Голографические дисплеи: тогда и сейчас. й этап - Запись пропускающей голограммы

(от греч. холос – полный и графо – пишу) – способ получения объемных изображений предметов на фотопластинке (голограмме) при помощи когерентного (см . КОГЕРЕНТНОСТЬ) излучения лазера. Голограмма фиксирует не само изображение предмета, а структуру отраженной от него световой волны (ее амплитуду и фазу). Для получения голограммы необходимо, чтобы на фотографическую пластинку одновременно попали два когерентных световых пучка: предметный, отраженный от снимаемого объекта, и опорный – приходящий непосредственно от лазера. Свет обоих пучков интерферирует, создавая на пластинке чередование очень узких темных и светлых полос – картину интерференции.

На экспонированной таким образом и проявленной пластинке отсутствует какое-либо изображение, однако его в зашифрованном виде содержит система интерференционных полос, и если голограмму просветить, как диапозитив, лазерным светом той же частоты, что была использована при записи, возникнет «восстановленная голограмма» – объемное изображение снятого предмета, словно висящего в пространстве. Меняя точку наблюдения, можно заглянуть за предметы на первом плане и увидеть детали, ранее скрытые от взгляда, Свет, проходя сквозь систему черно-белых полос голограммы, испытывает дифракцию и воспроизводит волновой фронт, исходивший от снятого предмета (см . КОЛЕБАНИЯ И ВОЛНЫ). Аналогичным образом лазерный луч, пропущенный сквозь отверстие очень малого диаметра, даст на фотопластинке, поставленной за отверстием, систему колец (так называемые «кольца Френеля»). А световой пучок, проходящий сквозь их изображение («зонную пластинку»), сойдется в точку. Кольца Френеля представляют собой простейшую голограмму – голограмму точки.

Голографию изобрел (и придумал название) английский физик Деннис Габор в 1947, исследуя законы построения изображений в оптике и работая над совершенствованием электронного микроскопа. Он пришел к выводу, что зарегистрировать полное изображение предмета можно без объектива, используя только пучок когерентного монохроматичного света. Первые голограммы были получены им при помощи ртутной лампы, из спектра излучения которой «вырезалась» очень узкая полоса частот. Диаметр пучка составлял 1–2 микрона, а время экспозиции – несколько часов. Между источником света и фотопластинкой помещался либо прозрачный объект, либо предмет небольшого размера, так что излучение источника выполняло одновременно функции и предметного, и опорного пучков. Поэтому при восстановлении голограммы возникали сразу два изображения на одной линии, которые создавали взаимные помехи при регистрации. Все это делало невозможным практическое применение голографии, и о ней надолго забыли.

После появления мощного источника когерентного света – лазера интерес к голографии вспыхнул вновь. В 1962 американские оптики и радиофизики Эммет Лейт и Дж. Юрис Упатниекс усовершенствовали схему Габора, разделив предметный и опорный пучки, которые стали теперь пересекаться непосредственно перед фотопластинкой. Это позволило, во-первых, голографировать непрозрачные предметы сложной формы, а во-вторых, разнести восстановленные изображения в пространстве. Схема Лейта – Упатниекса стала основой современных голографических установок.

В это же время на голографические методы записи изображения обратил внимание российский физик Юрий Николаевич Денисюк. Он создал принципиально новый способ записи голограмм в толстом слое фотографической эмульсии. Предметный и опорный пучки приходят к пластинке с разных сторон и интерферируют. В объеме ее эмульсионного слоя на разной высоте в областях максимумов интерференции возникают микроскопические пятна почернения. Падающий на проявленную голограмму свет отражается от них и, интерферируя, формирует восстановленное изображения предмета. При этом из голограммы выходят только свет, частота которого равна частоте записывающего лазерного излучения, а все остальные частоты автоматически подавляются. Объемную голограмму восстанавливают обычным белым светом, получая монохромное изображение.

В своей работе Ю.Денисюк опирался на способ получения цветных фотографических изображений, разработанный французским физиком Габриэлем Липпманом в 1891. Луч света из объектива его фотоаппарата попадал на пластинку, залитую с обратной стороны ртутью (ее слой служил зеркалом). Отраженные световые волны интерферировали с падающими, создавая в толще фотографической эмульсии стоячие волны. В местах их пучностей возникали области почернения – отражающие поверхности, каждая из которых отражала свет только «своего» цвета. Изображение было цветным, но не объемным.

Современная технология позволяет копировать объемные голограммы «по Денисюку» типографским способом. Для этого голограмму получают в особом светочувствительном материале – фоторезисте. После экспонирования материал обрабатывают растворителем, который смывает его слой до зон почернения. Образуется микрорельеф, с которого снимают отпечаток – матрицу. При помощи этой матрицы в пластическом материала печатают копии голографического рельефа, покрывают их слоем металла и прозрачной защитной пленкой. Таким способом изготавливают защитные марки на упаковках пищевых продуктов и документах. Подделать их практически невозможно.

Голографические изображения можно получать при помощи любых когерентных волн, например, акустических, возбужденных в жидкости синхронно работающими вибраторами. Интерференция звуковых волн создает на поверхности жидкости рябь, с которой эту акустическую голограмму восстанавливают лазерным лучом.

Демидов В.Е. Пойманное пространство. М., «Знание», 1982
Пирожников Л.Б. Что такое голография? М., «Московский рабочий», 1983
Транковский С.Д.Книга о лазерах. М., «Детская литература», 1988

В фотографии регистрируется распределение интенсивности световых волн в двумерной проекции изображения объекта на плоскости фотоснимка.
Однако, информация об объемности объекта заложена не только в амплитуде, но и в фазе световых волн, распространяющихся от точек регистрируемого объекта. Поэтому, под каким углом мы ни рассматривали бы фотографию, мы не видим новых ракурсов. Не можем увидеть также предметы, расположенные на заднем плане и скрытые впереди стоящими. Перспектива на фотографии видна лишь по изменению относительных размеров предметов и четкости их изображения. Итак, фотография, на первый взгляд являющаяся объективным способом регистрации изображений, при детальном рассмотрении дает весьма субъективную информацию, рассчитанную на восприятие человеческим глазом. Недостатки фотографии в полной мере компенсируются принципиально новым методом регистрации изображений, получившим название голография.

Голография основывается на двух физических явлениях - дифракции и интереференции световых волн.
Физическая идея состоит в том, что при наложении двух световых пучков, при определенных условиях возникает интерференционная картина, то есть, в пространстве возникают максимумы и минимумы интенсивности света (это подобно тому, как две системы волн на воде при пересечении образуют чередующиеся максимумы и минимумы амплитуды волн). Для того, чтобы эта интерференционная картина была устойчивой в течение времени, необходимого для наблюдения, и ее можно было записать, эти две световых волны должны быть согласованы в пространстве и во времени.Такие согласованные волны называются когерентными.
Если волны встречаются в фазе, то они складываются друг с другом и дают результирующую волну с амплитудой, равной сумме их амплитуд. Если же они встречаются в противофазе, то будут гасить одна другую. Между двумя этими крайними положениями наблюдаются различные ситуации сложения волн. Результирующая сложения двух когерентных волн будет всегда стоячей волной. То есть интерференционная картина будет устойчива во времени. Это явление лежит в основе получения и восстановления голограмм. Обычные источники света не обладают достаточной степенью когерентности для использования в голографии. Поэтому решающее значение для ее развития имело изобретение в 1960 г. оптического квантового генератора или лазера - удивительного источника излучения, обладающего необходимой степенью когерентности и могущего излучать строго одну длину волны. Деннис Габор, изучая проблему записи изображения, выдвинул замечательную идею. Сущность ее реализации заключается в следующем. Если пучок когерентного света разделить на два и осветить регистрируемый объект только одной частью пучка, направив вторую часть на фотографическую пластинку, то лучи, отраженные от объекта, будут интерферировать с лучами, попадающими непосредственно на пластину от источника света. Пучок света, падающий на пластину, назвали опорным, а пучок, отраженный или прошедший через объект, предметным. Учитывая, что эти пучки получены из одного источника излучения, можно быть уверенным в том, что они когерентны. В данном случае интерференционная картина, образующаяся на пластинке, будет устойчива во времени, т.е. образуется изображение стоячей волны.--> Голограмма формирует реальное объемное изображение, в отличие от фотографии и даже от таких подделок под объемность, как стереограммы. Реальность состоит в том, что голограмму можно наблюдать с разных точек, наблюдая части объекта или сцены, которые были скрыты при наблюдении с другой точки зрения. В этом смысле голографическое изображение ведет себя полностью как реальный объект. Особенно хорошо это иллюстрируют голографические изображения прозрачных объектов, например, голограмма линзы полностью сохраняет все свойства реальной линзы, и поэтому через изображение линзы можно просматривать увеличенное изображение расположенных за ней объектов. Правда, на голограмме не могут быть отображены самосветящиеся объекты, например, электрическая лампа. Это следует из самой технологии голографии - снимаемый объект должен быть освещен лазерным светом, и только этот свет фиксируется на голограмме.

Конец работы -

Эта тема принадлежит разделу:

Использование объективов для решения творческих задач. Основные виды операторского освещения

Экзаменационный билет.. световые коэффициенты поглощения отражения и пропускания поведение света на границе раздела двух сред отражение света..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Использование объективов для решения творческих задач
Формируя кинокадр, следует исходить из смыслового значения его изобразительных компонентов, находящихся в непосредствен­ной зависимости от общей идеи сюжета. Все технические параметры следует подчи

Короткофокусный объектив
1. широко охватывает пространство, и поэтому характерная о собенность планов, снятых такой опти­кой, - большое количество объектов, попавших в кадр. Предметы, расположенные в поле

Зеркало
В зеркальной поверхности точечный источник света отра­зится полностью, почти без потерь. В отражении мы увидим источник света. Это направленное, зеркальное отражение. шлифованная поверхнос

Пропускание света
стекло Точечный источник света полностью виден через стекло. Это направленное пропускание света.

Эффективного относительного отверстия объективов
Эффективным относительным отверстием киносъемочного объек­тива:п3 называют эквивалентное ему геометрическое относительное отверстие:п «идеального» объектива, имеющего коэ

Величины виньетирования

Частотно-контрастная характеристика объектива или коэффициент передачи контраста
В последние годы при исследовании объективов и определении качества изображения большое значение придается методу частот­но-контрастных характеристик (ЧКХ) или, как его еще называют, функции переда

Особенности съемки в режимное время
Сумерками называют время после захода и перед вос­ходом, когда солнце находится ниже горизонта до 6-8°, и до того момента, когда небо становится совершенно тем­ным и видны все звезды, наблюдаемые п

Гиперфокальное расстояние. Рабочий отрезок объектива
Гиперфокальным расстоянием называется такое расстояние на­водки объектива, при котором задняя граница резко изображаемо­го пространства лежит в бесконечности. Характерно, что при на­водке на гиперф

Формат Betacam SP. Достоинства. Применение. Недостатки
Форматы Betacam и Betacam-SP. Разработаны фирмой Sony. Реализована раздельная запись сигналов яркости и цветности на раздельных дорожках шириной 73 мкм с защитным промежутком 80 ■ Скорость за

Светофильтры, их применение для решения пластической задачи. Типы назначение
При всем многообразии фильтров, выпускаемых в настоящее время различными зарубежными фирмами, остановимся на основных типах. Эффектные фильтры подразделяются на несколько основных групп в зависимос

Поляризация света. Поляризационные светофильтры. Применение, принцип действия
Гладкие поверхности некоторых объектов съемки, такие, как стекло, вода и различные окрашенные и полированные материалы, отражают как в зеркале изображения окружающих предметов. Например, стек­лянны

Спектральный состав оптического излучения. Поток излучения и световой поток. Единицы излучения
Оптическое излучение соответствует электромагнитным волнам с длиной волны от 1 нм до 1мм и состоит из трех областей: ультрафиолетовой (УФ), видимой и инфракрасной (ИК). Ультрафиолетовая об

Экспонометрический контроль. Яркость. Освещенность. Единицы измерения
Яркость - характеристика светящихся тел. Яркость равна отношению: - силы света, излучаемого в заданном направлении; к - площади проекции светящейся поверхности, на плоско


Цветовая температура – одна из главных характеристик, которая влияет на качество снимаемой кино- или видео картинки. Без учета спектральной характеристики излучения невозможно правильно передать цв

Формат DV. Достоинства. Применение. Недостатки
DV - цифровой формат, где для сжатия используется вариант дискретного косинус-преобразования, аналогичный сжатию для формата JPEG, но с несколькими таблицами дискретизации. В DV-камере аналоговое в

Экспозиция по теням и по светам для решения творческой задачи
Определение правильной экспозиции при киносъем­ке - важнейшая задача кинооператора. Качество фотогра­фического изображения - контраст, проработка деталей в тенях и светах, цветовоспроизведение и об

Виньетирование, кома, дисторсия. Причины возникновения. Возможности устранения
Виньетированием принято называть снижение освещенности к краям поля изображения, происходящее за счет уменьшения дейст­вующей площади входного зрачка объектива, вызываемое частичным ограничением оп

1-Й этап - Запись пропускающей голограммы
Пучок лазера 1 делится на два полупрозрачным зеркалом 2. Первый пучок, называемый сигнальным, направляется зеркалом

2-Й этап - Запись отражающей голограммы
На второй стадии пропускающую голограмму 9 освещают восстанавли-вающим пучком 6, направленным противоположно опорно

Назначение цветового контроля в решении творческой задачи
В телевидении цвет получается путем смещения трех его основных составляющих – красной, зеленой и синей. Корректировка камеры под тот или иной спектр освещения происходит путем выбора источника бело

Основные световые величины и единицы
Поскольку световые величины являются производными от энергетических фотометрических величин, то их целесообразно ра

Световой поток
Световой поток F является одной из основных световых величин и представляет собой тот же лучистый поток, но оценивается по световому ощущению, которое он производит на глаз человека. Т. е. световой

Сила света
Сила света источника характеризует пространственную плотность светового потока, т. е. сила света в данном направлении равна отношению светового потока F к телесному углу ω. Для изотропного ист

Освещенность
Освещенность представляет собой поверхностную плотность светового потока, падающего на освещаемую поверхность. При равномерном распределении светового потока F в пределах освещаемой поверхности S з

Видеосигнал
Объектив камеры фокусирует изображение на светочувствительной по­верхности - это может быть «мишень» электронно-лучевой трубки каме­ры или твердотельный датчик (CCD). Здесь свет создает рельеф из к

Изображение и слово
«Чтобы понять достаточно увидеть» Анри Базэн Киноизображение может быть немым, лишенным слова, или снято с синхронно воспроизведенной речью человека, или озвучено словом, музыкой, шумами.

Фокусное расстояние
Расстояние от задней главной плоскости до плоскос­ти, где фокусируются лучи света, падающие в объектив параллельным пучком (лучи, идущие из бесконечности), называется главным фокусным расстоянием и

Кинематографической время и телевизионное время
Различные виды искусств по-разному отражают временную категорию, но только некоторым из них подвластен показ реаль­ного развития событий и явлений. Объем снятого материала, длина планов, к

Геометрической и эффективное относительное отверстие
Отношение диаметра входного отверстия (зрачка) объектива к его фокусному расстоянию называется относи­тельным отверстием. Это отношение выражается в виде дроби с числителем, равным единице, и знаме

Формат Betacam SX. Достоинства. Недостатки. Применение
Сфера формата Betacam SX - производство программ новостей, а также спортивных передач, документальных фильмов и других подобных программ. Новости - одна из основных телевизионных программ. Именно п

Точка зрения
Кино склеивается из множества кадров, каждый из которых снят со своей точки зрения. Если точка зрения на предмет привычна зрительскому глазу, то вопроса (сознательного или подсознательного), кому о

Перспектива (виды)
Психология восприятия изображения конструирует в сознании человека трехмерную схему, и мы «видим» пространственные ориентиры, которые воз­никают особенно убедительно, когда они подчеркнуты перспект

Дифракция света при съемке
Дифракция света Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определ

Новое в осветительной технике
последнее время все чаще в качестве контроллеров применяются персональные компьютеры с соответствующим ПО, подключенные к управляемым системам по определенному интерфейсу. Кроме того, есть современ

Формат D9. Достоинства. Недостатки. Применение
Развитие видеозаписи продемонстрировало, что ни один формат цифровой записи не смог удовлетворить всем требованиям телевизионного вещания. Фирма JVC, создавая формат Digital S, стремилась занять оп

Кодирование входных сигналов
Формат Digital S предполагает использование структуры дискретизации телевизионного изображения в соответствии с Рекомендацией

Основные параметры оптической системы (А, Е, Е эф.)
Освещенность, создаваемая объективом в плоскости изображения при съемке объекта, имеющего равномерную яркость, как известно, не одинакова по всему кадру и обычно убывает по мере удаления от центра

Интерференционные светофильтры. Принцип действия. Область применения
Интерференция (от латинского inter - между и ferens (ferentis) - несущий, переносящий) - это явление, наблюдаемое при сложении в пространстве двух или нескольких волн. Интерференция состоит в том,

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №12
1. Технические средства и приспособления в работе оператора. Разнообразие видов съемок и готовность режиссеров и операторов пользоваться различными видами вспомогательной операторской техн

Телевизионная оптика
Современные телевизионные объективы обязаны быть и являются двухформатными по изображению. Это форматы - 4:3 и 16:9. Сейчас в телевизионных камерах используются ПЗС нескольких размеров, а именно 2/

Объективы внестудийного применения
Объективы этого класса имеют большой диапазон изменения фокусных расстояний (80x…101x), большое (1:1,4…1:1,6) относительное отверстие, а также надежную защиту от пыли, влаги и перепада температур (

Объективы студийно-внестудийного применения
К основным техническим требованиям, предъявляемым к студийным объективам, можно отнести: угол поля зрения не менее 60°, минимальная дистанция съемки не более 0,6 м, относительное отверстие 1:1,5, к

Объективы профессионального применения
Следует отметить, что у этого класса объективов, по сравнению с объективами вещательного качества, при одинаковых значениях разрешающей способности MTF снижается на 20…30%. Они достаточно популярны

Объективы для электронной кинематографии
Объективы этой серии стали достаточно популярными в последние годы. Они позволяют получать четкое изображение (практически без дисторсии), сопоставимое по качеству с кадрами, снятыми на 35 мм пленк

Творческие требования к освещению
Независимо от того, какие творческие и технические задачи стоят перед оператором, какой реальный матери­ал действительности является объектом съемки, во все случаях изображение его на кино- и видео

Контраст освещения
При равномерно-рассеянном свете интервал яркостей объекта зависит только от соотношения отражающей спо­собности его деталей. Например, если лицо человека отра­жает 30% падающего на него света, а те

Системы PAL, NTSI, SECAM. Достоинства и недостатки
Всего в мире существует три телевизионных стандарта аналогового телевидения: NTSC, PAL и SECAM. Первой страной, начавшей цветное телевизионное вещание, стали США. 19 декабря 1953 года канал NBC пок

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №13
1. Композиция кадра как основа выразительности (золотое сечение, диагональ и др.). От выбора тех или иных характеристик кадра зависит не только условие его существования как киноизображени

Основные отличия в построении видеокадра
Основных отличий в построении композиции кадра и мизансцены от композиции картины или фотографии очень немного, но они существенны и сводятся, в основном, к дополнительным ограничениям. Главное отл


Цветовая температура любого источника электромагнитных волн, в том числе световых, определяется путем сопоставления спектральных характеристик источника и абсолютно черного тела. Абсолютно черное т

Компрессия. Сущность. Причины. Стандарты. Достоинства
В 1979 году были образованы рабочие группы SMPTE и EBU по цифровой видеозаписи. В результате интенсивной совместной работы фирм-производителей телевизионной аппаратуры, вещательных компаний и между

Специфика профессии
Творческая и производ­ственная работа кинооператора протекает в условиях индустриального производства, в творческом коллекти­ве. Это требует не только профессиональной квалифи­кации, знаний

Передвижные телевизионные станции и их перспективы развития
Претендуя на самую высокую оперативность среди всех средств массовой информации, телевидение очень долгое время оставалось достаточно неповоротливым в плане организации полномасштабных съемок вне с

Съемка в туман, дождь, снегопад
Съемка в пасмурную погоду, морось и дождь харак­теризуется следующими основными условиями: неравномерностью освещенности как для горизон­тальных, так и особенно для вертикальных по

Говоря об объёмных изображениях, невозможно обойти вниманием самое интересное – голограммы. Суть голографии сложна для объяснения детям, и практически невозможно поместить на стенде корректную и одновременно краткую и понятную информацию о голографии (необходимы знания волновой теории света), но поместить голограммы в школьный музей физики надо обязательно! Приобрести их можно, например, в главном павильоне ВВЦ в Москве, где есть выставка голограмм, и где можно заказать даже свой портрет. Образцы «радужных» голограмм Бентона в настоящее время можно найти легко (используются для подтверждения подлинности товаров, бланков документов, а также в качестве разных сувениров).

Голограмма

В фотографии снимаемый предмет освещается обычным светом , а в голографии используется свет лазера . В фотографии фотопластинка фиксирует только интенсивность света , отражённого каждой точкой предмета (большая или меньшая яркость), а в голографии – не только интенсивность световой волны, но и её фазу . Таким образом, в голографии записывается полная характеристика отражённой предметом световой волны. Потому такой способ записи изображения и получил название голографии: «holos» – полный, «grapho» – пишу. Лазер используется потому, что при записи голограммы на светочувствительной эмульсии фиксируют не само изображение, а интерференционную картину , которую можно получить только от когерентных источников волн, т.е. синхронных. Лазер и является источником когерентного света. В голографии интерференционная картина получается при сложении двух световых волн – от снимаемого объекта и от источника света. Отражённая от предмета световая волна называется предметной (или объектной), а от источника – опорной. Вот схема получения голограммы по методу академика Ю. Н. Денисюка:

Линза с диафрагмой (пространственный фильтр) расширяет лазерный луч в широкий пучок. Встречаясь в фотоэмульсии, опорная и предметная волны складываются. В тех точках, в которых волны от объекта и от лазера встретились в одной фазе, возникает максимум интенсивности света (как бы на воде встретились два гребня от двух встречных волн). В тех точках, в которых волны от объекта и от лазера встретились в противофазе, возникнет минимум интенсивности света (как бы на воде встретились гребень и впадина от встречных волн). На фотопластинке создастся чередование тёмных и светлых полос – интерференционная картина.

Если осветить проявленную эмульсию светом того же источника, голограмма восстановит причудливую форму светового фронта, который при записи голограммы отражался от реального объекта. Зрительное восприятие восстановленной световой волны неотличимо от наблюдения реального объекта – такое же объёмное. Голограммы Денисюка могут восстанавливаться обычным белым светом (т.е. голографическое изображение будет идно при обычном естественном или искуственном свете). Картинка будет восстановлена только теми частотами волн, которые использовались при записи, а остальные лучи - компоненты белого света – поглотятся голограммой. Голографическое изображение имеет цвет, соответствующий цвету лазерного света, с помощью которого записывалась голограмма, (обычно жёлто-зеленоватый или красный). Но можно получить и полноцветное голографическое изображение. Для этого в фотопластинке нужно зарегистрировать три элементарных голограммы при длинах волн синего, зеленого и красного света. При восстановлении голограммы белым светом каждая из элементарных голограмм формирует свое изображение в соответствующем цвете. Эти три изображения образуют полноцветную картину, подобно тому, как это происходит на экране цветного телевизора. Голограммы Денисюка используются для изображения предметов искусства, поэтому называются также «изобразительными». Существуют целые галереи изобразительных голограмм редких золотых украшений и прочих раритетов из коллекций различных музеев. Но изготавливать голограмму по такому методу довольно сложно. Сложно и дорого также тиражировать эти голограммы. Более просто тиражировать голограммы Бентона, которые называют »радужными», т.к. они переливаются на белом свете всеми цветами радуги. Их можно видеть теперь повсюду: на банковских карточках и денежных купюрах, сувенирах и обложках журналов, на упаковках товаров и бланках важных документов. Для их создания используются очень тонкие слои фоторезиста (материал, изменяющий свои свойства при воздействии света). При химической обработке засвеченные участки слоя фоторезиста вымываются, образуя на его поверхности микроскопический рельеф. Радужные голограммы легко тиражируются: механическим способом рельеф переносится на специальный носитель, и далее идёт процесс тиснения на фольге или пластиковой плёнке. Но скопировать их стандартной копировальной и печатающей техникой невозможно, поэтому их широко используют для защиты документов и товаров от подделки.

Голографическое изображение обладает удивительными свойствами. Волна света, падающая на голограмму, отражается от ее рельефной поверхности и превращается в ту самую световую волну, которая исходила от объекта при записи. Таким образом, рисунок является результатом дифракции света на голограмме, а не результатом поглощения и рассеяния света разными цветами, как в полиграфии. Поэтому такое изображение в принципе невозможно получить с помощью традиционной полиграфии.

Голографическую структуру можно формировать различными способами:

  • прямой записью волны, отраженной реальным объектом на оптическом стенде,
  • расчетом волны виртуального объекта и последующей записью расчетной голографической структуры с помощью электронного луча (E-beam) или оптической проекцией (dot-matrix).

В голографии, задавая параметры дифракции света, можно создавать разнообразные визуальные эффекты, невозможные при использовании других технологий.

При дифракции света на голограмме его характеристики меняются в зависимости от угла падения света и угла наблюдения. В полиграфии это не так, за исключением специальных красок.

Наиболее распространенными визуальными эффектами голографического изображения являются следующие:

  • Эффект реального объема (). При рассматривании такой голограммы под разными углами у смотрящего создается ощущение, что он видит реальной 3D объект.
  • Эффект смещения на 2D/ 3D голограмме, когда на голограмму записано 2 или более плоских слоев изображений, размещенных на разной глубине, которые сдвигаются по отношению друг к другу в зависимости от угла обзора.
  • Эффект перелива — то, что принципиально отличает голографическое изображение от полиграфического. Любая радужная голограмма под разными углами обзора будет выглядеть по-разному, и будет переливаться всеми цветами радуги. Цвет каждого участка изображения меняется в зависимости от угла падения света и угла наблюдения, и этим можно управлять на этапе разработки дизайна.
  • Эффект флип — переключение картинок, когда при небольшом повороте голограммы одно изображение пропадает, а на его месте возникает другое.
  • Эффект пульсации — элемент голографической картинки увеличивается и уменьшается при наклоне голограммы, как бы пульсирует
  • Эффект динамики. При изменение угла обзора, графические элементы изображения движутся. Голограммы с таким эффектом очень популярны и имеют много названий (кинеграммы, жирограммы).
  • Псевдоцвет — хотя цвет голографической картинки меняется при наклоне голограммы, соотношение цветов сохраняется. Поэтому в каком-то определенном ракурсе оно может соответствовать реальному. То есть объект будет выглядеть в своих реальных цветах.
  • Изображения сверхнизкой (сверхвысокой) частоты — визуальный эффект, когда на голограмме, помимо того, что мы видим под обычным углом обзора (вокруг 90 градусов), можно найти и другое изображение, посмотрев на нее под очень маленьким или очень большим углом (5-30° — 150-175°).

Эта классификация условна, поскольку визуальные возможности голографического изображения ограничены в большей степени человеческим воображением, способностью глаза к адаптации и возможностями современных материалов и оборудования. Некоторые из них существуют пока только в расчетах, и реализовать их можно будет лишь в будущем.

Помимо удивительных оптических эффектов, которые можно реализовать в изображении, у него есть и другие интересные особенности.
Каждый отдельно взятый участок трехмерного рисунка содержит в себе информацию всей голограммы. Предположим мы смотрим внутрь неосвещенного дома через окно. В зависимости от того, под каким углом, с какого расстояния и с каким освещением взглянуть в дом, мы сможем рассмотреть разные его части и в теории весь дом в целом. Разбить голографическое изображение на две части, это все равно, что закрыть половину этого окна. В оставшуюся часть мы сможем видеть все то же самое, но возрастут требования к яркости освещения, дистанциям и углам обзора. Это свойство называется информационной избыточностью. Оно легло в основу создания голографической памяти.

Принципиальным отличием голографической памяти является ее более распределенный характер — отдельные фрагменты информации записываются не на отдельные участки носителя, а вся информация записывается на всю площадь носителя одновременно. Это повышает емкость и надежность информационных носителей.

Другим свойством голограммы, помимо информационной избыточности является очень высокая плотность записи. Для примера, весь текст роман «Евгений Онегин» можно записать в виде изображения на голограмму размером меньше, чем 20*20 миллиметров. Его можно будет прочитать с помощью микроскопа. Это свойство также раскрывает широкие возможности по внедрению больших массивов информации, созданию максимально реалистичных изображений, и для защиты продукции от подделки с помощью голограмм. Микро и нано тексты часто используются в качестве дополнительной степени защиты. Обнаружить их, не зная точно, место расположения практически невозможно. И даже если их найти, копировать информационный массив придется вручную.

Может нести в себе скрытые графические элементы (concealed image), увидеть которые можно только с помощью специального оборудования (CLR-reader). Скрытые изображения широко используются в защитной голографии.

Слово голография происходит от греческого hólos — всеобъемлющий и графия — запись. Суть понятия — полная запись и воспроизведение параметров объекта. Долгое время этот термин жил только в научном обиходе, однако последнее время он приобрел небывалую популярность. Словом «голографический» называют объемные изображения в воздухе или в прозрачном материале, методы медицинской и психотерапии, а самой новомодной концепцией устройства вселенной является голографическая. Иногда это просто спекуляция модным словом, однако невозможно отрицать, что голографические технологии будут все шире распространяться в науке и в повседневной жизни. Объяснение этому простое. Наш мир трехмерен, поэтому для более точной передачи его объектов необходимо третье измерение.

  • AR и VR ,
  • Блог компании WayRay ,
  • Запустить софт для моделирования и вывести полноразмерную модель для редактирования в пространстве. Включить коммуникатор и побеседовать не с плоским изображением собеседника на видеозвонке, а с его объемной проекцией, через которую просвечивает любимый ковер. Отодвинуть штору и увидеть на оконном стекле прогноз погоды, ситуацию с пробками, и вообще - как оно там. Завести двигатель автомобиля и получать на участке лобового стекла дополнительные оповещения о дорожной разметке, возможных опасностях и иных важных сведениях.

    Если раньше все это было уделом научных фантастов, то сейчас подобное перешло из разряда “Фантастика” в разряд “Ближайшее будущее”. О том, как современные ученые приближают век голографии, с чего все начиналось и какие трудности развития голографические технологии испытывают на данный момент, мы постараемся рассказать в этом посте.

    Как создаются голографические изображения

    Человеческий глаз видит физические объекты, так как от них отражается свет. Построение голографического изображения основано именно на этом принципе – создается пучок отраженного света, полностью идентичный тому, который отражался бы от физического объекта. Человек, смотря на этот пучок, видит тот же самый объект (даже если смотрит на него под разными углами).

    Голограммы же более высокого разрешения - это статические рисунки, “холст” которых - фотополимер, а “кисть” - лазерный луч, который разово меняет структуру фотополимерных материалов. В итоге обработанный таким образом фотополимер создает голографическое изображение (на плоскость голограммы падает свет, фотополимер создает его тонкую интерференционную картину).

    К слову, про саму интерференцию. Она возникает в случае, если в определенном пространстве складывается ряд электромагнитных волн, у которых совпадают частоты, причем с довольно высокой степенью. Уже в процессе записи голограммы в конкретной области складывают две волны – первая, опорная, исходит непосредственно от источника, вторая, объектная – отражается от объекта. Фотопластину с чувствительным материалом размещают в этой же области, и на ней возникает картина полос потемнения, соответствующих распределению электромагнитной энергии (интерференционная картина). Затем пластину освещают волной, близкой по характеристикам к опорной, и пластина преобразует эту волну в близкую к объектной.

    В итоге получается, что наблюдатель видит примерно такой же свет, который отражался бы от изначального объекта записи.

    Краткая историческая справка

    Шел 1947-й год. Индия получила независимость от Британии, Аргентина предоставила избирательные права женщинам, Михаил Тимофеевич Калашников создал свой знаменитый автомат, Джон Бардин и Уолтер Браттейномиз проводят эксперимент, позволивший создать первый в мире действующий биполярный транзистор, начинается производство фотоаппаратов Polaroid.

    А Деннис Габор получает первую в мире голограмму.

    Вообще, Деннис пытался повысить разрешающую способность электронных микроскопов той эпохи, но в ходе направленного на это эксперимента получил голограмму.

    Увы, Габор, как и многие умы, немного опередил свое время, и у него просто не было нужных технологий, чтобы получать голограммы хорошего качества (без когерентного источника света этого сделать невозможно, а первый лазер на кристалле искусственного рубина Теодор Мейман продемонстрирует лишь 13 лет спустя).

    А вот после 1960-го (красный рубиновый лазер с длиной волны 694 нм, импульсный, и гелий-неоновый, 633 нм, непрерывный) дело пошло куда бодрее.

    1962 . Эммет Лейт и Юрис Упатниекс, Мичиганский Технологический Институт. Создание классической схемы записи голограмм. Записывались пропускающие голограммы – в процессе восстановления голограммы свет пропускали через фотопластину, но некоторая часть света отражается от пластины и тоже создает изображение, которое видно с противоположной стороны.

    1967 . Первый голографический портрет записывают при помощи рубинового лазера.

    1968 . Совершенствуются и сами фотоматериалы, благодаря чему Юрий Николаевич Денисюк разрабатывает собственную схему записи и получает высококачественные голограммы (восстанавливали изображение путем отражения белого света). Все проходит вполне неплохо, настолько, что схема записи получает название “Схема Денисюка”, а голограммы - “Голограммы Денисюка”.

    1977 . Мультиплексная голограмма Ллойда Кросса, состоящая из нескольких десятков ракурсов, каждый из которых можно увидеть только под одним углом.

    Плюсы - размеры объекта, которые требуется записать, не ограничиваются длиной волны лазера или размером фотопластины. Можно создать голограмму предмета, которого не существует (то есть просто нарисовав придуманный предмет в сразу нескольких ракурсах).

    Минусы - отсутствие вертикального параллакса, рассмотреть такую голограмму можно только по горизонтальной оси, но не сверху или снизу.

    1986 . Абрахам Секе осознает, что нет предела совершенству, и предлагает создать источник когерентного излучения в приповерхностной области с помощью рентгеновского излучения. Пространственное разрешение в голографии всегда зависит от размеров источника излучения и его удаленности от предмета – это дало возможность восстановить в реальном пространстве атомы, которые окружали эмиттер.

    Сейчас

    Сегодня некоторые прототипы голографических видеодисплеев работают примерно так же, как и современные ЖК-мониторы: особым образом рассеивают свет, формируя псевдо-3D, а не создают интерференционную картину. С чем связан и главный минус такого подхода - нормально оценить такую картинку сможет только один человек, сидящих под правильным углом к монитору. Все остальные зрители будут не так впечатлены.

    Конечно же, любители научной фантастики и новых технологий спят и видят, как голографические дисплеи станут такой же привычной вещью, как wifi дома или фотокамера в смартфоне, сравнимая с не самой плохой мыльницей. И хотя идеальная голограмма в понимании большинства - это на самом деле не сегодня и не завтра, разработки на эту тему уже активно ведутся.

    Институт науки и передовых исследований, Корея. Рабочий прототип нового 3D-голографического дисплея, ТТХ которого примерно в пару тысяч раз лучше , чем у существующих аналогов.

    Слабое звено таких дисплеев - матрица. Пока матрицы состоят из двухмерных пикселей. Корейцы же использовали обычный (но хороший) дисплей вкупе со специальным модулятором для фронта оптического импульса. Результатом стала высококачественная голограмма, правда, небольшая - 1 кубический сантиметр.

    Было время, когда считалось, что рассеивание света - это серьезное препятствие для нормального распознавания проецируемых объектов. Но как показывает наша практика, современные 3D-дисплеи можно существенно улучшить, научившись контролировать это рассеивание. Правильное рассеивание позволило увеличить и угол обзора, и общую разрешающую способность,
    - отмечает профессор Йонкен Парк .

    Университет Гриффита, Технологический университет Суинберна, Австралия. Голографический дисплей на основе графена.

    Ученые вооружились методом Габора, упоминавшимся в самом начале этого поста, и сделали 3D-голографический дисплей высокого разрешения на основе цифрового голографического экрана, состоящего из мелких точек, отражающих свет.

    Плюсы – угол обзор в 52 градуса. Для нормального восприятия картинки не нужны никакие дополнительные приблуды в виде 3D-очков и прочего.

    К слову, о 52 градусах. Угол обзора тем больше, чем меньше будет использоваться пикселей. Оксид графена обрабатывают путем фоторедукции, что создает пиксель, которому под силу изгибать цвет для голокартинки.

    Разработчики полагают, что подобный подход в свое время сможет положить начало революции в разработке дисплеев, особенно - на мобильных устройствах.

    Бристольский университет, Великобритания. Ультразвуковая голография.

    Объект создается в воздухе с помощью множества ультразвуковых излучателей, направленных на облако водяного пара, которое также создается системой. Реализация, конечно, сложнее, чем в случае с привычными экрана, но все же.

    • туман создается не просто каплями воды, а каплями специального вещества.
    • это вещество освещается специальной лампой.
    • лампа модулирует специальный свет.

    В итоге получается проекция объекта, который можно не только рассмотреть со всех сторон, но и потрогать.

    Частота колебаний такой интерференционной картины - от 0.4 до 500 Гц.

    Одно из главных направлений деятельности, в котором разработчики предполагают полезное использование технологии - медицина. Врач сможет на основе данных медкарты и смоделированного органа “почувствовать” его. Также можно будет создавать объемные проекции каких-либо товаров на презентациях. Положительный эффект предрекают и при замене подобной технологией сенсорных дисплеев в местах массового пользования (электронные меню, терминалы, банкоматы). Как сложно и дорого будет это внедрить - само собой, уже второй вопрос.

    А уж до чего могут дойти развлекательные сервисы определенной направленности - страшно (но интересно) подумать.

    Ванкувер, Канада. Интерактивный голографический дисплей.

    Что нужно:

    • мобильное устройство
    • HDMI или wifi
    • пожертвовать 550$ на Кикстартере вот