Hno3 разложение. Окислительные свойства азотной кислоты

И воду.

В полумраке же, кислота с водой легко смешивается в любых пропорциях. У вещества есть и кристаллическое состояние.

Оно может быть моноклинным и ромбическим. Это указывает на форму ячеек кристаллической решетки.

Моноклинная составлена из наклоненных параллелепипедов, а ромбическая, соответственно, из ромбов.

Отличаются ли свойства растворов от ее , как вещество добывается и где применяется? Вопросы заданы, остается дать на низ ответы.

Свойства азотной кислоты

В обычных условиях кристаллическую кислоту можно лицезреть лишь в жарких странах.

В состояние бесцветная жидкость переходит лишь при 42-ух градусах Цельсия. До этой отметки вещество остается жидким и парит.

При этом, реагент источает резкий, удушливый запах. С ним, собственно, связана история открытия азотной кислоты . Обнаружил ее Даниэль Резерфорд.

Шотландец изучал продукты сжигания , , . В ходе работ выделялся газ, который химик назвал удушливым воздухом.

Ученый отметил, что вещество не поддерживает горение и непригодно для дыхания.

Позже, выяснилась формула азотной кислоты : — HNO 3 . Получается, вещество одноосновное.

Так именуют , в состав которых входит лишь один атом водорода. С водой вещество смешивается в любых пропорциях.

Поэтому, существует концентрированная азотная кислота и неконцентрированная.

Первая активно дымит, то есть, летуча. Химические свойства концентрата разнятся с разбавленой версией.

Если кислоты в растворе около 60%, он будет реагировать со всеми металлами кроме , , , , , и .

Отсюда вывод, в какой таре нужно хранить вещество. и фляги, конечно, не выгодны.

А вот емкости из железа и алюминия и бюджетны, и надежны, поскольку закрывают кислоту от света. Главное, не выбрать тару из меди. Азотная кислота ее растворит.

Реагируя с металлами, концентрированный раствор азотной кислоты выделяет бурый газ. Его формула: — NО 2 .

Параллельно, образуются кислоты. В зависимости от растворенного металла, реакции разнятся.

При взаимодействии с рядом до , образуются диоксиды, и выделяется кислород.

Реакция с солями металлов, находящимися после магния до , дает бурый газ, оксид азота и кислород.

Если к кислоте присоединится соль любого металла после меди, металл отделится. Вместе с ним выделяются бурый газ и кислород.

Разбавленная азотная кислота реагирует с большинством тех же металлов, но, окисляется при этом до аммиака.

К такому исходу приводит взаимодействие, к примеру, с и элементами щелочноземельной группы. В реакцию вступает и железо.

Так что, разбавленную кислоту в емкостях из с феррумом лучше не хранить.

Итогом взаимодействия с азотной кислотой разбавленного типа может стать не только аммиак, но и аммиачная селитра.

Самый редкий вариант – закись азота. Ее даст, к примеру, реакция с магнием. С остальными металлами азотная кислота образует оксид азота.

Его можно получить, в частности, при взаимодействии с . Выпадет оксид аргентума, образуется вода и оксид азота.

По этой же схеме проходят реакции кислоты с неметаллами, только, вместо формируется серная кислота.

Из реакций с другими кислотами примечательно смешивание с соляной. Последней, берут 3 части, а первой – одну. Получается .

Ее так назвали, поскольку вещество растворяет даже – металл правителей, сильных мира сего.

На такое не способна ни одна из чистых кислот. Благородные металлы им поддаются редко, а , вовсе, никогда.

Добыча азотной кислоты

В малых количествах вещество возможно добывать даже из воздуха, причем, в прямом смысле. Не секрет, что азот – одна из составляющих атмосферы.

На 15-ый газ в ней приходятся 78% . Азот реагирует с кислородом, образуя оксид. Дальнейшее окисление дает диоксид азота. Это тот самый бурый газ.

Он-то и реагирует с водой, взвесь которой, как известно, имеется в воздухе. Вступая в контакт с облаками, туманом, бурый газ переходит в азотную кислоту.

Массовая доля азотной кислоты в атмосфере столь мала, что вещество не наносит вред человеку, да и другим живым организмам.

Для промышленной добычи кислота из воздуха тоже не годится. На заводах пользуются иными схемами.

Первая: — производство азотной кислоты из аммиака. Сначала, проводят его конверсию, то есть, дробление состава исходной газовой смеси.

Реакция проходит на платинородиевых сетках при температуре около 1000 градусов Цельсия. Так получают оксид азота. Его окисляют до диоксида.

Это вторая стадия процесса. После, оксиды азота абсорбируют водой. В итоге, получается азотная кислота и чистая вода.

Описанный метод приводит к образованию разбавленной кислоты. Возможна последующая концентрация.

Поэтому, метод наиболее популярен, ведь потребителям нужна, как насыщенная, так и ненасыщенная кислоты.

Работая с аммиаком, промышленники «убивают одним выстрелом двух зайцев».

Второй метод производства реактива приводит сразу к получению концентрата. Речь о прямом синтезе из оксидов азота. Берут жидкие.

Они взаимодействуют с водой и кислородом. Такие реакции с азотной кислотой проходят под давлением в 5 мегапаскалей.

Получается диоксид азота. В обычных условиях он переходит в жидкое состояние. Окисление аммиака дает двойной оксид азота.

В газовой смеси его около 11%. Сжижжают диоксид под давлением. При стандартных условиях переход невозможен.

Применение азотной кислоты

Как составная царской водки азотная кислота является частью кислот. С их помощью изучают качество .

Без соответствующих исследований не поступят в , а – на прилавки .

Прежде чем апробировать и продать драгоценный металл, его нужно добыть. В этом тоже помогают азотная кислота и царская водка.

Ими обрабатывают руды, выводя нужные элементы в раствор. Остается осадить металлы и осушить, очистить от примесей. Так добывают не только благородные, но и неблагородные элементы.

Из металлов, как известно, делают , а из них, к примеру, технику. Если рассматривать воздушную и космическую, в них присутствует чистая кислота.

Ее примешивают к топливу, получая оксид. Азотная кислота выступает в роли окислителя. .

Все это соли, объединенные названием «селитры». Азот позволяет растениям быстро развиваться, повышает урожайность.

Дело в том, что 15-ый элемент входит в состав хлорофилла. Это зеленый пигмент растений, отвечающий за усвоение энергии .

Чем больше освоенной энергии, тем лучше развитие трав, кустарников, деревьев.

Слово «селитра» на слуху и у пиротехников. Азотная кислота – основа взрывчатых веществ.

Аммиачной селитры в большинстве из них около 60%. Остатки – дизельное топливо, или иное горючее. Получить можно, как безобидный фейерверк, так и военную бомбу.

Цена азотной кислоты

Азотная кислота, как и большинство востребованных кислот, бывает чистой и технической, отягощенной примесями. Последняя дешевле.

Чистый реагент дороже. Для справки, ГОСТ 4461-77 – норма для очищенной кислоты.

Реагент российского производства стоит в районе 30-55-ти рублей за килограмм. Ценник зависит от концентрации раствора.

Для технической кислоты верхний ценовой предел, обычно, составляет 40 за кило. Предусмотрена и большая фасовка.

Есть, к примеру, 25-литровые канистры, в которые разливается азотная кислота.

Купить реагент с максимальной выгодой позволяют оптовые заказы. Такие уходят на предприятия, где знают правила обращения с реагентом.

Он разъедает не только металлы, но и слизистые. Пары вещества могут затруднить дыхание, повредить трахеи, выстилающие ткани носа.

Поэтому, с кислотой работают лишь в масках. При нарушении правил, кроме трудностей с дыханием, наступает отравление.

Интоксикация выражается в рвоте, чесотке, нарушениях зрения, обоняния. Более-менее безобидны лишь слабые растворы реагента.

Именно такие, к примеру, используют в школьных лабораториях. Учиться обращению с химическими реагентами стоит с малых лет.

ОПРЕДЕЛЕНИЕ

Чистая азотная кислота - бесцветная жидкость, при -42 o С застывающая в прозрачную кристаллическую массу (строение молекулы показано на рис. 1).

На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары её образуют с влагой воздуха мелкие капельки тумана.

Азотная кислота не отличается прочностью. Уже под влияние света она постепенно разлагается:

4HNO 3 = 4NO 2 + O 2 + 2H 2 O.

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Выделяющийся диоксид азота растворяется в кислоте и придает ей бурую окраску.

Рис. 1. Строение молекулы азотной кислоты.

Таблица 1. Физические свойства азотной кислоты.

Получение азотной кислоты

Азотная кислота образуется в результате действия окислителей на азотистую кислоту:

5HNO 2 + 2KMnO 4 + 3H 2 SO 4 = 5HNO 3 + 2MnSO 4 + K 2 SO 4 + 3H 2 O.

Безводная азотная кислота может быть получена перегонкой при пониженном давлении концентрированного раствора азотной кислоты в присутствии P 4 O 10 или H 2 SO 4 в полностью стеклянном оборудовании без смазки в темноте.

Промышленный процесс производства азотной кислоты основан на каталитическом окислении аммиака над нагретой платиной:

NH 3 + 2O 2 = HNO 3 + H 2 O.

Химические свойства азотной кислоты

Азотная кислоты принадлежит к числу наиболее сильных кислот; в разбавленных растворах она полностью диссоциирует на ионы. Её соли носят название нитраты.

HNO 3 ↔H + + NO 3 — .

Характерным свойством азотной кислоты является её ярко выраженная окислительная способность. Азотная кислота - один из энергичнейших окислителей. Многие неметаллы легко окисляются ею, превращаясь в соответствующие кислоты. Так, сера при кипячении с азотной кислотой постепенно окисляется в серную кислоту, фосфор - в фосфорную. Тлеющий уголек, погруженный в концентрированную HNO 3 , ярко разгорается.

Азотная кислота действует почти на все металлы (за исключением золота, платины, тантала, родия, иридия), превращая их в нитраты, а некоторые металлы - в оксиды.

Концентрированная азотная кислота пассивирует некоторые металлы.

При взаимодействии разбавленной азотной кислоты с малоактивными металлами, например, с медью, выделяется диоксид азота. В случае более активных металлов - железа, цинка - образуется оксид диазота. Сильно разбавленная азотная кислота взаимодействует с активными металлами - цинком, магнием, алюминием - с образованием иона аммония, дающего с кислотой нитрат аммония. Обычно одновременно образуются несколько продуктов.

Cu + HNO 3 (conc) = Cu(NO 3) 2 + NO 2 + H 2 O;

Cu + HNO 3 (dilute) = Cu(NO 3) 2 + NO + H 2 O;

Mg + HNO 3 (dilute) = Mg(NO 3) 2 + N 2 O + H 2 O;

Zn + HNO 3 (highly dilute) = Zn(NO 3) 2 + NH 4 NO 3 + H 2 O.

При действии азотной кислоты на металлы водород, как правило, не выделяется.

S + 6HNO 3 = H 2 SO 4 + 6NO 2 + 2H 2 O;

3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO.

Смесь, состоящая из 1 объема азотной и 3-4 объемов концентрированной соляной кислоты, называется царской водкой. Царская водка растворяет некоторые металлы, не взаимодействующие с азотной кислотой, в том числе и «царя металлов» — золото. Действие её объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азота (III), или хлорида нитрозила, NOCl:

HNO 3 + 3HCl = Cl 2 + 2H 2 O + NOCl.

Применение азотной кислоты

Азотная кислота - одно из важнейших соединений азота: в больших количествах она расходуется в производстве азотных удобрений, взрывчатых веществ и органических красителей, служит окислителем во многих химических процессах, используется в производстве серной кислоты по нитрозному способу, применяется для изготовления целлюлозных лаков, кинопленки.

Примеры решения задач

ПРИМЕР 1

: моногидрат (HNO 3 ·H 2 O) и тригидрат (HNO 3 ·3H 2 O).

Физические и физико-химические свойства

Фазовая диаграмма водного раствора азотной кислоты.

Азот в азотной кислоте четырёхвалентен , степень окисления +5. Азотная кислота — бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C с частичным разложением. Растворимость азотной кислоты в воде не ограничена. Водные растворы HNO 3 с массовой долей 0,95-0,98 называют «дымящей азотной кислотой», с массовой долей 0,6-0,7 — концентрированной азотной кислотой. С водой образует азеотропную смесь (массовая доля 68,4 %, d 20 = 1,41 г/см, T кип = 120,7 °C)

При кристаллизации из водных растворов азотная кислота образует кристаллогидраты:

  • моногидрат HNO 3 ·H 2 O, T пл = −37,62 °C
  • тригидрат HNO 3 ·3H 2 O, T пл = −18,47 °C

Твёрдая азотная кислота образует две кристаллические модификации:

  • моноклинная , пространственная группа P 2 1 /a, a = 1,623 нм, b = 0,857 нм, c = 0,631, β = 90°, Z = 16;

Моногидрат образует кристаллы ромбической сингонии , пространственная группа P na2, a = 0,631 нм, b = 0,869 нм, c = 0,544, Z = 4;

Плотность водных растворов азотной кислоты как функция её концентрации описывается уравнением

где d — плотность в г/см³, с — массовая доля кислоты. Данная формула плохо описывает поведение плотности при концентрации более 97 %.

Химические свойства

Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

в) вытесняет слабые кислоты из их солей:

При кипении или под действием света азотная кислота частично разлагается:

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO 3 взаимодействует:

Нитраты

Азотная кислота является сильной кислотой. Её соли — нитраты — получают действием HNO 3 на металлы, оксиды , гидроксиды или карбонаты . Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется.

Соли азотной кислоты при нагревании необратимо разлагаются, причём состав продуктов разложения определяется катионом:

а) нитраты металлов, стоящих в ряду напряжений левее магния:

б) нитраты металлов, расположенных в ряду напряжений между магнием и медью :

в) нитраты металлов, расположенных в ряду напряжений правее :

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии являются сильными окислителями, например, при сплавлении твердых веществ:

Исторические сведения

Методика получения разбавленной азотной кислоты путём сухой перегонки селитры с квасцами и медным купоросом была, по видимому, впервые описана трактатах Джабира (Гебера в латинизированных переводах) в VIII веке . Этот метод с теми или иными модификациями, наиболее существенной из которых была замена медного купороса железным , применялся в европейской и арабской алхимии вплоть до XVII века .

В XVII веке Глаубер предложил метод получения летучих кислот реакцией их солей с концентрированной серной кислотой, в том числе и азотной кислоты из калийной селитры , что позволило ввести в химическую практику концентрированную азотную кислоту и изучить её свойства. Метод

Рис. 97. Воспламенение скипидара в азотной кислоте

Чистая - бесцветная жидкость уд. веса 1,53, кипящая при 86°, а при -41° застывающая в прозрачную кристаллическую массу. На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары ее образуют с влагой воздуха мелкие капельки тумана.

С водой смешивается в любом отношении, причем 68%-ный раствор кипит при 120,5° и перегоняется без изменения. Такой состав имеет обыкновенная продажная уд. веса 1,4. Концентрированная кислота, содержащая 96-98% HNO 3 и окрашенная растворенной в ней двуокисью азота в красно-бурый цвет, известна под названием дымящей азотной кислоты.

Азотная кислота не отличается особенной химической прочностью. Уже под влиянием света она постепенно разлагается на воду, и двуокись азота:

4HNO 3 = 2Н 2 O + 4NO 2 + O 2

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Поэтому получаемая из селитры азотная кислота всегда бывает окрашена двуокисью азота в желтоватый цвет. Чтобы избежать разложения, перегонку ведут под уменьшенным давлением, под которым азотная кислота закипает при температуре, близкой к 20°.

Азотная кислота принадлежит к числу наиболее сильных кислот; в разбавленных растворах она сполна распадается на ионы Н и NO3′.

Самым характерным свойством азотной кислоты является ее ярко выраженная окислительная способность. Азотная кислота - один из энергичнейших окислителей. Многие металлоиды легко окисляются ею, превращаясь в соответствующие кислоты. Так, например, при кипячении с азотной кислотой постепенно окисляется в серную кислоту, - в фосфорную и т. д. Тлеющий уголек, погруженный в концентрированную азотную кислоту, не только не гаснет, но ярко разгорается, разлагая кислоту с образованием красно-бурой двуокиси азота.

Иногда при окислении выделяется так много тепла, что окисляющееся вещество само собой загорается без предварительного подогревания.

Нальем, например, в фарфоровую чашку немного дымящей азотной кислоты, поставим чашку на дно широкого стакана и, набрав в пипетку скипидара, будем по каплям пускать его в чашку с кислотой. Каждая капля, попадая в кислоту, воспламеняется и сгорает, образуя большое пламя и облако копоти (рис. 97). Нагретые древесные опилки также загораются от капли дымящей азотной кислоты. Азотная кислота действует почти на все , за исключением золота, платины и некоторых редких металлов, превращая их в азотнокислые соли. Так как последние растворимы в воде, азотной кислотой постоянно пользуются на практике для растворения металлов, особенно таких, как , на которые другие кислоты не действуют или действуют очень медленно.

Замечательно, что, как нашел еще М В, некоторые ( , и др.), легко растворяющиеся в разбавленной азотной кислоте, не растворяются в холодной концентрированной азотной кислоте. По видимому, это происходит вследствие образования на их поверхности тонкого, очень плотного слоя окисла, защищающего металл от дальнейшего действия кислоты. Такие после обработки их концентрированной азотной кислотой становятся «пассивными», т. е. утрачивают способность растворяться также и в разбавленных кислотах.

Окислительные свойства азотной кислоты обусловливаются неустойчивостью ее молекул и присутствием в них азота в его высшем состоянии окисления, отвечающем положительной валентности, равной 5. Производя окисление, азотная кислота последовательно восстанавливается в следующие соединения:

HNO 3 →NO 2 →HNO 2 →NO→N 2 O→N 2 →NH 3

Степень восстановления азотной кислоты зависит как от ее концентрации, так и от % активности восстановителя. Чем более кислота разбавлена, тем сильнее она восстанавливается. Концентрированная азотная кислота всегда восстанавливается до NO 2 . Разбавленная азотная кислота восстанавливается обычно до NO или при действии более активных металлов, как, например, Fe, Zn, Mg, - до N 2 O. Если же кислота очень разбавлена, главным продуктом восстановления является NH 3 , образующий с избытком кислоты аммонийную соль NH 4 NO 3 .

Для иллюстрации приведем схемы нескольких реакций окисления при помощи азотной кислоты;

1)Pb + HNO 3 → Pb(NO 3) 2 + NO 2 + Н 2 O

2)Сu + HNO 3 → Cu(NO 3) 2 + NO + H 2 O

разбавл,

3) Mg + HNO 3 → Mg(NO 3) 2 + N 2 O + H 2 O

разбавл,

4)Zn + HNO 3 → Zn(NO 3) 2 + NH 4 NO 3 + H 2 O

очень разбавл.

Следует отметить, что при действии разбавленной азотной кислоты на металлы , как правило, не выделяется.

При окислении металлоидов азотная кислота обычно восстанавливается до NO.Например:

S + 2HNO 3 = H 2 SO 4 +2NO

Приведенные выше схемы иллюстрируют наиболее типичные случаи окислительного действия азотной кислоты. Вообще же

необходимо заметить, что все реакции окисления, идущие с уча-стием азотной кислоты, протекают очень сложно вследствие одновременного образования различных продуктов восстановления и до сих пор не могут считаться вполне выясненными.

Смесь, состоящая из 1 объема азотной и 3 объемов соляной кислоты, называется царской водкой. Царская водка растворяет некоторые металлы, не растворяющиеся в азотной кислоте, в том числе и «царя металлов» - . Действие ее объясняется тем, что азотная кислота окисляет соляную кислоту с выделением свободного хлора и образованием хлористого ни-трозила NOCl:

HNO 3 + 3HCl = Сl 2 + 2Н 2 O + NOCl

Хлористый нитрозил является промежуточным продуктом реакции и разлагается на окись азота и :

2NOCl = 2NO + Сl 2

Выделяющийся соединяется с металлами, образуя металлов, поэтому при растворении металлов в царской водке получаются соли соляной, а не азотной кислоты:

Au + 3HCl+ HNO 3 = AuCl 3 +NO + 2H 2 O

На многие органические азотная кислота действует таким образом, что один или несколько атомов водорода в молекуле органического соединения замещаются нитрогруппами - NO 2 . Этот процесс, получивший название нитрования, играет чрезвычайно важную роль в органической химии.

При действии на азотную кислоту фосфорного ангидрида последний отнимает от азотной кислоты элементы воды и в результате образуются азотный ангидрид и метафосфорная кислота.

2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3

Азотная кислота является самым важным соединением азота благодаря разнообразному применению, которое она находит в народном хозяйстве.

В больших количествах азотная кислота расходуется в производстве азотных удобрений и органических красителей. Она применяется как окислитель во многих химических процессах, используется в производстве серной кислоты по нитрозному способу, служит для растворения металлов, для получения нитратов, применяется для изготовления целлюлозных лаков, кинопленки и в ряде других химических производств. Азотная кислота идет также на изготовление бездымного пороха и взрывчатых веществ, необходимых для обороны страны и широко используемых в горнорудном деле и при различных земляных работах (строительство каналов, плотин и т. п.).

Азотная кислота: свойства и реакции,
лежащие в основе производства

9 класс

Приходя на урок химии, ребята хотят узнать новое и применить свои знания, особенно им нравится самостоятельно добывать информацию и экспериментировать. Данный урок построен так, чтобы, изучая новый материал, учащиеся могли привлечь ранее приобретенные знания: строение атома азота, типы химической связи, электролитическая диссоциация, окислительно-восстановительные реакции, техника безопасности при проведении эксперимента.

Цели. Повторить классификацию и свойства оксидов азота, а также общие свойства азотной кислоты в свете теории электролитической диссоциации (ТЭД). Познакомить учащихся с окислительными свойствами азотной кислоты на примере взаимодействия разбавленной и концентрированной кислоты с металлами. Дать понятие о способах получения азотной кислоты и областях ее применения.

Оборудование. На каждом столе перед учащимися план урока, схема взаимодействия азотной кислоты с металлами, набор реактивов, тесты для закрепления изученного материала.

П л а н у р о к а

Оксиды азота.

Состав и строение молекулы азотной кислоты.

Физические свойства азотной кислоты.

Химические свойства азотной кислоты.

Получение азотной кислоты.

Применение азотной кислоты.

Закрепление материала (тест по вариантам).

ХОД УРОКА

Оксиды азота

Учитель. Вспомните и напишите формулы оксидов азота. Какие оксиды называются солеобразующими, какие – несолеобразующими? Почему?

Ученики самостоятельно записывают формулы пяти оксидов азота, называют их, вспоминают азотсодержащие кислородные кислоты и устанавливают соответствие между оксидами и кислотами. Один из учеников записывает на доске (таблица).

Таблица

Сопоставление оксидов азота, кислот и солей

Демонстрационный опыт:
взаимодействие оксида азота(IV) с водой

Учитель. В сосуд с NO 2 приливаем немного воды и взбалтываем содержимое, затем испытываем полученный раствор лакмусом.

Что наблюдаем? Раствор краснеет из-за образовавшихся двух кислот.

2NO 2 + H 2 O = HNO 2 + HNO 3 .

Степень окисления азота в NO 2 равна +4, т.е. она является промежуточной между +3 и +5, которые в растворе более устойчивы, поэтому оксиду азота(IV) соответствуют сразу две кислоты – азотистая и азотная.

Состав и строение молекулы

Учитель. На доске запишите молекулярную формулу азотной кислоты, вычислите ее молекулярную массу и отметьте степени окисления элементов. Составьте структурную и электронную формулы.

Ученики составляют следующие формулы (рис. 1).

Рис. 1. Неверные структурная и электронная формулы азотной кислоты

Учитель. Согласно этим формулам вокруг азота вращается десять электронов, но этого не может быть, т.к. азот находится во втором периоде и максимально на внешнем слое у него может быть только восемь электронов. Это противоречие устраняется, если предположить, что между атомом азота и одним из атомов кислорода образуется ковалентная связь по донорно-акцепторному механизму (рис. 2).

Рис. 2. Электронная формула азотной кислоты.
Электроны атома азота обозначены черными точками

Тогда структурную формулу азотной кислоты можно было бы изобразить так (рис. 3):

Рис. 3. Структурная формула азотной кислоты
(донорно-акцепторная связь показана стрелкой)

Однако опытным путем доказано, что двойная связь равномерно распределена между двумя атомами кислорода. Степень окисления азота в азотной кислоте равна +5, а валентность (обратите внимание) равна четырем, ибо имеются только четыре общие электронные пары.

Физические свойства азотной кислоты

Учитель. Перед вами флаконы с разбавленной и концентрированной азотной кислотой. Опишите физические свойства, которые вы наблюдаете .

Ученики описывают азотную кислоту как жидкость тяжелее воды, желтоватого цвета, с резким запахом. Раствор азотной кислоты без цвета и без запаха.

Учитель. Я добавлю, что температура кипения азотной кислоты +83 °С, температура замерзания –41 °С, т.е. при обычных условиях это жидкость. Резкий запах и то, что при хранении она желтеет, объясняется тем, что концентрированная кислота малоустойчива и под действием света или при нагревании частично разлагается.

Химические свойства кислоты

Учитель. Вспомните, с какими веществами взаимодействуют кислоты? (Учащиеся называют.)

Перед вами реактивы, проделайте перечисленные реакции* и запишите свои наблюдения (реакции записывать надо в свете ТЭД).

А теперь обратимся к специфическим свойствам азотной кислоты.

Мы отметили, что кислота при хранении желтеет, теперь докажем это химической реакцией:

4HNO 3 = 2H 2 O + 4NO 2 + O 2 .

(Учащиеся самостоятельно записывают электронный баланс реакции.)

Выделяющийся «бурый газ» (NO 2) окрашивает кислоту.

Особо ведет себя эта кислота по отношению к металлам. Вы знаете, что металлы вытесняют водород из растворов кислот, но при взаимодействии с азотной кислотой этого не происходит.

Посмотрите на схему у вас на парте (рис. 4), где показано, какие газы выделяются при реакции кислоты различной концентрации с металлами. (Работа со схемой.)

Рис. 4. Схема взаимодействия азотной кислоты с металлами

Демонстрационный опыт:
взаимодействие концентрированной азотной кислоты с медью

Очень эффективна демонстрация реакции азотной кислоты (конц.) с порошком меди или мелко нарезанными кусочками медной проволоки:

Учащиеся самостоятельно записывают электронный баланс реакции:

Получение кислоты

Учитель. Урок будет неполным, если мы не рассмотрим вопрос получения азотной кислоты.

Лабораторный способ: действие концентрированной серной кислоты на нитраты (рис. 5).

NaNO 3 + H 2 SO 4 = NaHSO 4 + HNO 3 .

В промышленности кислоту в основном получают аммиачным способом.

Рис. 5. Для получения азотной кислоты в лаборатории до сих пор
удобно использовать старинную химическую посуду – реторту

Способ получения кислоты из азота и кислорода при температуре свыше 2000 °С (электродуговой) особого распространения не получил.

В России история получения азотной кислоты связана с именем химика-технолога Ивана Ивановича Андреева (1880–1919).

Он в 1915 г. создал первую установку по производству кислоты из аммиака и реализовал разработанный способ в заводском масштабе в 1917 г. Первый завод был построен в Донецке.

Этот метод включает несколько этапов.

1) Подготовка аммиачно-воздушной смеси.

2) Окисление аммиака кислородом воздуха на платиновой сетке:

4NH 3 + 5O 2 = 4NO + 6H 2 O.

3) Дальнейшее окисление оксида азота(II) до оксида азота(IV):

2NO + O 2 = 2NO 2 .

4) Растворение оксида азота(IV) в воде и получение кислоты:

3NO 2 + H 2 O = 2HNO 3 + NO.

Если растворение проводить в присутствии кислорода, то весь оксид азота(IV) переходит в азотную кислоту.

5) Заключительный этап получения азотной кислоты – очистка газов, выходящих в атмосферу, от оксидов азота. Состав этих газов: до 98% азота, 2–5% кислорода и 0,02–0,15% оксидов азота. (Азот изначально был в воздухе, взятом для окисления аммиака.) Если оксидов азота в этих отходящих газах больше 0,02%, то специально проводят каталитическое восстановление их до азота, потому что даже такие малые количества этих оксидов приводят к большим экологическим проблемам.

После всего сказанного возникает вопрос: а зачем нам нужна кислота?

Применение кислоты

Учитель. Азотную кислоту используют для производства: азотных удобрений, и в первую очередь аммиачной селитры (как ее получают?); взрывчатых веществ (почему?); красителей; нитратов, о которых речь пойдет на следующем уроке.

Закрепление материала

Фронтальный опрос класса

– Почему степень окисления азота в азотной кислоте +5, а валентность четыре?

– С какими металлами азотная кислота не вступает в реакцию?

– Вам нужно распознать соляную и азотную кислоты, на столе три металла – медь, алюминий и железо. Как вы поступите и почему?

Тест

В а р и а н т 1

1. Какой ряд чисел соответствует распределению электронов по энергетическим уровням в атоме азота?

1) 2, 8, 1; 2) 2, 8, 2; 3) 2, 4; 4) 2, 5.

2. Закончите уравнения практически осуществимых реакций:

1) HNO 3 (разб.) + Cu … ;

2) Zn + HNO 3 (конц.) … ;

3) HNO 3 + MgCO 3 … ;

4) CuO + KNO 3 … .

3. Укажите, какое уравнение иллюстрирует одну из стадий процесса промышленного производства азотной кислоты.

1) 4NH 3 + 5O 2 = 4NO + 6H 2 O;

2) 5HNO 3 + 3P + 2H 2 O = 3H 3 PO 4 + 5NO;

3) N 2 + O 2 = 2NO.

4. Отрицательная степень окисления проявляется азотом в соединении:

1) N 2 O; 2) NO; 3) NO 2 ; 4) Na 3 N.

5. Взаимодействие медной стружки с концентрированной азотной кислотой приводит к образованию:

1) NO 2 ; 2) NO; 3) N 2 ; 4) NH 3 .

В а р и а н т 2

1. Значение высшей валентности азота равно:

1) 1; 2) 2; 3) 5; 4) 4.

2. Запишите возможное взаимодействие концентрированной азотной кислоты со следующими металлами: натрий, алюминий, цинк, железо, хром.

3. Выберите вещества, являющиеся сырьем для производства азотной кислоты:

1) азот и водород;

2) аммиак, воздух и вода;

3) нитраты.

4. Концентрированная азотная кислота не реагирует с:

1) углекислым газом;

2) соляной кислотой;

3) углеродом;

4) гидроксидом бария.

5. При взаимодействии очень разбавленной кислоты с магнием образуется:

1) NO 2 ; 2) NO; 3) N 2 O; 4) NH 4 NO 3 .

Ответы на тесты

В а р и а н т 1.

1 – 4;

1) 8HNO 3 (разб.) + 3Cu = 3Cu(NO 3) 2 + 2NO + 4H 2 O;

2) Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O;

3) 2HNO 3 + MgCO 3 = Mg(NO 3) 2 + CO 2 + H 2 O;

3 – 1; 4 – 4; 5 – 1.

В а р и а н т 2.

1 – 4;

Na + 2HNO 3 (конц.) = NaNO 3 + NO 2 + H 2 O,

Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O;

3 – 2; 4 – 1; 5 – 4.

* Например, можно предложить ребятам проделать следующие лабораторные опыты.

1) В пробирку с раствором азотной кислоты добавьте лакмус и постепенно добавляйте раствор гидроксида натрия. Наблюдения запишите.

2) Положите в пробирку немного мела, добавьте разбавленную азотную кислоту.

3) Положите в пробирку немного оксида меди(II), добавьте разбавленную азотную кислоту. Какого цвета раствор? Зажмите пробирку в держателе и погрейте. Как изменяется цвет раствора? О чем говорит изменение цвета? – Прим. ред .