Графики линейной функции с модулями. Графики функций с модулем

Песочница

Барак Адама 3 марта 2013 в 19:43

ГИА - построение графиков функций со знаком модуля

Всем привет! Хотел бы сегодня объяснить такую тему, как построение графиков. Вероятно большинство знает, как строить простые графики функций, такие как y=x^2 или y=1/x. А как строить графики со знаком модуля?

Задача 1. Построить графики функций y=|x| y=|x-1|.
Решение. Сравним его с графиком функции y=|x|.При положительных x имеем |x|=x. Значит, для положительных значений аргумента график y=|x| совпадает с графиком y=x, то есть эта часть графика является лучём, выходящим из начала координат под углом 45 градусов к оси абсцисс. При x< 0 имеем |x|= -x; значит, для отрицательных x график y=|x| совпадает с биссектрисой второго координатного угла.
Впрочем, вторую половину графика (для отрицательных X) легко получить из первой, если заметить, что функция y=|x| - чётная, так как |-a|=|a|. Значит, график функции y=|x| симметричен относительно оси Oy, и вторую половину графика можно приобрести, отразив относительно оси ординат часть, начерченную для положительных x. Получается график:

Для построения берём точки (-2; 2) (-1; 1) (0; 0) (1; 1) (2; 2).

Теперь график y=|x-1|. Если А - точка графика у=|x| с координатами (a;|a|), то точкой графика y=|x-1| с тем же значением ординаты Y будет точка A1(a+1;|a|). (Почему?) Эту точку второго графика можно получить из точки А(a;|a|) первого графика сдвигом параллельно оси Ox вправо. Значит, и весь график функции y=|x-1|получается из графика функции y=|x| сдвигом параллельно оси Ox вправо на 1.

Построим графики:

Y=|x-1|

Для построения берём точки (-2; 3) (-1; 2) (0; 1) (1; 0) (2; 1).

Это была простенькая задачка. Теперь то, что многих приводит в ужас.

Задача 2. Постройте график функции y=3*|x-4| - x + |x+1|.
Решение. Найдем точки, в которых подмодульные выражения обращаются в нуль, т.е. так называемые «критические» точки функции. Такими точками будут х=-1 и х=4. В этих точках подмодульные выражения могут изменить знак.

Пусть x<-1. Тогда х+1<0, |x+1|=-x-1; x-4<0, |x-4|=-x+4; Следовательно y= 3(-х+4)-х+(-х-1)= -5х+11.
Пусть -1< = x < = 4. Тогда х+1>0, |x+1|=x+1; x-4<0, |x-4|=-x+4; Следовательно y= 3(-х+4)-х+(х+1)= -3х+13.
Пусть х>4. Тогда х+1>0, |x+1|=x+1, x-4>0; |x-4|=x-4; Следовательно у= 3(х-4)-х+х+1= 3х-11.

Значит, нам нужно построить график функции (именно один)
{ у= -5х+11, при x<-1
{ y= -3х+13, при -1< = x < = 4.
{ y= 3х-11, при х>4

Для построения первого берём точки (1; 6) (2; 1)
Для построения второго берём точки (3; 4) (4; 1)
Для построения третьего берём точки (3; -2) (4; 1)

Ну и последняя на сегодня задача, которую мы разберём.
Задача 3. Построить график функции y= |1/4 x^2 - |x| - 3|.
Решение. Функция y= |f(|x|)| чётная. Нужно построить для x>=0 y= f(x) график функции, затем его симметрично отразить относительно оси Oy(это график y= |1/4 x^2 - x - 3|.), и, наконец, ту часть полученного графика, которая расположена в нижней полуплоскости, симметрично отразить относительно оси Ox (y= 1/4 x^2 - |x| - 3.).
Вот что из этого выйдет:

Y= |1/4 x^2 - |x| - 3|

Итак, всем спасибо! Теперь мы получили ту базу знаний, необходимую для построения графиков со знаком модуля! А то его так все боятся.

Теги: математика

Знак модуля, пожалуй, одно из самых интересных явлений в математике. В связи с этим у многих школьников возникает вопрос, как строить графики функций, содержащих модуль. Давайте подробно разберем этот вопрос.

1. Построение графиков функций, содержащих модуль

Пример 1.

Построить график функции y = x 2 – 8|x| + 12.

Решение.

Определим четность функции. Значение для y(-x) совпадает со значением для y(x), поэтому данная функция четная. Тогда ее график симметричен относительно оси Oy. Строим график функции y = x 2 – 8x + 12 для x ≥ 0 и симметрично отображаем график относительно Oy для отрицательных x (рис. 1).

Пример 2.

Следующий график вида y = |x 2 – 8x + 12|.

– Какова область значений предложенной функции? (y ≥ 0).

– Как расположен график? (Над осью абсцисс или касаясь ее).

Это значит, что график функции получают следующим образом: строят график функции y = x 2 – 8x + 12, оставляют часть графика, которая лежит над осью Ox, без изменений, а часть графика, которая лежит под осью абсцисс, симметрично отображают относительно оси Ox (рис. 2).

Пример 3.

Для построения графика функции y = |x 2 – 8|x| + 12| проводят комбинацию преобразований:

y = x 2 – 8x + 12 → y = x 2 – 8|x| + 12 → y = |x 2 – 8|x| + 12|.

Ответ: рисунок 3.

Рассмотренные преобразования справедливы для всех видов функций. Составим таблицу:

2. Построение графиков функций, содержащих в формуле «вложенные модули»

Мы уже познакомились с примерами квадратичной функции, содержащей модуль, а так же с общими правилами построения графиков функций вида y = f(|x|), y = |f(x)| и y = |f(|x|)|. Эти преобразования помогут нам при рассмотрении следующего примера.

Пример 4.

Рассмотрим функцию вида y = |2 – |1 – |x|||. Выражение, задающее функцию, содержит «вложенные модули».

Решение.

Воспользуемся методом геометрических преобразований.

Запишем цепочку последовательных преобразований и сделаем соответствующий чертеж (рис. 4):

y = x → y = |x| → y = -|x| → y = -|x| + 1 → y = |-|x| + 1|→ y = -|-|x| + 1|→ y = -|-|x| + 1| + 2 → y = |2 –|1 – |x|||.

Рассмотрим случаи, когда преобразования симметрии и параллельного переноса не являются основным приемом при построении графиков.

Пример 5.

Построить график функции вида y = (x 2 – 4)/√(x + 2) 2 .

Решение.

Прежде чем строить график, преобразуем формулу, которой задана функция, и получим другое аналитическое задание функции (рис. 5).

y = (x 2 – 4)/√(x + 2) 2 = (x– 2)(x + 2)/|x + 2|.

Раскроем в знаменателе модуль:

При x > -2, y = x – 2, а при x < -2, y = -(x – 2).

Область определения D(y) = (-∞; -2)ᴗ(-2; +∞).

Область значений E(y) = (-4; +∞).

Точки, в которых график пересекает с оси координат: (0; -2) и (2; 0).

Функция убывает при всех x из интервала (-∞; -2), возрастает при x от -2 до +∞.

Здесь нам пришлось раскрывать знак модуля и строить график функции для каждого случая.

Пример 6.

Рассмотрим функцию y = |x + 1| – |x – 2|.

Решение.

Раскрывая знак модуля, необходимо рассмотреть всевозможную комбинацию знаков подмодульных выражений.

Возможны четыре случая:

{x + 1 – x + 2 = 3, при x ≥ -1 и x ≥ 2;

{-x – 1 + x – 2 = -3, при x < -1 и x < 2;

{x + 1 + x – 2 = 2x - 1, при x ≥ -1 и x < 2;

{-x – 1 – x + 2 = -2x + 1, при x < -1 и x ≥ 2 – пустое множество.

Тогда исходная функция будет иметь вид:

{3, при x ≥ 2;

y = {-3, при x < -1;

{2x – 1, при -1 ≤ x < 2.

Получили кусочно-заданную функцию, график которой изображен на рисунке 6.

3. Алгоритм построения графиков функций вида

y = a 1 |x – x 1 | + a 2 |x – x 2 | + … + a n |x – x n | + ax + b.

В предыдущем примере было достаточно легко раскрыть знаки модуля. Если же сумм модулей больше, то рассмотреть всевозможные комбинации знаков подмодульных выражений проблематично. Как же в этом случае построить график функции?

Заметим, что графиком является ломаная, с вершинами в точках, имеющих абсциссы -1 и 2. При x = -1 и x = 2 подмодульные выражения равны нулю. Практическим путем мы приблизились к правилу построения таких графиков:

Графиком функции вида y = a 1 |x – x 1 | + a 2 |x – x 2 | + … + a n |x – x n | + ax + b является ломаная с бесконечными крайними звеньями. Чтобы построить такую ломаную, достаточно знать все ее вершины (абсциссы вершин есть нули подмодульных выражений) и по одной контрольной точке на левом и правом бесконечных звеньях.

Задача.

Построить график функции y = |x| + |x – 1| + |x + 1| и найти ее наименьшее значение.

Решение:

Нули подмодульных выражений: 0; -1; 1. Вершины ломаной (0; 2); (-1; 3); (1; 3). Контрольная точка справа (2; 6), слева (-2; 6). Строим график (рис. 7). min f(x) = 2.

Остались вопросы? Не знаете, как построить график функции с модулем?
Чтобы получить помощь репетитора – .

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Знак модуля, пожалуй, одно из самых интересных явлений в математике. В связи с этим у многих школьников возникает вопрос, как строить графики функций, содержащих модуль. Давайте подробно разберем этот вопрос.

1. Построение графиков функций, содержащих модуль

Пример 1.

Построить график функции y = x 2 – 8|x| + 12.

Решение.

Определим четность функции. Значение для y(-x) совпадает со значением для y(x), поэтому данная функция четная. Тогда ее график симметричен относительно оси Oy. Строим график функции y = x 2 – 8x + 12 для x ≥ 0 и симметрично отображаем график относительно Oy для отрицательных x (рис. 1).

Пример 2.

Следующий график вида y = |x 2 – 8x + 12|.

– Какова область значений предложенной функции? (y ≥ 0).

– Как расположен график? (Над осью абсцисс или касаясь ее).

Это значит, что график функции получают следующим образом: строят график функции y = x 2 – 8x + 12, оставляют часть графика, которая лежит над осью Ox, без изменений, а часть графика, которая лежит под осью абсцисс, симметрично отображают относительно оси Ox (рис. 2).

Пример 3.

Для построения графика функции y = |x 2 – 8|x| + 12| проводят комбинацию преобразований:

y = x 2 – 8x + 12 → y = x 2 – 8|x| + 12 → y = |x 2 – 8|x| + 12|.

Ответ: рисунок 3.

Рассмотренные преобразования справедливы для всех видов функций. Составим таблицу:

2. Построение графиков функций, содержащих в формуле «вложенные модули»

Мы уже познакомились с примерами квадратичной функции, содержащей модуль, а так же с общими правилами построения графиков функций вида y = f(|x|), y = |f(x)| и y = |f(|x|)|. Эти преобразования помогут нам при рассмотрении следующего примера.

Пример 4.

Рассмотрим функцию вида y = |2 – |1 – |x|||. Выражение, задающее функцию, содержит «вложенные модули».

Решение.

Воспользуемся методом геометрических преобразований.

Запишем цепочку последовательных преобразований и сделаем соответствующий чертеж (рис. 4):

y = x → y = |x| → y = -|x| → y = -|x| + 1 → y = |-|x| + 1|→ y = -|-|x| + 1|→ y = -|-|x| + 1| + 2 → y = |2 –|1 – |x|||.

Рассмотрим случаи, когда преобразования симметрии и параллельного переноса не являются основным приемом при построении графиков.

Пример 5.

Построить график функции вида y = (x 2 – 4)/√(x + 2) 2 .

Решение.

Прежде чем строить график, преобразуем формулу, которой задана функция, и получим другое аналитическое задание функции (рис. 5).

y = (x 2 – 4)/√(x + 2) 2 = (x– 2)(x + 2)/|x + 2|.

Раскроем в знаменателе модуль:

При x > -2, y = x – 2, а при x < -2, y = -(x – 2).

Область определения D(y) = (-∞; -2)ᴗ(-2; +∞).

Область значений E(y) = (-4; +∞).

Точки, в которых график пересекает с оси координат: (0; -2) и (2; 0).

Функция убывает при всех x из интервала (-∞; -2), возрастает при x от -2 до +∞.

Здесь нам пришлось раскрывать знак модуля и строить график функции для каждого случая.

Пример 6.

Рассмотрим функцию y = |x + 1| – |x – 2|.

Решение.

Раскрывая знак модуля, необходимо рассмотреть всевозможную комбинацию знаков подмодульных выражений.

Возможны четыре случая:

{x + 1 – x + 2 = 3, при x ≥ -1 и x ≥ 2;

{-x – 1 + x – 2 = -3, при x < -1 и x < 2;

{x + 1 + x – 2 = 2x - 1, при x ≥ -1 и x < 2;

{-x – 1 – x + 2 = -2x + 1, при x < -1 и x ≥ 2 – пустое множество.

Тогда исходная функция будет иметь вид:

{3, при x ≥ 2;

y = {-3, при x < -1;

{2x – 1, при -1 ≤ x < 2.

Получили кусочно-заданную функцию, график которой изображен на рисунке 6.

3. Алгоритм построения графиков функций вида

y = a 1 |x – x 1 | + a 2 |x – x 2 | + … + a n |x – x n | + ax + b.

В предыдущем примере было достаточно легко раскрыть знаки модуля. Если же сумм модулей больше, то рассмотреть всевозможные комбинации знаков подмодульных выражений проблематично. Как же в этом случае построить график функции?

Заметим, что графиком является ломаная, с вершинами в точках, имеющих абсциссы -1 и 2. При x = -1 и x = 2 подмодульные выражения равны нулю. Практическим путем мы приблизились к правилу построения таких графиков:

Графиком функции вида y = a 1 |x – x 1 | + a 2 |x – x 2 | + … + a n |x – x n | + ax + b является ломаная с бесконечными крайними звеньями. Чтобы построить такую ломаную, достаточно знать все ее вершины (абсциссы вершин есть нули подмодульных выражений) и по одной контрольной точке на левом и правом бесконечных звеньях.

Задача.

Построить график функции y = |x| + |x – 1| + |x + 1| и найти ее наименьшее значение.

Решение:

Нули подмодульных выражений: 0; -1; 1. Вершины ломаной (0; 2); (-1; 3); (1; 3). Контрольная точка справа (2; 6), слева (-2; 6). Строим график (рис. 7). min f(x) = 2.

Остались вопросы? Не знаете, как построить график функции с модулем?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Графики прямой, параболы, гиперболы, с модулем

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.

Графики - самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:


Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую. Поэтому берем любые две точки А = (0; −1) и B = (1; 1) и проводим единственную прямую.

А если теперь добавить модуль? y = |2x − 1|.

Модуль - это всегда положительное значение , получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).


Красота! А как же будет выглядеить график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Суть построения точно такая же, только здесь отражаем относительно оси «y» .

Смертельный номер: y = |2|x| − 1|.

Для начала построим y = |2x − 1|, отразив относительно оси «x». В положительной части он будет такой же, как y =|2|x| − 1|.


А после этого отражаем относительно оси «y», то, что мы получили справа:


Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках.

Разберем по винтикам параболу y = x² + x − 2. Точки пересечения с осью «x» получим с помощью дискриминанта: x₁ = 1 и x ₂ = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

А как будет выглядеть график: y = |x²| + x − 2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

Следующий смертельный номер: |y| = x² + x − 2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2!

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

А настоящие профи могут разобраться, почему же данные графики выглядят так:

Легкий и средний уровень позади, и настала пора выжать концетрацию на максимум , потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x - простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

А что будет, если мы добавим в знаменателе « −1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Глупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| - отражаем все из нижней части в верхнюю.

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определнию:

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:


Для параболы с одним модулем будет два кусочно заданных графика:


C двумя модулями кусочно заданных графиков будет четыре:

Таким способом, медленно и кропотливо можно построить любой график!


Выводы:

  1. Модуль - это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль .
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.