Гипоталамус как структура центральной нервной системы вырабатывает. Гипоталамус - что это такое? Строение и функции гипоталамуса

Отвечающий за механизмы бодрствования и сна, изменения температуры тела и обменные процессы в организме. От него зависит работоспособность всех органов и тканей организма. Эмоциональные реакции человека также находятся в компетенции гипоталамуса. Кроме того, гипоталамус руководит работой эндокринных желез, участвует в процессе пищеварения, а также в продлении рода. Расположен гипоталамус в головном мозге под зрительным бугром – таламусом. Поэтому, гипоталамус, в переводе с латыни означает «подбугорье ».

  • Гипоталамус по размеру равен фаланге большого пальца руки.
  • Ученые нашли в гипоталамусе центры «рая» и «ада». Эти участки мозга отвечают за приятные и неприятные ощущения организма.
  • Деление людей на «жаворонков» и «сов» также находится в компетенции работы гипоталамуса
  • Ученые называют гипоталамус «внутренним солнцем организма» и считают, что дальнейшее изучение его возможностей может привести к увеличению продолжительности жизни человека, к победе над многими эндокринными заболеваниями, а также к дальнейшему освоению Космоса, благодаря управляемому летаргическому сну, в который можно будет погружать космонавтов, преодолевающих расстояние в десятки и сотни световых лет.

Полезные продукты для гипоталамуса

  • Изюм , курага , мед – содержат глюкозу, необходимую для полноценной работы гипоталамуса.
  • Зелень и листовые овощи. Прекрасный и калия . Являются отличными антиоксидантами. Предохраняют гипоталамус от риска кровоизлияний, инсульта .
  • Молоко и молочные продукты . Содержат витамины группы В, которые необходимы для полноценной работы нервной системы, а также кальций и другие питательные вещества.
  • Яйца . Снижают риск возникновения инсульта, благодаря содержанию в них полезных для мозга веществ.
  • Кофе , черный шоколад. В небольшом количестве тонизируют работу гипоталамуса.
  • Бананы , помидоры , апельсины . Поднимают настроение. Облегчают работу не только гипоталамуса, но и всех структур мозга. Полезны для нервной системы, деятельность которой тесно связана с работой гипоталамуса.
  • Грецкие орехи . Стимулируют работоспособность гипоталамуса. Тормозят процессы старения мозга. Богаты полезными жирами, витаминами и микроэлементами.
  • Морковь . Замедляет процессы старения в организме, стимулирует образование молодых клеток, участвует в проведении нервных импульсов.
  • Морская капуста . Содержит вещества, необходимые для обеспечения гипоталамуса кислородом. Большое количество йода, содержащегося в морской капусте, помогает бороться с бессонницей и раздражительностью, усталостью и перенапряжением.
  • Жирная рыба и растительные масла. Содержат полиненасыщенные жирные кислоты, которые являются важными компонентами питания гипоталамуса. Предотвращают отложение холестерина, являются стимуляторами выработки гормонов.

Для полноценного функционирования гипоталамуса необходимы:

  • Лечебная физкультура и ежедневные прогулки на свежем воздухе (особенно вечером, перед сном).
  • Регулярное и полноценное питание. Предпочтительна молочно-растительная диета. Медики советуют избегать переедания.
  • Соблюдение режима дня помогает гипоталамусу войти в привычный для него ритм работы.
  • Исключить из употребления алкогольные напитки и избавиться от вредной тяги к курению, которые вредят работе нервной системы, с деятельностью которой тесно связан гипоталамус.
  • Исключить перед сном просмотр телепередач и работу за компьютером. В противном случае, из-за нарушения светового режима дня, может возникнуть нарушения в работе гипоталамуса и всей нервной системы.
  • С целью профилактики перевозбуждения гипоталамуса, в яркий солнечный день рекомендуется носить солнцезащитные очки.

Народные методы восстановления функций гипоталамуса

Причинами нарушений работы гипоталамуса являются:

  1. 1 Инфекционные заболевания, интоксикации организма.
  2. 2 Нарушения в работе нервной системы.
  3. 3 Слабый иммунитет.

В первом случае могут использоваться травы противовоспалительного назначения (ромашка , календула, зверобой) – по рекомендации врача. При интоксикациях полезны йодсодержащие продукты – черноплодная рябина, морская капуста, фейхоа , грецкие орехи.

Во втором случае , при нарушении работы НС, используются тонизирующие средства (цикорий, кофе), или наоборот, успокаивающие - настойка валерианы , пустырника и боярышника, хвойные ванны.

При тахикардии и беспричинном повышении давления, связанных с неправильной работой гипоталамуса, полезны водные процедуры: теплый душ с последующим энергичным растиранием кожных покровов.

При депрессивных состояниях хорошо помогает отвар травы зверобоя, конечно, если нет медицинских противопоказаний к применению!

Кора большого мозга

Высшим отделом ЦНС является кора большого мозга (кора боль­ших полушарий). Она обеспечивает совершенную организацию по­ведения животных на основе врожденных и приобретенных в онто­генезе функций.

Морфофункциональная организация

Кора большого мозга имеет следующие морфофункциональные особенности:

Многослойность расположения нейронов;

Модульный принцип организации;

Соматотопическая локализация рецептирующих систем;

Экранность, т. е. распределение внешней рецепции на пло­скости нейронального поля коркового конца анализатора;

Зависимость уровня активности от влияния подкорковых структур и ретикулярной формации;

Наличие представительства всех функций нижележащих структур ЦНС;

Цитоархитектоническое распределение на поля;

Наличие в специфических проекционных сенсорных и мотор­ной системах вторичных и третичных полей с ассоциативными функциями;

Наличие специализированных ассоциативных областей;

Динамическая локализация функций, выражающаяся в воз­можности компенсаций функций утраченных структур;

Перекрытие в коре большого мозга зон соседних перифери­ческих рецептивных полей;

Возможность длительного сохранения следов раздражения;

Реципрокная функциональная взаимосвязь возбудительных и тормозных состояний;

Способность к иррадиации возбуждения и торможения;

Наличие специфической электрической активности.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок. Ост­ровок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex). Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимо­действия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, диффе­ренциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине.

Функции отдельных зон новой коры определяются особенностями ее структурно-функциональной организации, связями с другими структурами мозга, участием в восприятии, хранении и воспроиз­ведении информации при организации и реализации поведения, регуляции функций сенсорных систем, внутренних органов.

Особенности структурно-функциональной организации коры большого мозга обусловлены тем, что в эволюции происходила кортикализация функций, т. е. передача коре большого мозга фун­кций нижележащих структур мозга. Однако эта передача не озна­чает, что кора берет на себя выполнение функций других структур. Ее роль сводится к коррекции возможных нарушений функций взаимодействующих с ней систем, более совершенного, с учетом индивидуального опыта, анализа сигналов и организации оптималь­ной реакции на эти сигналы, формирование в своих и в других заинтересованных структурах мозга памятных следов о сигнале, его характеристиках, значении и характере реакции на него. В даль­нейшем, по мере автоматизации реакция начинает выполняться подкорковыми структурами.

Общая площадь коры большого мозга человека около 2200 см2, число нейронов коры превышает 10 млрд. В составе коры имеются пирамидные, звездчатые, веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков; аксон пирамидного нейрона, как правило, идет через белое вещество в другие зоны коры или в структуры ЦНС.

Звездчатые клетки имеют короткие хорошо ветвящиеся дендриты и короткий аскон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или го­ризонтальные взаимосвязи нейронов разных слоев коры.

Кора большого мозга имеет преимущественно шестислойное стро­ение

Слой I - верхний молекулярный, представлен в основном вет­влениями восходящих дендритов пирамидных нейронов, среди ко­торых расположены редкие горизонтальные клетки и клетки-зерна, сюда же приходят волокна неспецифических ядер таламуса, регу­лирующие через дендриты этого слоя уровень возбудимости коры большого мозга.

Слой II - наружный зернистый, состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре большого мозга, т. е. имеющих отношение к памяти.

Слой III - наружный пирамидный, формируется из пирамидных клеток малой величины и вместе со II слоем обеспечивают корко-корковые связи различных извилин мозга.

Слой IV - внутренний зернистый, содержит преимущественно звездчатые клетки. Здесь заканчиваются специфические таламокортикальные пути, т. е. пути, начинающиеся от рецепторов анализаторов.

Слой V - внутренний пирамидный, слой крупных пирамид, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг.

Слой VI - слой полиморфных клеток, большинство нейронов этого слоя образуют кортико-таламические пути.

Клеточный состав коры по разнообразию морфологии, функции, формам связи не имеет себе равных в других отделах ЦНС. Ней­ронный состав, распределение нейронов по слоям в разных областях коры различны, что позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере со­вершенствования ее функции в филогенезе.

У высших млекопитающих в отличие от низших от двигательного 4 поля хорошо дифференцируются вторичные поля 6, 8 и 10, функци­онально обеспечивающие высокую координацию, точность движений; вокруг зрительного поля 17 - вторичные зрительные поля 18 и 19, участвующие в анализе значения зрительного стимула (организация зрительного внимания, управление движением глаза). Первичные слуховое, соматосенсорное, кожное и другие поля также имеют рядом расположенные вторичные и третичные поля, обеспечивающие ассо­циацию функций данного анализатора с функциями других анализа­торов. Для всех анализаторов характерен соматотопический принцип организации проекции на кору большого мозга периферических рецептирующих систем. Так, в сенсорной области коры второй цент­ральной извилины имеются участки представительства локализации каждой точки кожной поверхности, в двигательной области коры каж­дая мышца имеет свою топику (свое место), раздражая которую мож­но получить движение данной мышцы; в слуховой области коры име­ется топическая локализация определенных тонов (тонотопическая локализация), повреждение локального участка слуховой области ко­ры приводит к потере слуха на определенный тон.

Точно так же в проекции рецепторов сетчатки глаза на зрительное поле коры 17 имеется топографическое распределение. В случае гибели локальной зоны поля 17 изображение не воспри­нимается, если оно падает на участок сетчатки, проецирующийся на поврежденную зону коры большого мозга.

Особенностью корковых полей является экранный принцип их функционирования. Этот принцип заключается в том, что рецептор проецирует свой сигнал не на один нейрон коры, а на поле нейронов, которое образуется их коллатералями и связями. В результате сигнал фокусируется не точка в точку, а на множестве разнообразных нейронов, что обеспечивает его полный анализ и возможность пе­редачи в другие заинтересованные структуры. Так одно волокно, приходящее в зрительную область коры, может активировать зону размером 0,1 мм. Это значит, что один аксон распределяет свое действие на более чем 5000 нейронов.

Входные (афферентные) импульсы поступают в кору снизу, под­нимаются к звездчатым и пирамидным клеткам III-V слоев коры. От звездчатых клеток IV слоя сигнал идет к пирамидным нейронам III слоя, а отсюда по ассоциативным волокнам - к другим полям, об­ластям коры большого мозга. Звездчатые клетки поля 3 переключают сигналы, идущие в кору, на пирамидные нейроны V слоя, отсюда об­работанный сигнал уходит из коры к другим структурам мозга.

В коре входные и выходные элементы вместе со звездчатыми клетками образуют так называемые колонки - функциональные единицы коры, организованные в вертикальном направлении. До­казательством этого служит следующее: если микроэлектрод погру­жать перпендикулярно в кору, то на своем пути он встречает нейроны, реагирующие на один вид раздражения, если же микро­электрод вводить горизонтально по коре, то он встречает нейроны, реагирующие на разные виды стимулов.

Диаметр колонки около 500 мкм и определяется она зоной распределения коллатералей восходящего афферентного таламокортикального волокна. Соседние колонки имеют взаимосвязи, орга­низующие участки множества колонок в организации той или иной реакции. Возбуждение одной из колонок приводит к торможению соседних.

Каждая колонка может иметь ряд ансамблей, реализующих ка­кую-либо функцию по вероятностно-статистическому принципу. Этот принцип заключается в том, что при повторном раздражении в реакции участвует не вся группа нейронов, а ее часть. Причем каждый раз часть участвующих нейронов может быть разной по составу, т. е. формируется группа активных нейронов (вероятност­ный принцип), среднестатистически достаточная для обеспечения нужной функции (статистический принцип).

Как уже упоминалось, разные области коры большого мозга имеют разные поля, определяющиеся по характеру и количеству нейронов, толщине слоев и т. д. Наличие структурно различных полей предполагает и разное их функциональное предназначение (рис. 4.14). Действительно, в коре большого мозга выделяют сен­сорные, моторные и ассоциативные области.

Сенсорные области

Корковые концы анализаторов имеют свою топографию и на них проецируются определенные афференты проводящих систем. Кор­ковые концы анализаторов разных сенсорных систем перекрываются. Помимо этого, в каждой сенсорной системе коры имеются полисен­сорные нейроны, которые реагируют не только на «свой» адекватный стимул, но и на сигналы других сенсорных систем.

Кожная рецептирующая система, таламокортикальные пути проецируются на заднюю центральную извилину. Здесь имеется строгое соматотопическое деление. На верхние отделы этой извилины проецируются рецептивные поля кожи нижних конечностей, на средние - туловища, на нижние отделы - руки, головы.

На заднюю центральную извилину в основном проецируются болевая и температурная чувствительность. В коре теменной доли (поля 5 и 7), где также оканчиваются проводящие пути чувствительности, осуществляется более сложный анализ: локализация раздражения, дискриминация, стереогноз.

При повреждениях коры более грубо страдают функции дистальных отделов конечностей, особенно рук.

Зрительная система представлена в затылочной доле мозга: поля 17, 18, 19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры большого мозга при­водит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при этом утрачивается также цветовая память).

Слуховая система проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42, 52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел.

Обонятельная система проецируется в области переднего конца гиппокампальной извилины (поле 34). Кора этой области имеет не шести-, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния).

Вкусовая система проецируется в гиппокампальной извилине по соседству с обонятельной областью коры (поле 43).

Моторные области

Впервые Фритч и Гитциг (1870) показали, что раздражение передней центральной извилины мозга (поле 4) вызывает двига­тельную реакцию. В то же время признано, что двигательная область является анализаторной.

В передней центральной извилине зоны, раздражение которых вызывает движение, представлены по соматотопическому типу, но вверх ногами: в верхних отделах извилины - нижние конечности, в нижних - верхние.

Спереди от передней центральной извилины лежат премоторные поля 6 и 8. Они организуют не изолированные, а комплексные, координированные, стереотипные движения. Эти поля также обес­печивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры.

В реализации моторных функций принимают участие также вторая лобная извилина, затылочная, верхнетеменная области.

Двигательная область коры, как никакая другая, имеет большое количество связей с другими анализаторами, чем, видимо, и обус­ловлено наличие в ней значительного числа полисенсорных ней­ронов.

Ассоциативные области

Все сенсорные проекционные зоны и моторная область коры занимают менее 20% поверхности коры большого мозга (см. рис. 4.14). Остальная кора составляет ассоциативную область. Каждая ассоциативная область коры связана мощными связями с несколь­кими проекционными областями. Считают, что в ассоциативных областях происходит ассоциация разносенсорной информации. В ре­зультате формируются сложные элементы сознания.

Ассоциативные области мозга у человека наиболее выражены в лобной, теменной и височной долях.

Каждая проекционная область коры окружена ассоциативными областями. Нейроны этих областей чаще полисенсорны, обладают большими способностями к обучению. Так, в ассоциативном зри­тельном поле 18 число нейронов, «обучающихся» условнорефлекторной реакции на сигнал, составляет более 60% от числа фоновоактивных нейронов. Для сравнения: таких нейронов в проекци­онном поле 17 всего 10-12%.

Повреждение поля 18 приводит к зрительной агнозии. Больной видит, обходит предметы, но не может их назвать.

Полисенсорность нейронов ассоциативной области коры обеспе­чивает их участие в интеграции сенсорной информации, взаимо­действие сенсорных и моторных областей коры.

В теменной ассоциативной области коры формируются субъек­тивные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря сопоставлению соматосенсорной, проприоцептивной и зрительной информации.

Лобные ассоциативные поля имеют связи с лимбическим отделом мозга и участвуют в организации программ действия при реализации сложных двигательных поведенческих актов.

Первой и наиболее характерной чертой ассоциативных областей коры является мультисенсорность их нейронов, причем сюда посту­пает не первичная, а достаточно обработанная информация с вы­делением биологической значимости сигнала. Это позволяет фор­мировать программу целенаправленного поведенческого акта.

Вторая особенность ассоциативной области коры заключается в способности к пластическим перестройкам в зависимости от значи­мости поступающей сенсорной информации.

Третья особенность ассоциативной области коры проявляется в длительном хранении следов сенсорных воздействий. Разрушение ассоциативной области коры приводит к грубым нарушениям обу­чения, памяти. Речевая функция связана как с сенсорной, так и с двигательной системами. Корковый двигательный центр речи рас­положен в заднем отделе третьей лобной извилины (поле 44) чаще левого полушария и был описан вначале Даксом (1835), а затем Брока (1861).

Слуховой центр речи расположен в первой височной извилине левого полушария (поле 22). Этот центр был описан Вернике (1874). Моторный и слуховой центры речи связаны между собой мощным пучком аксонов.

Речевые функции, связанные с письменной речью, - чтение, письмо - регулируются ангулярной извилиной зрительной области коры левого полушария мозга (поле 39).

При поражении моторного центра речи развивается моторная афазия; в этом случае больной понимает речь, но сам говорить не может. При поражении слухового центра речи больной может го­ворить, излагать устно свои мысли, но не понимает чужой речи, слух сохранен, но больной не узнает слов. Такое состояние назы­вается сенсорной слуховой афазией. Больной часто много говорит (логорея), но речь его неправильная (аграмматизм), наблюдается замена слогов, слов (парафазии).

Поражение зрительного центра речи приводит к невозможности чтения, письма.

Изолированное нарушение письма - аграфия, возникает также в случае расстройства функции задних отделов второй лобной из­вилины левого полушария.

В височной области расположено поле 37, которое отвечает за запоминание слов. Больные с поражениями этого поля не помнят названия предметов. Они напоминают забывчивых людей, которым необходимо подсказывать нужные слова. Больной, забыв название предмета, помнит его назначения, свойства, поэтому долго опи­сывает их качества, рассказывает, что делают этим предметом, но назвать его не может. Например, вместо слова «галстук» боль­ной, глядя на галстук, говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Распределение функций по областям мозга не является абсолют­ным. Установлено, что практически все области мозга имеют поли­сенсорные нейроны, т. е. нейроны, реагирующие на различные раз­дражения. Например, при повреждении поля 17 зрительной области его функцию могут выполнять поля 18 и 19. Кроме того, разные двигательные эффекты раздражения одного и того же двигательного пункта коры наблюдаются в зависимости от текущей моторной деятельности.

Если операцию удаления одной из зон коры провести в раннем детском возрасте, когда распределение функций еще не жестко закреплено, функция утраченной области практически полностью восстанавливается, т. е. в коре имеются проявления механизмов динамической локализации функций, позволяющих компенсировать функционально и анатомически нарушенные структуры.

Важной особенностью коры большого мозга является ее способ­ность длительно сохранять следы возбуждения.

Следовые процессы в спинном мозге после его раздражения сохраняются в течение секунды; в подкорково-стволовых отделах (в форме сложных двигательно-координаторных актов, доминантных установок, эмоциональных состояний) длятся часами; в коре мозга следовые процессы могут сохраняться по принципу обратной связи в течение всей жизни. Это свойство придает коре исключительное значение в механизмах ассоциативной переработки и хранения ин­формации, накопления базы знаний.

Сохранение следов возбуждения в коре проявляется в колебаниях уровня ее возбудимости; эти циклы длятся в двигательной области коры 3-5 мин, в зрительной - 5-8 мин.

Основные процессы, происходящие в коре, реализуются двумя состояниями: возбуждением и торможением. Эти состояния всегда реципрокны. Они возникают, например, в пределах двигательного анализатора, что всегда наблюдается при движениях; они могут возникать и между разными анализаторами. Тормозное влияние одного анализатора на другие обеспечивает сосредоточенность вни­мания на одном процессе.

Реципрокные отношения активности очень часто наблюдаются в активности соседних нейронов.

Отношение между возбуждением и торможением в коре прояв­ляется в форме так называемого латерального торможения. При латеральном торможении вокруг зоны возбуждения формируется зона заторможенных нейронов (одновременная индукция) и она по протяженности, как правило, в два раза больше зоны возбуждения. Латеральное торможение обеспечивает контрастность восприятия, что в свою очередь позволяет идентифицировать воспринимаемый объект.

Помимо латерального пространственного торможения, в нейронах коры после возбуждения всегда возникает торможение активности и наоборот, после торможения - возбуждение - так называемая последовательная индукция.

В тех случаях когда торможение не в состоянии сдерживать возбудительный процесс в определенной зоне, возникает иррадиация возбуждения по коре. Иррадиация может происходить от нейрона к нейрону, по системам ассоциативных волокон I слоя, при этом она имеет очень малую скорость - 0,5-2,0 м/с. В другом случае иррадиация возбуждения возможна за счет аксонных связей пира­мидных клеток III слоя коры между соседними структурами, в том числе между разными анализаторами. Иррадиация возбуждения обеспечивает взаимоотношение состояний систем коры при органи­зации условнорефлекторного и других форм поведения.

Наряду с иррадиацией возбуждения, которое происходит за счет импульсной передачи активности, существует иррадиация состояния торможения по коре. Механизм иррадиации торможения заключа­ется в переводе нейронов в тормозное состояние под влиянием импульсов, приходящих из возбужденных участков коры, например, из симметричных областей полушарий.

Электрические проявления активности коры большого мозга

Оценка функционального состояния коры большого мозга чело­века является трудной и до настоящего времени нерешенной задачей. Одним из признаков, косвенно свидетельствующем о функциональ­ном состоянии структур головного мозга, является регистрация в них колебаний электрических потенциалов.

Каждый нейрон имеет заряд мембраны, который при активации уменьшается, а при торможении - чаще увеличивается, т. е. раз­вивается гиперполяризация. Глия мозга также имеет заряд клеток мембран. Динамика заряда мембраны нейронов, глии, процессы, происходящие в синапсах, дендритах, аксонном холмике, в аксоне - все это постоянно изменяющиеся, разнообразные по интенсивности, скорости процессы, интегральные характеристики которых зависят от функционального состояния нервной структуры и суммарно оп­ределяют ее электрические показатели. Если эти показатели реги­стрируются через микроэлектроды, то они отражают активность локального (до 100 мкм в диаметре) участка мозга и называются фокальной активностью.

В случае, если электрод располагается в подкорковой структуре, регистрируемая через него активность называется субкортикограммой, если электрод располагается в коре мозга - кортикограммой. Наконец, если электрод располагается на поверхности кожи головы, то регистрируется суммарная активность как коры, так и подкор­ковых структур. Это проявление активности называется электроэн­цефалограммой (ЭЭГ) (рис. 4.15).

Все виды активности мозга в динамике подвержены усилению и ослаблению и сопровождаются определенными ритмами электриче­ских колебаний. У человека в покое при отсутствии внешних раздражений преобладают медленные ритмы изменения состояния коры мозга, что на ЭЭГ находит отражение в форме так называемого альфа-ритма, частота колебаний которого составляет 8-13 в се­кунду, а амплитуда - приблизительно 50 мкВ.

Переход человека к активной деятельности приводит к смене альфа-ритма на более быстрый бета-ритм, имеющий частоту коле­баний 14-30 в секунду, амплитуда которых составляет 25 мкВ.

Переход от состояния покоя к состоянию сосредоточенного вни­мания или ко сну сопровождается развитием более медленного тета-ритма (4-8 колебаний в секунду) или дельта-ритма (0,5-3,5 колебаний в секунду). Амплитуда медленных ритмов составляет 100-300 мкВ (см. рис. 4.15).

Когда на фоне покоя или другого состояния мозгу предъявляется новое быстрое нарастающее раздражение, на ЭЭГ регистрируются так называемые вызванные потенциалы (ВП). Они представляют собой синхронную реакцию множества нейронов данной зоны коры.

Латентный период, амплитуда ВП зависят от интенсивности наносимого раздражения. Компоненты ВП, количество и характер его колебаний зависят от адекватности стимула относительно зоны регистрации ВП.

ВП может состоять из первичного ответа или же из первичного и вторичного. Первичные ответы представляют собой двухфазные, позитивно-негативные колебания. Они регистрируются в первичных зонах коры анализатора и только при адекватном для данного анализатора стимуле. Например, зрительная стимуляция для пер­вичной зрительной коры (поле 17) является адекватной (рис. 4.16). Первичные ответы характеризуются коротким латентным периодом (ЛП), двухфазностью колебания: вначале положительная, затем - отрицательная. Первичный ответ формируется за счет кратковре­менной синхронизации активности близлежащих нейронов.

Вторичные ответы более вариабельны по ЛП, длительности, амплитуде, чем первичные. Как правило, вторичные ответы чаще возникают на сигналы, имеющие определенную смысловую нагруз­ку, на адекватные для данного анализатора стимулы; они хорошо формируются при обучении.

Межполушарные взаимоотношения

Взаимоотношение полушарий большого мозга определяется как функция, обеспечивающая специализацию полушарий, облегчение выполнения регуляторных процессов, повышение надежности уп­равления деятельностью органов, систем органов и организма в целом.

Роль взаимоотношений полушарий большого мозга наиболее чет­ко проявляется при анализе функциональной межполушарной асим­метрии.

Асимметрия в функциях полушарий впервые была обнаружена в XIX в., когда обратили внимание на различные последствия повреждения левой и правой половины мозга.

В 1836 г. Марк Дакс выступил на заседании медицинского об­щества в Монпелье (Франция) с небольшим докладом о больных, страдающих потерей речи - состояния, известного специалистам под названием афазии. Дакс заметил связь между потерей речи и поврежденной стороной мозга. В его наблюдениях более чем у 40 больных с афазией имелись признаки повреждения левого полуша­рия. Ученому не удалось обнаружить ни одного случая афазии при повреждении только правого полушария. Суммировав эти наблю­дения, Дакс сделал следующее заключение: каждая половина мозга контролирует свои, специфические функции; речь контролируется левым полушарием.

Его доклад не имел успеха. Спустя некоторое время после смерти Дакса Брока при посмертном исследовании мозга больных, страдав­ших потерей речи и односторонним параличом, отчетливо выявил в обоих случаях очаги повреждения, захватившие части левой лобной доли. С тех пор эта зона стала известна как зона Брока; она была им определена, как область в задних отделах нижней лобной из­вилины.

Проанализировав связь между предпочтением одной из двух рук и речью, он предположил, что речь, большая ловкость в движениях правой руки связаны с превосходством левого полушария у праворуких.

Через 10 лет после публикации наблюдений Брока концепция, известная теперь как концепция доминантности полушарий, стала основной точкой зрения на взаимоотношения двух полушарий мозга.

В 1864 г. английский невролог Джон Джексон писал: «Не так давно редко кто сомневался в том, что оба полушария одинаковы как в физическом, так и в функциональном плане, но теперь, когда благодаря исследованиям Дакса, Брока и других стало ясно, что повреждение одного полушария может вызвать у человека полную потерю речи, прежняя точка зрения стала несостоятельной».

Д. Джексон выдвинул идею о «ведущем» полушарии, которую можно рассматривать как предшественницу концепции доминант­ности полушарий. «Два полушария не могут просто дублировать друг друга, - писал он, - если повреждение только одного из них может привести к потере речи. Для этих процессов (речи), выше которых ничего нет, наверняка должна быть ведущая сторона». Далее Джексон сделал вывод о том, «что у большинства людей ведущей стороной мозга является левая сторона так называемой воли, и что правая сторона является автоматической».

К 1870 г. и другие исследователи стали понимать, что многие типы расстройств речи могут быть вызваны повреждением левого полушария. К. Вернике нашел, что больные при повреждении задней части височной доли левого полушария часто испытывали затруд­нения и в понимании речи.

У некоторых больных при повреждении левого, а не правого полушария обнаруживались затруднения при чтении и письме. Счи­талось также, что левое полушарие управляет и «целенаправлен­ными движениями».

Совокупность этих данных стала основой представления о вза­имоотношении двух полушарий. Одно полушарие (у праворуких обычно левое) рассматривалось как ведущее для речи и других высших функций, другое (правое), или «второстепенное», считали находящимся под контролем «доминантного» левого.

Выявленная первой речевая асимметрия полушарий мозга пред­определила представление об эквипотенциальности полушарий боль­шого мозга детей до появления речи. Считается, что асимметрия мозга формируется при созревании мозолистого тела.

Концепция доминантности полушарий, согласно которой во всех гностических и интеллектуальных функциях ведущим у «правшей» является левое полушарие, а правое оказывается «глухим и немым», просуществовала почти столетие. Однако постепенно накапливались свидетельства, что представление о правом полушарии как о вто­ростепенном, зависимом, не соответствует действительности. Так, у больных с нарушениями левого полушария мозга хуже выполня­ются тесты на восприятие форм и оценку пространственных взаи­мосвязей, чем у здоровых. Неврологически здоровые испытуемые, владеющие двумя языками (английским и идиш), лучше иденти­фицируют английские слова, предъявленные в правом поле зрения, а слова на идиш - в левом. Был сделан вывод, что такого рода асимметрия связана с навыками чтения: английские слова читаются слева направо, а слова идиш - справа налево.

Почти одновременно с распространением концепции доминант­ности полушарий стали появляться данные, указывающие на то, что правое, или второстепенное, полушарие также обладает своими особыми способностями. Так, Джексон выступил с утверждением о том, что в задних долях правого мозга локализована способность к формированию зрительных образов.

Повреждение левого полушария приводит, как правило, к низким показателям по тестам на вербальные способности. В то же время больные с повреждением правого полушария обычно плохо выпол­няли невербальные тесты, включавшие манипуляции с геометриче­скими фигурами, сборку головоломок, восполнение недостающих частей рисунков или фигур и другие задачи, связанные с оценкой формы, расстояния и пространственных отношений.

Обнаружено, что повреждение правого полушария часто сопро­вождалось глубокими нарушениями ориентации и сознания. Такие больные плохо ориентируются в пространстве, не в состоянии найти дорогу к дому, в котором прожили много лет. С повреждением правого полушария были связаны также определенные виды агнозий, т. е. нарушений в узнавании или восприятии знакомой информации, восприятии глубины и пространственных взаимоотношений. Одной из самых интересных форм агнозии является агнозия на лица. Больной с такой агнозией не способен узнать знакомого лица, а иногда вообще не может отличать людей друг от друга. Узнавание других ситуаций и объектов, например, может быть при этом не нарушено. Дополнительные сведения, указывающие на специали­зацию правого полушария, были получены при наблюдении за больными, страдающими тяжелыми нарушениями речи, у которых, однако, часто сохраняется способность к пению. Кроме того, в клинических сообщениях содержались данные о том, что повреж­дение правой половины мозга может привести к утрате музыкальных способностей, не затронув речевых. Это расстройство, называемое амузией, чаще всего отмечалось у профессиональных музыкантов, перенесших инсульт или другие повреждения мозга.

После того как нейрохирурги осуществили серию операций с комиссуротомией и были выполнены психологические исследования на этих больных, стало ясно, что правое полушарие обладает соб­ственными высшими гностическими функциями.

Существует представление, что межполушарная асимметрия в решающей мере зависит от функционального уровня переработки информации. В этом случае решающее значение придается не ха­рактеру стимула, а особенностям гностической задачи, стоящей перед наблюдателем. Принято считать, что правое полушарие спе­циализировано в переработке информации на образном функцио­нальном уровне, левое - на категориальном. Применение такого подхода позволяет снять ряд трудноразрешимых противоречий. Так, преимущество левого полушария, обнаруженное при чтении нотных и пальцевых знаков, объясняется тем, что эти процессы протекают на категориальном уровне переработки информации. Сравнение слов без их лингвистического анализа успешнее осуществляется при их адресации правой гемисфере, поскольку для решения этих задач достаточна переработка информации на образном функциональном уровне.

Межполушарная асимметрия зависит от функционального уровня переработки информации: левое полушарие обладает способностью к переработке информации как на семантическом, так и на перцептивном функциональных уровнях, возможности правого полуша­рия ограничиваются перцептивным уровнем.

В случаях латерального предъявления информации можно вы­делить три способа межполушарных взаимодействий, проявляющих­ся в процессах зрительного опознания.

1. Параллельная деятельность. Каждое полушарие перерабаты­вает информацию с использованием присущих ему механизмов.

2. Избирательная деятельность. Информация перерабатывается в «компетентном» полушарии.

3. Совместная деятельность. Оба полушария участвуют в пере­работке информации, последовательно играя ведущую роль на тех или иных этапах этого процесса.

Основным фактором, определяющим участие того или иного полушария в процессах узнавания неполных изображений, является то, каких элементов лишено изображение, а именно какова степень значимости отсутствующих в изображении элементов. В случае, если детали изображения удалялись без учета степени их значи­мости, опознание в большей мере было затруднено у больных с поражениями структур правого полушария. Это дает основание счи­тать правое полушарие ведущим в опознании таких изображений. Если же из изображения удалялся относительно небольшой, но высокозначимый участок, то опознание нарушалось в первую очередь при поражении структур левого полушария, что свидетельствует о преимущественном участии левой гемисферы в опознании подобных изображений.

В правом полушарии осуществляется более полная оценка зри­тельных стимулов, тогда как в левом оценнваются наиболее суще­ственные, значимые их признаки.

Когда значительное число деталей изображения, подлежащего опознанию, удалено, вероятность того, что наиболее информативные, значимые его участки не подвергнутся искажению или удалению, невелика, а потому левополушарная стратегия опознания значи­тельно ограничена. В таких случаях более адекватной является стратегия, свойственная правому полушарию, основанная на ис­пользовании всей содержащейся в изображении информации.

Трудности в реализации левополушарной стратегии в этих ус­ловиях усугубляются еще и тем обстоятельством, что левое по­лушарие обладает недостаточными «способностями» к точной оценке отдельных элементов изображения. Об этом свидетельствуют также исследования, согласно которым оценка длины и ориентации линий, кривизны дуг, величины углов нарушается прежде всего при пора­жениях правого полушария.

Иная картина отмечается в случаях, когда большая часть изо­бражения удалена, но сохранен наиболее значимый, информативный его участок. В подобных ситуациях более адекватным является способ опознания, основанный на анализе наиболее значимых фраг­ментов изображения - стратегия, используемая левым полушарием.

В процессе узнавания неполных изображений участвуют струк­туры как правого, так и левого полушария, причем степень участия каждого из них зависит от особенностей предъявляемых изображе­ний, и в первую очередь от того, содержит ли изображение наиболее значимые информативные элементы. При наличии этих элементов преобладающая роль принадлежит левому полушарию; при их уда­лении преимущественную роль в процессе опознания играет правое полушарие.

Гипоталамус является частью промежуточного мозга и вхо­дит в состав лимбической системы. Это сложноорганизованный отдел мозга, выполняющий целый ряд вегетативных функций, от­вечает за гуморальное и нейросекреторное обеспечение организ­ма, эмоциональные поведенческие реакции и другие функции.

Морфологически в гипоталамусе выделяют около 50пар ядер, разделенных топографически на 5больших групп: 1)преоптическая группа или область, в которую входят: перивентрикулярное, преоптическое ядро, медиальное и латеральное преоптическое ядра, 2)передняя группа: супраоптическое, паравентрикулярное и супрахиазматическое ядра, 3)средняя группа: вентромедиальное и дорсомедиальное ядра, 4)наружная группа: латеральное гипоталамическое ядро, ядро серого бугра, 5)задняя группа: заднее гипоталамическое ядро, перифорникальное ядро, медиальные и латеральные ядра сосцевидных (мамиллярных) тел.

Нейроны гипоталамуса имеют особую чувствительность к со­ставу омывающей их крови: изменениям рН, рСО 2 рО 2 содержа­нию катехоламинов, ионов калия и натрия. В супраоптическом ядре имеются осморецепторы. Гипоталамус -единственная структура мозга, в которой отсутствует гематоэнцефалический барьер. Нейроны гипоталамуса способны к нейросекреции пептидов, гормонов, медиаторов.

В заднем и латеральном гипоталамусе выявлены нейроны, чувствительные к адреналину. Адренорецептивные нейроны мо­гут находится в одном и том же ядре гипоталамуса вместе с холинорецептивными и серотонинорецептивными. Введение адрена­лина или норадреналина в латеральный гипоталамус вызывает ре­акцию еды, а введение ацетилхолина или карбохолина -питье­вую реакцию. Нейроны вентромедиального и латерального ядер гипоталамуса проявляют высокую чувствительность к глюкозе за счет наличия в них «глюкорецепторов».

Проводниковая функция гипоталамуса

Гипоталамус имеет афферентные связи с обонятельным моз­гом, базальными ганглиями, таламусом, гиппокампом, орбиталь­ной, височной и теменной корой.

Эфферентные пути представлены: мамиллоталамическим, гипоталамо-таламическим, гипоталамо-гипофизарным, мамиллотегментальным, гипоталамогиппокампальным трактами. Кроме того, гипоталамус посылает импульсы к вегетативным центрам ствола мозга и спинного мозга. Гипоталамус имеет тесные связи с ретикулярной формацией ствола мозга, определяющей протека­ние вегетативных реакций организма, его пищевое и эмоциональ­ное поведение.

Собственные функции гипоталамуса

Гипоталамус является главным подкорковым центром, регу­лирующим вегетативные функции. Раздражение передней груп­пы ядер имитирует эффекты парасимпатической нервной сис­темы, ее трофотропное влияние на организм: сужение зрачка, брадикардию, снижение артериального давления, усиление сек-Реции и моторики желудочно-кишечного тракта. Супраоптичес­кое и паравентрикулярное ядра участвуют в регуляции водного и солевого обмена за счет выработки антидиуретического гор­мона.

Стимуляция задней группы ядер оказывает эрготропные вли­тия, активирует симпатические эффекты: расширение зрачка, тахикардию, повышение кровяного давления, торможение моторики и секреции желудочно-кишечного тракта.

Гипоталамус обеспечивает механизмы терморегуляции. Так, ядра передней группы ядер содержат нейроны, отвечающие за теплоотдачу, а задней группы -за процесс теплопродукции. Ядра средней группы участвуют в регуляции метаболизма и пищевого поведения. В вентромедиальных ядрах находится центр насыщения, а в латеральных -центр голода. Разрушение вентромедиального ядра приводит к гиперфагии -повышенному потребле­нию пищи и ожирению, а разрушение латеральных ядер -к пол­ному отказу от пищи. В этом же ядре находится центр жажды. В гипоталамусе располагаются центры белкового, углеводного и жирового обмена, центры регуляции мочеотделения и полового поведения (супрахиазматическое ядро), страха, ярости, цикла «сон-бодрствование».

Регуляция многих функций организма гипоталамусом осу­ществляется за счет продукции гормонов гипофиза и пептидных гормонов: либеринов, стимулирующих высвобождение гормо­нов передней доли гипофиза, истатинов - гормонов, которые тормозят их выделение. Эти пептидные гормоны (тиролиберин, кортиколиберин, соматостатин и др.) через портальную сосуди­стую систему гипофиза достигают его передней доли и вызыва­ют изменение продукции соответствующего гормона аденогипофиза.

Супраоптическое и паравентрикулярное ядра помимо их уча­стия в водно-солевом обмене, лактации, сокращении матки про­дуцируют гормоны полипептидной природы -окситоцин иан­тидиуретический гормон (вазопрессин), которые с помощью аксонального транспорта достигают нейрогипофиза и, кумулируясь в нем, оказывают соответствующее действие на реабсорбцию во­ды в почечных канальцах, на тонус сосудов, на сокращение бере­менной матки.

Супрахиазматическое ядро имеет отношение к регуляции по­лового поведения, а патологические процессы в области этого яд­ра приводят к ускорению полового созревания и нарушениям менструального цикла. Это же ядро является центральным води­телем циркадианных (околосуточных) ритмов многих функций в организме.

Гипоталамус имеет непосредственное отношение, как уже от­мечалось выше, к регуляции цикла «сон-бодрствование». При этом задний гипоталамус стимулирует бодрствование, передний -сон, а повреждение заднего гипоталамуса может вызвать пато­логическийлетаргический сон.

В гипоталамусе и гипофизе вырабатываются нейропептиды, относящиеся к антинотицептивной (обезболивающей) системе, или опиаты: энкефалины иэндорфины.

Гипоталамус является частью лимбической системы, прини­мающей участие в реализации эмоционального поведения.

Д. Олдс, вживляя электроды в некоторые ядра гипоталамуса крысы, наблюдал, что при стимуляции одних ядер происходила негативная реакция, других -положительная: крыса не отходила от педали, замыкающей стимулирующий ток, и нажимала ее до изнеможения (опыт с самораздражением). Можно предполо­

жить, что она раздражала «центры удовольствия». Раздражение переднего гипоталамуса провоцировало картину ярости, страха, пассивно-оборонительную реакцию, а заднего -активную агрессию, реакцию нападения.

«Эндокринный мозг» — так называют ученые-анатомы гипоталамус (от греч. «гипо» — под, «таламус» — комната, спальня). Он находится в головном мозге человека, но очень тесно связан с гипофизом – важнейшим органом человеческой эндокринной системы. Несмотря на маленькие размеры, гипоталамус имеет очень сложное строение и выполняет как вегетативные функции нашего организма, так и эндокринные.

Что такое гипоталамус?

Гипоталамус находится в самом основании мозга – промежуточном отделе, образуя собой стенки и основание нижней части третьего мозгового желудочка. Это небольшая область, которая расположена прямо под таламусом, в подбугорной зоне. Отсюда и второе название гипоталамуса – подбугорье.

Анатомически гипоталамус является полноценной частью центральной нервной системы и связан нервными волокнами с ее основными структурами – корой и стволом головного мозга, мозжечком, спинным мозгом и др. С другой стороны, подбугорье напрямую контролирует работу гипофиза и в связке с ним составляет гипоталамо-гипофизарную систему. Ее также называют нейроэндокринной – система выполняет функции и ЦНС (например, обмен веществ), и эндокринные (гипофиз продуцирует гормоны, а центры гипоталамуса управляют этими процессами).

Важнейшая роль гипоталамуса в работе всего организма не позволяет ученым однозначно причислить его к какой-либо системе организма. Он будто бы находится на стыке двух систем, эндокринной и ЦНС, являясь связующим звеном между ними.

От таламуса гипоталамус отделяет гипоталамическая борозда, это верхняя граница органа. Спереди он ограничен терминальной пластинкой из серого вещества, которая служит своеобразной прослойкой между гипоталамусом и зрительным перекрестом (хиазмой).

Боковые границы подбугорья – это зрительные тракты. А нижняя часть гипоталамуса, или дно нижнего желудочка, называется серым бугром. Он переходит в воронку, она в свою очередь вытягивается в гипофизарную ножку. На ней висит гипофиз.

Гипоталамус весит очень мало – около 3-5 гр, о его размерах ученые спорят до сих пор. Одни исследователи сравнивают его по объему с миндальным орешком, другие считают, что он может достигать длины фаланги большого пальца руки человека. Гипоталамус имеет обтекаемую, чуть вытянутую форму. Многие клетки подбугорья основательно «впаяны» в соседние зоны мозга, поэтому четкого описания гипоталамуса на сегодняшний день не существует.

Но если истинные размеры и внешний вид этого участка головного мозга до сих пор точно не известны, структура гипоталамуса изучается очень давно.

Гипоталамус разделен на несколько областей, в которых собраны особые скопления нейронов – ядра гипоталамуса. Каждая из групп ядер выполняет свои особые функции. Большинство из этих ядер парные и расположены по обе стороны третьего желудочка, где находится сам орган. Точное количество этих ядер в гипоталамусе человека неизвестно – в медицинской литературе можно встретить разные данные по этому вопросу. Ученые сходятся в одном – число ядер колеблется в диапазоне 32-48.

Существует несколько классификаций, описывающих строение гипоталамуса. Одна из самых популярных – типология советских анатомов Л.Я. Пинеса и Р.М. Майман. По их версии, гипоталамус состоит из трех частей:

  • передний отдел (включает нейросекреторные клетки);
  • средний отдел (область серого бугра и воронки);
  • нижний отдел (сосцевидные тела).

По мнению ряда ученых, передний гипоталамус состоит из 2 зон, преоптической и передней. Некоторые специалисты разделяют эти области. В переднее подбугорье входят супрахиазматическое, супраоптическое (надзрительное), паравентрикулярное (околожелудочковое) ядра.

Средний отдел гипоталамуса состоит из серого бугра – тоненькой пластинки серого вещества головного мозга. Внешне бугор выглядит как полый выступ нижней стенки третьего желудочка. Верхушка этого бугра вытянута в узкую воронку, которая соединяется с гипофизом. В этой области сконцентрированы такие ядра: туберальные (серобугорные), вентромедиальные и дорсомедиальные, паллидо-инфундибулярные, маммило-инфундибулярные.

Сосцевидные тела являются частью заднего гипоталамуса. Они представляют собой два холмистых образования из белого вещества, внутри спрятаны 2 серых ядра. В задней области подбугорья размещаются такие группы ядер: маммило-инфундибулярные, ядра маммилярных (сосцевидных) тел, супра-маммилярные. Самое крупное ядро в этой зоне – медиальное сосцевидного тела.

Гипоталамус – один из древнейших отделов головного мозга, ученые обнаруживают его даже у низших позвоночных. А у многих рыб подбугорье вообще является самым развитым участком головного мозга. У человека развитие гипоталамуса начинается на первых неделях эмбрионального развития, а к рождению малыша этот орган уже полностью сформирован.

Или субталамическая область, представляет собой небольшой участок, расположенный ниже области таламуса в промежуточном мозге. Несмотря на свои небольшие размеры, нейроны гипоталамуса формируют от 30 до 50 групп ядер, ответственных за всевозможные гомеостатические показатели организма, а также регулирующие большинство нейроэндокринных функций головного мозга и организма в целом. Гипоталамические нейроны имеют обширные связи практически со всеми центрами и отделами центральной нервной системы, при этом особого внимания заслуживают нейроэндокринные связи гипоталамуса и гипофиза. Они обуславливают формирование так называемой функционально единой гипоталамо-гипофизарной системы, ответственной за продукцию гипофизарных и гипоталамических гормонов и являющейся центральным связующим звеном между нервной и эндокринной системами. Давайте более подробно разберем, как устроен гипоталамус, что это такое и какие конкретные функции организма обеспечиваются этой небольшой областью головного мозга.

Анатомические особенности

Хотя функциональная активность гипоталамуса изучена достаточно хорошо, на сегодняшний день нет достаточно четких анатомических границ, определяющих гипоталамус. Строение с точки зрения анатомии и гистологии связано с формированием обширных нейрональных связей гипоталамической области с другими отделами головного мозга. Так, гипоталамус находится в субталамической области (ниже таламуса, отчего и происходит его название) и принимает участие в формировании стенок и дна третьего желудочка головного мозга. Терминальная пластинка анатомически образует переднюю границу гипоталамуса, а его задняя граница образована гипотетической линией, проходящей от задней спайки головного мозга до хвостового отдела сосцевидных тел.

Несмотря на свои небольшие размеры, структурно гипоталамическая область подразделяется на несколько меньших анатомо-функциональных областей. В нижней части гипоталамуса выделяются такие структуры, как серый бугор, воронка и срединное возвышение, а нижняя часто воронки переходит анатомически в ножку гипофиза.

Гипоталамические ядра

Давайте рассмотрим, какие ядра входят в гипоталамус, что это такое, и на какие группы они подразделяются. Так, под ядрами в центральной нервной системе подразумевают скопление серого вещества (тел нейронов) в толще белого вещества (аксонных и дендритных терминалей - проводящих путей). Функционально ядра обеспечивают переключение нервных волокон с одних нервных клеток на другие, а также анализ, переработку и синтез информации.

Анатомически выделяется три группы скоплений тел нейронов, образующих ядра гипоталамуса: передняя, средняя и задняя группы. На сегодняшний день точное количество ядер гипоталамуса установить достаточно сложно, так как в различных отечественных и зарубежных литературных источниках приводятся разные данные относительно их числа. Передняя группа ядер располагается в области зрительного перекреста, средняя группа залегает в области серого бугра, а задняя - в области сосцевидных тел, формируя одноименные отделы гипоталамуса.

Передняя группа гипоталамических ядер включает в себя супраоптическое и паравентрикулярные ядра, в среднюю группу ядер, соответствующую области воронки и серого бугра, входят латеральные ядра, а также дорсомедиальное, туберальное и вентромедиальные ядра, а в состав задней группы входят сосцевидные тела и задние ядра. В свою очередь, вегетативная функция гипоталамуса обеспечивается за счет функции ядерных структур, анатомических и функциональных взаимосвязей с остальными отделами головного мозга, контроля основных поведенческих реакций и выделения гормонов.

Гормоны гипоталамуса

Гипоталамическая область выделяет высокоспецифические и биологически активные вещества, которые получили название «гормоны гипоталамуса». Слово «гормон» происходит от греческого «возбуждаю», т. е. гормоны представляют собой высокоактивные биологические соединения, которые в наномолярных концентрациях способны приводить к значительным физиологическим изменениям в организме. Давайте рассмотрим, какие гормоны выделяет гипоталамус, что это такое и какова их регуляторная роль в функциональной активности всего организма.

По своей функциональной активности и точке приложения гипоталамические гормоны подразделяются на следующие группы:

  • рилизинг-гормоны, или либерины;
  • статины;
  • гормоны задней доли гипофиза (вазопрессин или антидиуретический гормон и окситоцин).

Функционально рилизинг-гормоны влияют на активность и выброс гормонов клетками передней доли гипофиза, увеличивая их продукцию. Гормоны-статины выполняют прямо противоположную функцию, останавливая продукцию биологически активных веществ. Гормоны задней доли гипофиза на самом деле вырабатываются в супраоптическом и паравентрикулярном ядрах гипоталамуса, а затем по аксонным терминалям транспортируются в заднюю область гипофиза. Таким образом, гормоны гипоталамуса являются своего рода контролирующими элементами, которые регулируют продукцию других гормонов. Либерины и статины регулируют выработку тропных гормонов гипофиза, которые, в свою очередь, оказывают воздействие на органы-мишени. Давайте рассмотрим основные функциональные моменты гипоталамической области, или за что отвечает гипоталамус в организме.

Гипоталамус в регуляции функции сердечно-сосудистой системы

На сегодняшний день экспериментальным путем показано, что электростимуляция различных гипоталамических областей может приводить к возникновению любого из известных нейрогенных воздействий на сердечно-сосудистую систему. В частности, стимулируя центры гипоталамуса, можно добиться увеличения или снижения уровня артериального давления, увеличения или снижения частоты сердечных сокращений. При этом показано, что в различных областях гипоталамуса данные функции организованы по реципрокному типу (то есть существуют центры, ответственные за повышение артериального давления, и центры, ответственные за его снижение): стимуляция латеральной и задней гипоталамической области приводит к увеличению уровня артериального давления и частоты сердечных сокращений, в то время как стимуляция гипоталамуса в области зрительного перекреста способна вызывать прямо противоположные эффекты. Анатомической основой регуляторных влияний такого типа служат специфические центры, регулирующие деятельность сердечно-сосудистой системы, расположенные в ретикулярных областях моста и продолговатого мозга, и обширные нейронный связи, проходящие от них в гипоталамус. Функции регуляции как раз и обеспечиваются за счет тесного обмена информацией между данными областями головного мозга.

Участие гипоталамической области в поддержании постоянства температуры тела

Ядерные образования гипоталамической области принимают непосредственное участие в регуляции и поддержании постоянства температуры тела. В преоптической области расположена группа нейронов, которые ответственны за постоянный мониторинг температуры крови.

При повышении температуры протекающей крови данная группа нейронов способна увеличивать импульсацию, передавая информацию в другие структуры головного мозга, тем самым запуская механизмы теплоотдачи. При снижении температуры крови импульсация от нейронов уменьшается, что обусловливает запуск процессов теплопродукции.

Участие гипоталамуса в регуляции водного баланса организма

Водно-солевой баланс организма, вазопрессин, гипоталамус - что это такое? Ответ на эти вопросы - далее в данном разделе. Гипоталамическая регуляция водного баланса организма осуществляется двумя основными путями. Первый из них заключается в формировании чувства жажды и мотивационной составляющей, которая включает поведенческие механизмы, приводящие к удовлетворению возникшей потребности. Второй путь заключается в регуляции потери жидкости организмом с мочой.

Локализован центр жажды, обуславливающий формирование одноименного чувства, в латеральной гипоталамической области. При этом чувствительные нейроны данной области постоянно отслеживают не только уровень электролитов в плазме крови, но и осмотическое давление, и при увеличении концентрации обуславливают формирование чувства жажды, что приводит к формированию поведенческих реакций, направленных на поиск воды. После того как вода найдена и чувство жажды удовлетворено, осмотическое давление крови и электролитный состав нормализуются, что возвращает импульсацию нейронов к норме. Таким образом, роль гипоталамуса сводится к формированию вегетативной основы поведенческих механизмов, направленных на удовлетворение возникающих алиментарных потребностей.

Регуляция потери или выделения воды организмом через почки лежит на так называемых супраоптических и паравентрикулярных ядрах гипоталамуса, которые отвечают за выработку гормона под названием вазопрессин, или антидиуретический гормон. Как следует из самого названия, данный гормон регулирует количество реабсорбируемой воды в собирательных трубочках нефронов. При этом синтез вазопрессина осуществляется в вышеупомянутых ядрах гипоталамуса, и далее по аксонным терминалям он транспортируется в заднюю часть гипофиза, где сохраняется до необходимого момента. В случае необходимости задняя доля гипофиза выделяет данный гормон в кровь, что увеличивает реабсорбцию воды в почечных канальцах и приводит к увеличению концентрации выделяемой мочи и снижению уровня электролитов в крови.

Участие гипоталамуса в регуляции сократительной активности матки

Нейронами паравентрикулярных ядер осуществляется выработка такого гормона, как окситоцин. Данный гормон отвечает за сократимость мышечных волокон матки во время родов, а в послеродовом периоде - за сократимость молочных протоков грудных желез. К концу беременности, ближе к родам, на поверхности миометрия происходит увеличение специфических рецепторов к окситоцину, что увеличивает чувствительность последнего к гормону. В момент родов высокая концентрация окситоцина и чувствительность к нему мышечных волокон матки способствуют нормальному протеканию родовой деятельности. После родов, когда малыш берет сосок, это приводит к стимуляции продукции окситоцина, что обуславливает сокращение молочных протоков грудных желез и выделению молока.

Кроме этого, при отсутствии беременности и грудного вскармливания, а также у лиц мужского пола, данный гормон отвечает за формирование чувства любви и симпатии, за что и получил свое второе название - «гормон любви» или «гормон счастья».

Участие гипоталамуса в формировании чувства голода и насыщения

В латеральной гипоталамической области располагаются специфические центры, организованные по реципрокному типу, отвечающие за формирование чувства жажды и насыщения. Экспериментальным путем было показано, что электростимуляционное раздражение центров, ответственных за формирование чувства голода, приводит к появлению поведенческой реакции поиска и употребления пищи даже у сытого животного, а раздражение центра насыщения - к отказу от еды животного, которое голодало в течение нескольких дней.

При поражении латеральной гипоталамической области и центров, ответственных за формирование чувства голода, может возникнуть так называемое голодание, которое приводит к смерти, а при патологии и двустороннем поражении вентромедиальной области возникает неуемный аппетит и отсутствие чувства насыщения, что приводит к формированию ожирения.

Гипоталамус в области сосцевидных тел также принимает участие в формировании поведенческих реакций, связанных с пищей. Раздражение данной области приводит к появлению таких реакций, как облизывание губ и глотание.

Регуляция поведенческой активности

Несмотря на свои маленькие размеры, составляющие всего несколько кубических сантиметров, гипоталамус принимает участие в регуляции поведенческой активности и эмоционального поведения, входя в состав лимбической системы. При этом гипоталамус имеет обширные функциональные связи со стволом мозга и ретикулярной формацией среднего мозга, с передней таламической областью и лимбическими частями коры больших полушарий, воронкой гипоталамуса и гипофиза для осуществления и координации секреторной и эндокринной функций последнего.

Заболевания гипоталамуса

Патогенетически все болезни гипоталамуса подразделяются на три большие группы, в зависимости от особенностей выработки гормонов. Так, выделяют заболевания, связанные с повышенной гормональной продукцией гипоталамуса, с пониженной гормональной продукцией, а также с нормальным уровнем выработки гормонов. Кроме этого, заболевания гипоталамуса и гипофиза очень тесно связаны между собой, что обусловлено общностью кровоснабжения, анатомического строения и функциональной активности. Нередко патологию гипоталамуса и гипофиза объединяют в общую группу заболеваний гипоталамо-гипофизарной системы.

Наиболее распространенной причиной, приводящей к появлению клинической симптоматики, является возникновение аденомы - доброкачественной опухоли из железистой ткани гипофиза. При этом, как правило, ее возникновение сопровождается увеличением гормональной продукции с соответствующим типичным проявлением клинической симптоматики. Наиболее распространенными являются опухоли, продуцирующие избыточное количество кортикотропина (кортикотропинома), соматотропина (соматотропинома), тиреотропина (тиреотрипинома) и др.

Среди типичных поражений гипоталамуса следует отметить пролактиному - гормонально активную опухоль, вырабатывающую пролактиин. Данное патологическое состояние сопровождается постановкой клинического диагноза гиперпролактинемии и является наиболее характерным для женского пола. Повышенная продукция данного гормона приводит к нарушениям менструального цикла, появлениям расстройств половой сферы, сердечно-сосудистой системы и др.

Другим грозным заболеванием, связанным с нарушением функциональной активности гипоталамо-гипофизарной системы, является гипоталамический синдром. Данное состояние характеризуется не только гормональным дисбалансом, но и появлением расстройств со стороны вегетативной сферы, нарушения обменных и трофических процессов. Диагностика данного состояния порой бывает крайне затруднительна, так как отдельные симптомы маскируются под симптоматику других заболеваний.

Заключение

Таким образом, гипоталамус, функции которого в обеспечении жизнедеятельности сложно переоценить, представляет собой высший интегративный центр, ответственный за контроль вегетативных функций организма, а также поведенческих и мотивационных механизмов. Находясь в сложных взаимоотношениях с остальными отделами головного мозга, гипоталамус принимает участие в контроле практически всех жизненно важных констант организма, а его поражение нередко приводит к появлению тяжелых заболеваний и смерти.