Ход луча в призме. Геометрическая оптика

Примененного к случаю падения луча из среды, в которой свет распространяется со скоростью ν 1 в среду, где свет распространяется со скоростью ν 2 >ν 1 следует, что угол преломления больше угла падения:

Но если угол падения удовлетворяет условию:

(5.5)

то угол преломления обращается в 90°, т. е. преломленный луч скользит по границе раздела. Такой угол падения называют предельным (α пр.). При дальнейшем увеличении угла падения проникновение луча в глубь второй среды прекращается и наступает полное отражение (рис. 5.6). Строгое рассмотрение вопроса с волновой точки зрения показывает, что в действительности волна проникает во вторую среду на глубину порядка длины волны.

Полное отражение находит различные практические применения. Так как для системы стекло- воздух предельный угол α пр составляет менее 45°, то призмы, показанные на рисунке 5.7, позволяют изменять ход луча, причем на рабочей границе отражение происходит практически без потерь.

Если ввести свет в тонкую стеклянную трубку с ее торца, то, испытывая на стенках полное отражение, луч будет следовать вдоль трубки даже при сложных изгибах последней. На этом принципе работают световоды - тонкие прозрачные волокна, позволяющие проводить световой пучок по искривленному пути.

На рисунке 5.8 показан отрезок световода. Луч, входящий в световод с торца под углом падения а, встречает поверхность световода под углом γ=90°-β, где β - угол преломления. Чтобы при этом возникло полное отражение, необходимо выполнение условия:

где n - показатель преломления вещества световода. Так как треугольник ABC прямоугольный, то получается:

Следовательно,

Полагая а→90°, находим:

Таким образом, даже при почти скользящем падении луч испытывает в световоде полное отражение, если выполнено условие:

В действительности световод набирается из тонких гибких волокон с показателем преломления n 1 окруженных оболочкой с показателем преломления n 2

Изучая явление преломления, Ньютон выполнил опыт, ставший классическим: узкий пучок белого света, направленный на стеклянную призму, дал ряд цветных изображений сечения пучка - спектр. Затем спектр попадал на вторую такую же призму, повернутую на 180° вокруг горизонтальной оси. Пройдя эту призму, спектр снова собрался в единственное белое изображение сечения светового пучка. Тем самым был доказан сложный состав белого света. Из этого опыта следует, что показатель преломления зависит от длины волны (дисперсия). Рассмотрим работу призмы для монохроматического света, падающего под углом α 1 на одну из преломляющих граней прозрачной призмы (рис. 5.9) с преломляющим углом А.

Из построения видно, что угол отклонения луча δ связан с преломляющим углом призмы сложным соотношением:

Перепишем его в виде

и исследуем на экстремум отклонение луча. Беря производную и приравнивая ее нулю, находим:

Отсюда следует, что экстремальное значение угла отклонения получается прй симметричном ходе луча внутри призмы:

Легко видеть, что при этом получается минимальный угол отклонения, равный:

(5.7)

Уравнение (5.7) применяется для определения показателя преломления по углу минимального отклонения.

Если призма имеет малый преломляющий угол, такой, что можно синусы заменить углами, получается наглядное соотношение:

(5.8)

Опыт показывает, что стеклянные, призмы сильнее преломляют коротковолновую часть спектра (синие лучи), но что нет прямой простой связи между λ, и δ min . Теорию дисперсии мы рассмотрим в главе 8. Пока для нас важно ввести меру дисперсии - разность показателей преломления двух определенных длин волн (одна из них берется в красной, другая - в синей части спектра):

Мера дисперсии для разных сортов стекла различна. На рисунке 5.10 изображен ход показателя преломления для двух распространенных сортов стекла: легкого - крона и тяжелого - флинта. Из чертежа видно, что меры дисперсии отличаются значительно.

Это дает возможность создать весьма удобную призму прямого зрения, где свет разлагается в спектр, почти не меняя направления распространения. Эта призма делается из нескольких (до семи) призм разного стекла с несколько различными преломляющими углами (рис. 5.10, внизу). За счет различной меры дисперсии добиваются хода луча, приблизительно показанного на рисунке.

В заключение отметим, что пропускание света через плоскопараллельную пластину (рис. 5.11) позволяет получить смещение луча параллельно самому себе. Значение смещения

зависит от свойств пластины и от угла, падения на нее первичного луча.

Разумеется, во всех рассмотренных случаях наряду с преломлением существует и отражение света. Но мы его не учитываем, так как преломление в этих вопросах считается основным явлением. Это замечание относится и к преломлению света на искривленных поверхностях различных линз.

органов без хирургического вмешательства (эндоскопы), а также на производстве для освещения недоступных участков.

5. На законах преломления основан принцип действия разнообразных оптических устройств, служащих для задания световым лучам нужного направления. Для примера рассмотрим ход лучей в плоскопараллельной пластинке и в призме.

1). Плоскопараллельная пластинка – изготовленная из прозрачного вещества пластинка с двумя параллельными плоскими гранями.Пусть пластинка изготовлена из вещества, оптически более плотного, чем окружающая среда. Предположим, что в воздухе ( n1 =1) находится стеклянная

пластинка (n 2 >1), толщина которойd (рис.6).

Пусть луч падает на верхнюю грань этой пластинки. В точке А он преломится и пойдет в стекле по направлениюАВ . В точкеВ луч снова преломится и выйдет из стекла в воздух. Докажем, что луч из пластинки выходит под тем же углом, под каким падает на нее. Для точкиА закон преломления имеет вид: sinα/sinγ=n 2 /n 1, и так какn 1 =1, тоn 2 = sinα/sinγ. Для

точки В закон преломления следующий: sinγ/sinα1 =n 1 /n 2 =1/n 2 . Сравнение

формул дает равенство sinα=sinα1 , а значит, и α=α1 .Следовательно, луч

выйдет из плоскопараллельной пластинки под таким же углом, под каким на неё упал. Однако луч, вышедший из пластинки, смещен относительно падающего луча на расстояние ℓ, которое зависит от толщины пластинки,

показателя преломления и угла падения луча на пластинку.

Вывод : плоскопараллельная пластинка не меняет направление падающих на нее лучей, а лишь смешает их, если рассматривать преломленные лучи.

2). Треугольная призма – это выполненная из прозрачного вещества призма, сечение которой представляет собой треугольник.Пусть призма изготовлена из материала оптически более плотного, чем окружающая среда

(например, она из стекла, а вокруг – воздух). Тогда луч, упавший на её грань,

преломившись, отклоняется к основанию призмы, поскольку он переходит в оптически более плотную среду и, значит, его угол падения φ1 больше угла

преломления φ2 . Ход лучей в призме показан на рис.7.

Угол ρ при вершине призмы, лежащий между гранями на которых преломляется луч, называется преломляющим углом призмы ; а сторона,

лежащая против этого угла, - основанием призмы. Угол δ между направлениями продолжения луча, падающего на призму (АВ ) и луча (CD )

вышедшего из нее, называется углом отклонения луча призмой – он показывает, как сильно призма изменяет направление падающих на нее лучей. Если известны угол р и показатель преломления призмыn , то по заданному углу падения φ1 можно найти угол преломления на второй грани

φ4 . В самом деле, угол φ2 определяется из закона преломления sinφ1 /sinφ2 =n

(призма из материала с показателем преломления n помещена в воздух). В

BCN стороныВN иCN образованы прямыми, перпендикулярными к граням призмы, так что уголCNE равен углу р. Поэтому φ2 +φ3 =р , откуда φ3 =р -φ2

становится известным. Угол φ4 определяется законом преломления:

sinφ3 /sinφ4 =1/n .

Практически часто бывает нужно решать такую задачу: зная геометрию призмы (угол р ) и определяя углы φ1 и φ4 , найти показатель

преломления призмы n . Применяя законы геометрии, получаем: угол МСВ=φ4 -φ3 , угол МВС=φ1 -φ2; угол δ - внешний к BМC и, следовательно,

равен сумме углов МВС и МСВ: δ=(φ1 -φ2 )+(φ4 -φ3 )=φ1 +φ4 -р , где учтено

равенство φ3 +φ2 =р . Поэтому,

δ = φ1 + φ4 -р .

Следовательно, угол отклонения луча призмой тем больше, чем больше угол падения луча и чем меньше преломляющий угол призмы.Сравнительно сложными рассуждениями можно показать, что при симметричном ходе луча

сквозь призму (луч света в призме параллелен ее основанию) δ принимает наименьшее значение.

Предположим, что преломляющий угол (тонкая призма) и угол падения луча на призму малы. Запишем законы преломления на гранях призмы:

sinφ1 /sinφ2 =n , sinφ3 /sinφ4 =1/n . Учитывая, что для малых углов sinφ≈ tgφ≈ φ,

получим: φ1 =n φ2 , φ4 =n φ3 . подставив φ1 и φ3 , в формулу (8) для δ получим:

δ =(n – 1)р .

Подчеркнем, что эта формула для δ верна лишь для тонкой призмы и при очень малых углах падения лучей.

Принципы получения оптических изображений

Геометрические принципы получения оптических изображений основываются только на законах отражения и преломления света, полностью отвлекаясь от его физической природы. При этом оптическую длину светового луча следует считать положительной, когда он проходит в направлении распространения света, и отрицательной в противоположном случае.

Если пучок световых лучей, исходящий из какой-либо точкиS , в

результате отражения и/или преломления сходится в точке S ΄, тоS ΄

считается оптическим изображениемили просто изображением точки S.

Изображение называется действительным, если световые лучи действительно пересекаются в точкеS ΄. Если же в точкеS ΄ пересекаются продолжения лучей, проведенные в направлении, обратном распространению

света, то изображение называется мнимым. При помощи оптических приспособлений мнимые изображения могут быть преобразованы в действительные. Например, в нашем глазу мнимое изображение преобразуется в действительное, получающееся на сетчатке глаза. Для примера рассмотрим получение оптических изображений с помощью 1)

плоского зеркала; 2) сферического зеркала и 3) линз.

1. Плоским зеркаломназывают гладкую плоскую поверхность, зеркально отражающую лучи. Построение изображения в плоском зеркале можно показать с помощью следующего примера. Построим, как виден в зеркале точечный источник света S(рис.8).

Правило построения изображения следующее. Поскольку от точечного источника можно провести разные лучи, выберем два из них - 1 и 2 и найдем точку S ΄, где эти лучи сходятся. Очевидно, что сами отраженные 1΄ и 2 ΄ лучи расходятся, сходятся лишь их продолжения (см. пунктир на рис.8).

Изображение получилось не от самих лучей, а от их продолжения, и является мнимым. Простым геометрическим построением легко показать, что

изображение расположено симметрично по отношению к поверхности зеркала.

Вывод: плоское зеркало дает мнимое изображение предмета,

расположенное за зеркалом на таком же расстоянии от него, что и сам предмет. Если два плоских зеркала расположены под углом φ друг к другу,

то возможно получить несколько изображений источника света.

2. Сферическим зеркаломназывается часть сферической поверхности,

зеркально отражающая свет. Если зеркальной является внутренняя часть поверхности, то зеркало называютвогнутым, а если наружная, товыпуклым.

На рис.9 показан ход лучей падающих параллельным пучком на вогнутое сферическое зеркало.

Вершина сферического сегмента (точка D ) называетсяполюсом зеркала. Центр сферы (точкаО ), из которой образовано зеркало, называется

оптическим центром зеркала. Прямая, проходящая через центр кривизныО зеркала и его полюсD , называется главной оптической осью зеркала.

Применяя закон отражения света, в каждой точке падения лучей на зеркал

восстанавливают перпендикуляр к поверхности зеркала (этим перпендикуляром является радиус зеркала - пунктирная линия на рис. 9) и

получают ход отраженных лучей. Лучи, падающие на поверхность вогнутого зеркала параллельно главной оптической оси, после отражения собираются в одной точке F , называемойфокусом зеркала, а расстояние от фокуса зеркала до его полюса - фокусным расстояниемf. Поскольку радиус сферы направлен по нормали к ее поверхности, то, по закону отражения света,

фокусное расстояние сферического зеркала определяют по формуле

где R -радиус сферы (ОD ).

Для построения изображения необходимо выбрать два луча и найти их пересечение. В случае вогнутого зеркала такими лучами могут быть луч,

отраженный от точки D (он идет симметрично с падающим относительно оптической оси), и луч, прошедший через фокус и отраженный зеркалом (он идет параллельно оптической оси); другая пара: луч, параллельный главной оптической оси (отражаясь, он пройдет через фокус), и луч, проходящий через оптический центр зеркала (он отразится в обратном направлении).

Для примера построим изображение предмета (стрелки АВ ), если он находится от вершины зеркалаD на расстоянии, большем радиуса зеркала

(радиус зеркала равен расстоянию OD=R ). Рассмотрим чертеж, сделанный согласно описанному правилу построения изображения (рис.10).

Луч 1 распространяется от точки В до точкиD и отражается по прямой

DE так, что уголADВ равен углуADE . Луч 2 от той же точкиВ распространяется через фокус до зеркала и отражается по линииCB "||DA .

Изображение действительное (образованное отраженными лучами, а не их продолжениями, как в плоском зеркале), перевернутое и уменьшенное.

Из простых геометрических расчетов можно получить соотношение между следующими характеристиками. Если а – расстояние от предмета до зеркала, откладываемое по главной оптической оси (на рис.10 – этоAD ),b –

расстояние от зеркала до изображения (на рис.10 - это DA "), тоа/b =AB/A"B" ,

и тогда фокусное расстояние f сферического зеркала определяют по формуле

Величина оптической силы измеряется в диоптриях (дптр); 1 дптр = 1м-1 .

3. Линзой называют прозрачное тело, ограниченное сферическими поверхностями, радиус, по крайнем мере, одной из которых не должен быть бесконечным. Ход лучей в линзе зависит от радиуса кривизны линзы.

Основными характеристиками линзы являются оптический центр, фокусы,

фокальные плоскости. Пусть линза ограничена двумя сферическими поверхностями, центры кривизны которых С 1 иС 2 , а вершины сферических

поверхностей О 1 иО 2 .

На рис.11 схематично изображена двояковыпуклая линза; толщина линзы в середине больше, чем у краев. На рис.12 схематично изображена двояковогнутая линза (в середине она тоньше, чем у краев).

Для тонкой линзы считают, что О 1 О 2 <<С 1 О 2 иО 1 О 2 <<С 2 О 2 , т.е.

практически точки О 1 иО 2 . слиты в одну точкуО , которая называется

оптическим центром линзы . Прямая, проходящая через оптический центр линзы, называется оптической осью.Оптическая ось, проходящая через центры кривизны поверхностей линзы, называется главной оптической осью (С 1 С 2 , на рис.11 и 12). Лучи, идущие через оптический центр, не

преломляются (не изменяют своего направления). Лучи, параллельные главной оптической оси двояковыпуклой линзы, после прохождения через нее пересекают главную оптическую ось в точке F (рис.13), которая называется главным фокусом линзы, а расстояние от этой точки до линзыf

есть главное фокусное расстояние. Постройте самостоятельно ход хотя бы двух лучей, падающих на линзу параллельно главной оптической оси

(стеклянная линза расположена в воздухе, учтите это при построении), чтобы доказать, что расположенная в воздухе линза является собирающей, если она двояковыпуклая, и рассеивающей, если линза двояковогнутая.

Пусть луч падает на одну из гранен призмы. Преломившись в точке , луч пойдет по направлению и, вторично преломившись в точке , выйдет из призмы в воздух (рис. 189). Найдем угол , на который луч, пройдя через призму, отклонится от первоначального направления. Этот угол мы будем называть углом отклонения. Угол между преломляющими гранями, называемый преломляющим углом призмы, обозначим .

Рис. 189. Преломление в призме

Из четырехугольника , в котором углы при и прямые, найдем, что угол равен . Пользуясь этим, из четырехугольника находим

Угол , как внешний угол в треугольнике , равен

где - угол преломления в точке , а - угол падения в точке луча, выходящего из призмы. Далее, пользуясь законом преломления, имеем

С помощью полученных уравнений, зная преломляющий угол призмы и показатель преломления , мы можем при любом угле падения вычислить угол отклонения .

Особенно простую форму получает выражение для угла отклонения в том случае, когда преломляющий угол призмы мал, т. е. призма тонкая, а угол падения невелик; тогда угол также мал. Заменяя приближенно в формулах (86.3) и (86.4) синусы углов самими углами (в радианах), имеем

.

Подставляя эти выражения в формулу (86.1) и пользуясь (86.2), находим

Этой формулой, справедливой для тонкой призмы при падении на нее лучей под небольшим углом, мы воспользуемся в дальнейшем.

Обратим внимание, что угол отклонения луча в призме зависит от показателя преломления вещества, из которого сделана призма. Как мы указывали выше, показатель преломления для разных цветов света различен (дисперсия). Для прозрачных тел показатель преломления фиолетовых лучей наибольший, затем следуют лучи синие, голубые, зеленые, желтые, оранжевые, и, наконец, красные, которые имеют наименьший показатель преломления. В соответствии с этим угол отклонения для фиолетовых лучей наибольший, для красных - наименьший, и луч белого цвета, падающий на призму, по выходе из нее окажется разложенным на ряд цветных лучей (рис. 190 и рис. I на цветном форзаце), т. е. образуется спектр лучей.

Рис. 190. Разложение белого света при преломлении в призме. Падающий пучок белого света изображен в виде фронта с перпендикулярным к нему направлением распространения волны. Для преломленных пучков показана только направления распространения волн

18. Поместив экран позади куска картона, в котором проделано маленькое отверстие, можно получить на этом экране изображение источники. При каких условиях изображение на экране будет отчетливое? Объясните, почему изображение получается перевернутым?

19. Докажите, что пучок параллельных лучей остается таким же после отражения от плоского зеркала

Рис. 191. К упражнению 27. Если чашка пустая, глаз не видит монеты (а), если же чашка наполнена водой, то монета видна (б). Палка, погруженная одним концом в воду, кажется сломанной (в). Мираж в пустыне (г). Как рыба видит дерево и ныряльщика (д)

20. Чему равен угол падения луча, если луч падающий и луч отраженны» образуют угол ?

21. Чему равен угол падения луча, если луч отраженный и луч преломленный образуют угол ? Показатель преломления второй среды относительно первой равен .

22. Докажете обратимость направления световых лучей для случая отражения света.

23. Можно ли придумать такую систему зеркал и призм (линз) через которую один наблюдатель видел бы второго наблюдателя, а второй наблюдатель не видел бы первого?

24. Показатель преломления стекла относительно воды равен 1,182: показатель преломления глицерина относительно воды равен 1.105. Найдите показатель преломления стекла относительно глицерина.

25. Найдите предельный угол полного внутреннего отражения для алмаза на границе с водой.

26. найдите смещение луча при прохождении его через плоскопараллельную пластинку из стекла с показателем преломления, равным 1,55, если угол падения , а толщина пластинки равна

27. Пользуясь законами преломления и отражения, объясните явления, показанные на рис. 191

Закон преломления света

Явление преломления света, наверное, каждый не раз встречал в повседневной жизни. Например, если опустить в прозрачный стакан с водой трубочку, то можно заметить, что та часть трубочки, которая находится в воде, кажется сдвинутой в сторону. Это объясняется тем, что на границе двух сред происходит изменение направления лучей, иными словами преломления света.

Точно так же, если опустить в воду под наклоном линейку, будет казаться, что она преломилась и ее подводная часть поднялась выше.

Ведь оказывается, что лучи света, оказавшись на границе воздуха и воды, испытывают преломление. Луч света попадает на поверхность воды под одним углом, а дальше он уходит вглубь воды под другим углом, под меньшим наклоном к вертикали.



Если пустить из воды в воздух обратный луч, он пройдет по тому же самому пути. Угол между перпендикуляром к поверхности раздела сред в точке падения и падающим лучом называется углом падения.

Угол преломления – это угол между тем же самым перпендикуляром и преломленным лучом. Преломления света на границе двух сред объясняется различной скоростью распространения света в этих средах. При преломлении света всегда выполнятся две закономерности:

Во-первых, лучи, независимо от того он падающий или преломленный, а также и перпендикуляр, который является границей раздела двух сред в точке излома луча - всегда лежат в одной плоскости;

Во-вторых, отношение sіnus угла падения к sіnus угла преломления, являются постоянной величиной для двух этих сред.

Эти два утверждения выражают закон преломления света.



Sіnus угла падения α относится к sіnus угла преломления β, так же как скорость волны в первой среде - v1 к скорости волны во второй среде - v2, и равен величине n. N – это постоянная величина, которая не зависит от угла падения. Величина n называется показателем преломления второй среды относительно первой среды. И если в качестве первой среды был вакуум, то показатель преломления второй среды называют абсолютным показателем преломления. Соответственно он равен отношению sіnus угла падения к sіnus угла преломления при переходе светового луча из вакуума в данную среду.

Показатель преломления зависит от характеристик света, от температуры вещества и от его плотности, то есть от физических характеристик среды.

Чаще приходится рассматривать переход света через границу воздух-твердое тело или воздух-жидкость, чем через границу вакуум-определенная среда.

Следует отметить так же, что относительные показатель преломления двух веществ равен отношению из абсолютных показателей преломления.

Давайте познакомится с этим законом с помощью простых физических опытов, которые доступы вам всем в бытовых условиях.

Опыт 1.

Положим монету в чашку так, чтобы она скрылась за краем чашки, а теперь будем наливать в чашку воду. И вот что удивительно: монета показалась из-за края чашки, будто бы она всплыла, или дно чашки поднялось вверх.



Нарисуем монету в чашке с водой, и идущие от нее лучи солнца. На границе раздела воздуха и воды эти лучи преломляются и выходят из воды под большим углом. А мы видим монету в том месте, где сходятся линии преломленных лучей. Поэтому видимое изображение монеты находится выше, чем сама монета.



Опыт 2.

Поставим на пути параллельных лучей света наполненную водой емкость с параллельными стенками. На входе из воздуха в воду все четыре луча повернулись на некоторый угол, а на выходе из воды в воздух они повернулись на тот же самый угол, но в обратную сторону.



Увеличим наклон лучей, и на выходе они все равно останутся параллельными, но сильнее сдвинутся в сторону. Из-за этого сдвига книжные строчки, если посмотреть на них сквозь прозрачную пластину, кажутся перерезанными. Они сместись вверх, как поднималась вверх монета в первом опыте.



Все прозрачные предметы мы, как правило, видим исключительно благодаря тому, что свет преломляется и отражается на их поверхности. Если бы такого эффекта не существовало, то все эти предметы были бы полностью невидимыми.

Опыт 3.

Опустим пластину из оргстекла в сосуд с прозрачными стенками. Ее прекрасно видно. А теперь зальем в сосуд подсолнечное масло, и пластина стала почти невидимой. Дело в том, что световые лучи на границе масла и оргстекла почти не преломляются, вот пластина и становится пластиной невидимой.



Ход лучей в треугольной призме

В различных оптических приборах довольно часто используют треугольную призму, которая может быть изготовлена из такого материала, как стекло, или же из других прозрачных материалов.

При прохождении через треугольную призму лучи преломляются на обеих поверхностях. Угол φ между преломляющими поверхностями призмы называется преломляющим углом призмы. Угол отклонения Θ зависит от показателя преломления n призмы и угла падения α.

Θ = α + β1 - φ, f= φ + α1


Все вы знаете известную считалочку для запоминания цветов радуги. Но почему эти цвета всегда располагаются в таком порядке, как они получаются из белого солнечного света, и почему в радуге нет никаких других цветов кроме этих семи известно не каждому. Объяснить это легче на опытах и наблюдениях.

Красивые радужные цвета мы можем видеть на мыльных пленках, особенно если эти пленки совсем тонкие. Мыльная жидкость стекает вниз и в этом же направлении движутся цветные полосы.



Возьмем прозрачную крышку от пластиковой коробки, а теперь наклоним ее так, чтобы от крышки отразился белый экран компьютера. На крышке появятся неожиданно яркие радужные разводы. А какие прекрасные радужные цвета видны при отражении света от компакт-диска, особенно если посветить на диск фонариком и отбросить эту радужную картину на стену.



Первым появление радужных цветов попробовал объяснить великий английский физик Исаак Ньютон. Он пропустил в темную комнату узкий пучок солнечного света, а на его пути поставил треугольную призму. Выходящий из призмы свет образует цветную полосу, которая называется спектром. Меньше всего в спектре отклоняется красный цвет, а сильнее всего - фиолетовый. Все остальные цвета радуги располагаются между этими двумя без особо резких границ.



Лабораторный опыт

В качестве источник белого света выберем яркий светодиодный фонарик. Чтобы сформировать узкий световой пучок поставим одну щель сразу за фонариком, а вторую непосредственно перед призмой. На экране видна яркая радужная полоса, где хорошо различимы красный цвет, зеленый и синий. Они и составляют основу видимого спектра.



Поставим на пути цветного пучка цилиндрическую линзу и настроим ее на резкость – пучок на экране собрался в узкую полоску, все цвета спектра смешались, и полоска снова стала белой.

Почему же призма превращает белый свет в радугу? Оказывается, дело в том, что все цвета радуги уже содержатся в белом свете. Показатель преломления стекла различается для лучей разного цвета. Поэтому призма отклоняет эти лучи по-разному.



Каждый отдельный цвет радуги является чистым и его уже нельзя расщепить на другие цвета. Ньютон доказал это на опыте, выделив из всего спектра узкий пучок и поставив на его пути вторую призму, в которой никакого расщепления уже не произошло.

Теперь мы знаете, как призма разлагает белый свет на отдельные цвета. А в радуге капельки воды работают как маленькие призмы.

Но если посветить фонариком на компакт-диск работает немного другой принцип, несвязанный с преломление света через призму. Эти принципы будут изучаться в дальнейшем, на уроках физики, посвященным свету и волновой природе света.

Рассмотрим некоторые частные случаи преломления света. Одним из простейших является прохождение света через призму. Она представляет собой узкий клин из стекла или другого прозрачного материала, находящийся в воздухе.


Показан ход лучей через призму. Она отклоняет лучи света по направлению к основанию. Для наглядности профиль призмы выбран в виде прямоугольного треугольника, а падающий луч параллелен его основанию. При этом преломление луча происходит только на задней, косой грани призмы. Угол w, на который отклоняется падающий луч, называется отклоняющим углом призмы. Он практически не зависит от направления падающего луча: если последний не перпендикулярен грани падения, то отклоняющий угол слагается из углов преломления на обеих гранях.

Отклоняющий угол призмы приблизительно равен произведению величины угла при ее вершине на показатель преломления вещества призмы минус 1:

w = α (n-1).

Проведем перпендикуляр ко второй грани призмы в точке падения на нее луча (штрихпунктирная линия). Он образует с падающим лучом угол β. Этот угол равен углу α при вершине призмы, так как их стороны взаимно перпендикулярны. Так как призма тонкая и все рассматриваемые углы малы, можно считать их синусы приблизительно равными самим углам, выраженным в радианах. Тогда из закона преломления света следует:

В этом выражении n стоит в знаменателе, так как свет идет из более плотной среды в менее плотную.

Поменяем местами числитель и знаменатель, а также заменим угол β на равный ему угол α:

Поскольку показатель преломления стекла, обычно применяемого для очковых линз, близок к 1,5, отклоняющий угол призм примерно вдвое меньше угла при их вершине. Поэтому в очках редко применяются призмы с отклоняющим углом более 5°; они будут слишком толстыми и тяжелыми. В оптометрии отклоняющее действие призм (призматическое действие) чаще измеряют не в градусах, а в призменных диоптриях (Δ) или в сантирадианах (срад). Отклонение лучей призмой силой в 1 прдптр (1 срад) на расстоянии 1 м от призмы составляет 1 см. Это соответствует углу, тангенс которого равен 0,01. Такой угол равен 34".




Поэтому приближенно можно считать, что отклоняющее действие призмы в призменных диоптриях вдвое больше, чем в градусах (1 прдптр = 1 срад = 0,5°).

Это же относится и к самому дефекту зрения, косоглазию, исправляемому призмами. Угол косоглазия можно измерять в градусах и в призменных диоптриях.