического взаимодействие их электрических зарядов происходит с силой, обратно пропорциональной квадрату расстояния между ними. Соответственно ускорение и скорость осцилляторов среды зависят от этой силы, а не от скорости источника колебаний (точнее – его стенки, торца…).

Сила взаимодействия осцилляторов зависит также от скоростей каждого в своей глобуле, которые не соизмеримы со скоростью источника. Например, скорость движения молекул воздуха в своих глобулах при нормальных условиях составляет величину порядка 47 км/с, что на 4 порядка больше скорости источника колебаний 1 м/с.

Взаимодействие осцилляторов при расстояниях, близких к критическому – электродинамическое, в том числе, при расстояниях равных или меньше критического – происходит с участием электрино – посредника и в газах, и в жидкостях, и в твердых телах. Давление на фронте звуковой волны газа в результате взаимодействия осцилляторов возрастает и примерно в 4 раза превышает давление невозмущенной среды. Давление за фронтом волны в 3-4 раза меньше последнего. Температура на фронте волны соответствует давлению, то есть в 4 раза больше температуры невозмущенной среды.

В жидкости вследствие ее несжимаемости давление на фронте волны увеличивается примерно в 12 раз, а температура при звуковом течении – не меняется. Давление за фронтом волны как и в газе уменьшается в 3-4 раза. Причина разрежения за фронтом волны – каверна, в которую молекулы не успевают возвратиться мгновенно.

Рассмотрим физический механизм взаимодействия ударных осцилляторов: молекул – мишеней и молекул – снарядов. Из физики известно, что давление распространяется от большего к меньшему, и казалось бы, после возникновения большого давления на фронте волны оно будет распространяться в обе стороны от фронта: от большего к меньшему, и даже больше в область разрежения, то есть в сторону, обратную направлению движения волны. Но этого не происходит: волна движется все время в направлении, заданном источником колебаний. Почему?

При взаимодействии ударных осцилляторов источника колебаний с осцилляторами среды происходит деформация их глобул. Из сферических (при равномерном со всех сторон взаимодействии молекул с соседями) глобулы становятся выпукло-вогнутыми телами вращения, похожими, например, на каплю жидкости, деформированную гравитацией. Такая глобула среды в результате воздействия соседнего осциллятора – снаряда приобретает вогнутую поверхность (лунку) со стороны удара и – выпуклую поверхность с противоположной стороны. За счет большей скорости, полученной вследствие искусственного насильственного сокращения расстояния меньше критического, молекула – мишень газа в своей глобуле развивает, как указано выше, давление в 4 раза больше давления невозмущенной среды. Поэтому размер глобул соответственно уменьшается при сжатии их ударными молекулами – снарядами, что приводит к уплотнению среды на фронте ударной звуковой волны. На фронте волны деформированные глобулы молекул среды образуют цепочки как бы вставленных друг в друга тел, выпуклости которых входят в лунки впереди стоящих глобул (по ходу волны).

Скорость молекул в глобулах начинает увеличиваться сначала в первом ряду, граничащем с подвижной стенкой источника колебаний, молекулы – снаряды которой взаимодействуют с молекулами-мишенями среды этого, первого ряда. Затем таким же образом молекулы первого ряда, становясь снарядами, действуют на молекулы второго ряда и т.д. Возникает ударная звуковая волна, которая движется в сторону, определенную действием источника звука - малых возмущений. Молекулы в своих глобулах только передают это возмущение в среде, но сами глобулы остаются как бы неподвижными. Задние активированные молекулы электродинамически подталкивают неактивированные передние и далее по цепочке вперед. Отдав свою энергию, задние молекулы остаются в среде в своей глобуле, которая не бежит за волной, а тоже остается как бы на прежнем месте. На фронте волны давление повышенное, за волной - разрежение, обусловленное взаимодействием и вогнутой формой кормы глобулы молекул последнего ряда. В эту зону пониженного давления подтягиваются глобулы с молекулами из окружающей среды, в то время как само возмущение (волна) проходит вперед. Волна уходит в заданном источником звука направлении, а глобулы практически остаются на местах. В то же время молекулы в них движутся с повышенной скоростью и взаимодействуют с соседями с большими силами и ускорениями, причем практически в вакууме. Отсутствие сопротивления способствует прохождению волны на большие расстояния.

Большие молекулы воды, активированные на фронте волны, попадая в зону разрежения за волной лопаются, разрушаются под действием разности давлений внутри и вне их в случае, если разность давлений превосходит их прочность, прочность связей единичных молекул с соседями в большой молекуле. Разрыв сплошности среды приводит к появлению пузырьков пара и явлению кавитации.

Кавитацию различают как мягкую, жесткую и взрывную. Мягкая кавитация с образованием и схлопыванием пузырьков пара в жидкости происходит при обычном испарении воды с поверхности в паровое или газовое пространство /4, 5/. Жесткая кавитация происходит, например, в звуковых волнах, как описано выше. Значение разрежения за волной зависит от первоначального давления невозмущенной среды и поэтому – невелико. Кавитация происходит, как правило, в пучностях стоячих звуковых волн, то есть имеет локальный характер. Например, опускание в ультразвуковую ванну бумажного листа дает наглядное представление о регулярном построчном, как на разлинованном тетрадном листе, размещении пробитых взрывами пузырьков отверстий, ряды (строчки) которых отстоят друг от друга на расстояниях, равных половине длине волны. Малые разности давлений на фронте и за ним, частота и амплитуда колебаний, локальный (не объемный) характер возникновения пузырьков и, в целом, относительно слабые воздействия не позволяют образовываться крупным кавитационным пузырькам, схлопывание бы которых приводило бы к высоким давлениям, температурам и разрушению молекул воды, то есть – к взрывной кавитации, сопровождающейся описанным выше процессом горения воды – фазовым переходом высшего ряда (ФПВР) – энерговыделением за счет частичного атомного распада вещества на элементарные частицы.

При достаточно большом импульсном разрежении, создаваемом, например, поршнем в герметичном объеме, дросселируемой струей воды, на оси вращающегося потока воды, в дезинтеграторах и других устройствах для создания кавитации указанные недостатки звуковых волн исключаются. В таких устройствах многими исследователями получен режим взрывной кавитации с атомным процессом энерговыделения за счет приобретаемого водой незначительного дефекта (дефицита) массы, восполняемого в природных условиях и не влияющего на экологию окружающей среды. К сожалению в /10/ описана только жесткая, но не взрывная кавитация.

Все, что написано выше о воде, справедливо и для углеводородного топлива в связи с аналогичной структурой вещества в виде цепочек электронов, соединяющих отдельные молекулы между собой. Из этого следует, что топливо тоже можно разделить на две части (легкое и тяжелое топливо) и, применяя легкое, экономить топливо в 2 раза. Можно также топливо смешать на молекулярном уровне пополам с водой и тоже экономить в 2 раза, что подтверждено практически. Но, конечно, интереснее осуществлять горение воды непосредственно вместо топлива. Горение воды, наряду с другими процессами естественной энергетики /1, 2, 3/, позволит решить топливную и энергетическую проблему самыми чистыми и экономически эффективными способами.

Мощное звуковое поле в жидкости порождает маленькие парогазовые пузырьки, которые под действием этого поля могут расти захлопываться и вызывать такие эффекты, как химические реакции, эрозия, звуколюминесценция и излучение звука (шума) в широкой полосе частот. Эти эффекты характеризуют физическое явление, называемое акустической кавитацией. Гидродинамическая кавитация, или образование и захлопывание парогазовых пузырьков (полостей), или образование разрывов в жидкости в местах локального понижения давления при обтекании тел, течений в трубах, в кильватерной струе и т. д., отличается только способом возбуждения и имеет много общего с явлением акустической кавитации.

Важность исследования кавитации была понята в начале нашего века, когда судостроители столкнулись с быстрым разрушением корабельных винтов из-за кавитационной эрозии. Первое математическое описание поведения кавитационной полости в жидкости было дано Рэлеем в 1917 г. . Предложенная им модель сферической пустой полости, захлопывающейся в несжимаемой жидкости, помогла частично понять эрозионное действие кавитационных пузырьков. Дальнейшие исследования акустической кавитации были вызваны широким использованием звука и ультразвука в технологических процессах, где кавитация является одним из сильно действующих факторов, а также необходимостью повышения мощности акустических преобразователей в гидроакустике, где кавитация ставит предел максимальной интенсивности звука, излучаемого акустическими антеннами.

В общих чертах акустическую кавитацию можно представить себе следующим образом. В фазе разрежения звуковой волны на имеющихся в жидкости микропузырьках образуется разрыв в виде полости, которая заполняется насыщенным паром и диффундирующим в нее растворенным газом. В фазе сжатия пар конденсируется, а имеющийся в полости газ подвергается сильному адиабатическому сжатию. В момент захлопывания давление и температура газа достигают больших значений, что порождает в близкой окрестности пузырька импульс высокого давления. Акустическая кавитация представляет собой эффективный механизм концентрации энергии. При кавитации относительно низкая средняя плотность энергии

звукового поля трансформируется в высокую плотность энергии в малом объеме внутри и вблизи захлопывающегося пузырька. Полная энергия захлопывающегося пузырька невелика, однако сферическая сходимость пузырька приводит к образованию очень больших локальных плотностей энергии, а следовательно, высоких температур и давлений.

Теория образования, роста и захлопывания газовых пузырьков (газовая кавитация) первоначально развивалась для несжимаемой идеальной жидкости для случая одиночного сферического пузырька. Далее были уточнены уравнения динамики пузырька с учетом сжимаемости, вязкости и теплопроводности, конечности амплитуды колебаний стенки пузырька. Наконец, в этой теории был произведен учет несферичности колебаний пузырька, в особенности вблизи его резонансных частот и при достаточно больших амплитудах звука. Было показано, что несферичность колебаний и возникновение струек жидкости у захлопывающихся пузырьков, если они находятся вблизи твердой поверхности, является одной из причин кавитационной эрозии твердых тел. Теоретические исследования далее стали развиваться применительно к динамике паровых пузырьков (паровая кавитация), которая имеет много общего с динамикой газового пузырька, однако имеются и существенные различия.

Большая часть теоретических работ посвящена теории движения одиночного пузырька, тогда как в экспериментальных исследованиях и приложениях приходится иметь дело главным образом с кавитационной областью, т. е. совокупностью большого числа взаимодействующих пузырьков, различающихся своими размерами.

Распространение звука в гетерофазных средах, таких, например, как жидкость с пузырьками газа или пара, кавитационная область, кильватерная струя, верхние слои океана, содержащие большое количество газовых пузырьков различного радиуса, криогенная жидкость, содержащая паровые пузырьки, и т. д., отличается особенностями: газовые, паровые или парогазовые пузырьки приводят к рассеянию звука, вызывают увеличение поглощения звука и дисперсию.

Акустическая кавитация и распространение звука в пузырьковой (и вообще гетерофазной) среде представляет собой большую и сложную область исследований, имеющую существенное прикладное значение. В этой главе будут затронуты только основные аспекты акустической кавитации: динамика газовых и паровых пузырьков, кавитационная область, кавитационая прочность жидкостей, явления, сопровождающие кавитацию, а также ряд вопросов распространения акустических волн в жидкости с пузырьками.

Термин "Кавитация" происходит от латинского - Cavitas (впадина, углубление, полость).
Данным термином принято обозначать физический процесс, протекающий при ряде условий в жидкостях, и сопровождающийся образованием и схлопыванием большого количества пузырьков (пустот, каверн).

Кавитацию можно условно разделить на два подтипа согласно происхождению: гидродинамическая и акустическая.
В свою очередь, гидродинамическая Кавитация имеет ещё два подкласса - назовем их статический и динамический.

Что собой представляет кавитация как процесс физико-химического свойства?
Воздействие кавитации ускорило осаждение солей из воды, что привело к заклиниванию рабочего колеса насоса НВВ-25 .

P (атм.) T°C
0.01 6.7
0.02 17.2
0.04 28.6
0.1 45.4
0.2 59.7
0.3 68.7
0.4 75.4
0.5 80.9
0.6 85.5
0.7 89.5
0.8 93
0.9 96.2
1 99.1
1.033 100

Вода в природе не является однородной и чистой средой без примесей. Все жидкости являются растворами, в которых достаточно большое количество примесей, в основном атмосферных газов. Из атмосферного воздуха в воде растворяется почти в два раза больше азота, нежели кислорода.

Так, в 1 л воды при температуре 20°С растворяется приблизительно 665 мл углекислого газа, а при 0°С - в три раза
больше, 1995 мл. При температуре 0°С в одном литре H 2 O может быть растворено: He - 10 мл, H 2 S - 4630 мл.

Повышение давления влечёт за собой увеличение растворимости газов.

Например, при давлении 25атм в 1 л воды растворяется углекислого газа 16,3 л, а при 53 атм - 26,9.Понижение давления даёт, соответственно, обратный эффект. Если оставить ёмкость с водой на ночь, на стенках образуются пузырьки газа. Ещё более наглядно и быстрее это можно увидеть в стакане с газировкой. В процессе кипячения воды мы также видим процесс образования пузырьков с газом и паром.

Кавитация (тепловая) в некотором смысле - тот же процесс кипения, вызванный не только повышением температуры
(хотя и это тоже один из факторов образования кавитации).В сочетании двух факторов, повышенной температуры и пониженного давления над жидкостью, происходит процесс кавитации, при котором жидкость переходит в газо-водяную смесь.

Откачивая вакуумным насосом воздух из стеклянной бутылки - Получаем процесс кавитационного «кипения» при комнатной температуре.

Видеодемонстрация описанного эффекта.

Это особо критично и чаще всего встречается в насосных системах, работающих на всасывание. Рабочее колесо или винт создают во всасывающей магистрали разряжение, которое в случае недостатка жидкости на входе (заужение прохода, излишнее количество поворотов трубопровода и т.д.), создают условия для кавитационного закипания жидкости.

Очень часто клиенты обращаются с вопросом - почему нельзя всасывать жидкости с высокой температурой? Ответ лежит на поверхности – при понижении давления во всасывающем патрубке большая часть воды переходит в следующее агрегатное состояние, т. н. водно-газовую смесь (проще говоря, кавитационный кипяток), поднять который обычным насосом для воды уже нельзя в принципе.
Раствор жидкости с газом находится в обычных условиях в равновесии, т.е. давление в жидкости больше давления насыщенных паров газа, и система стабильна. В тех случаях, когда в системе нарушается данное равновесие, и происходит образование кавитационных пузырьков.
Рассмотрим случай образования Кавитации в статичной системе.

Чаще всего кавитация образуется в зоне, расположенной на напорной магистрали насоса, в случае её сужения.
Т.е. давление жидкости после сужения падает (согласно закону Бернулли), т.к. увеличиваются потери и кинетическая энергия.
Давление насыщенных паров становится больше внутреннего давления в жидкости с образованием пузырьков/каверн. После прохождения узкой части (это может быть приоткрытый затвор, местное сужение, и т. п.) скорость потока падает, давление возрастает и пузырьки газов и паров схлопываются. Причём энергия, высвобождаемая при этом, весьма и весьма велика, в результате чего (особенно если это происходит в пузырьках, находящихся на стенках) происходят микро-гидроудары, влекущие за собой повреждения стенок. При этом, если не принять мер, то процесс дойдёт и до полного разрушения стенок насосной части. Вибрация и повышенный шум в насосе и трубах - первейшие признаки кавитации.

Основные слабые места в гидросистемах - места сужения, резкого изменения скорости потока жидкости (клапаны, краны, задвижки) и рабочие колёса насосов. Более уязвимыми они становятся при увеличении шероховатости поверхности.

Учёт кавитационного запаса насоса на стадии проектирования системы.

Для расчёта достаточного кавитационного запаса системы надо посчитать
H – максимально возможную для данных условий, для данного насоса и его производительности, высоту всасывания.
,где
Hf - потери во всасывающей магистрали (м.в.ст.) в метрах водяного столба,
Hv - давление насыщенных паров жидкости при рабочей температуре (м),
Hs - запас надёжности, принимаемый проектировщиками – 0,5 м.в.ст.,
Pb - давление над жидкостью - в открытой системе это атмосферное давление, приблизительно равное 10,2 м.в.ст. (Pb*10.2 )
Характеристика насоса NPSH (Net Positive Suction Head) означает высоту всасывания, измеренную на всасывающем входе в насос, с поправкой на давление насыщенных паров конкретной перекачиваемой жидкости,на максимальной производительности насоса.

Т.е. физический смысл формулы H= Pb*10.2 – NPSH – Hf – Hv – Hs состоит в том, чтобы на максимальных рабочих параметрах насоса разряжение в его всасывающем патрубке не превышало бы давление насыщенных паров жидкости при рабочей температуре, т.е. система имела бы требуемый для бескавитационной работы подпор.

Совершенно очевидны отсюда и остальные пути снижения вероятности появления кавитации:
- изменить диаметр на всасывании на больший – уменьшить потери (Hf ),
- переместить насос ближе к месту забора жидкости – уменьшить потери (Hf ),
- поставить более гладкую трубу, уменьшить число поворотов, задвижек, клапанов– уменьшить потери (Hf ),
- понизить разряжение на всасывании изменением высоты установки насоса или использованием бустерного насосного оборудования – повысить (Pb ),
- снизить температуру жидкости - уменьшить (Hv ),
- уменьшить производительность насоса, снизить число оборотов – понизить (NPSH ).
Все эти меры направлены на уменьшение возможности возникновения кавитации в насосе и ведут к долговременной и безопасной работе насосов.