Гидроксид кальция в промышленности получают. Гидроксид кальция: свойства и применение

Оксид кальция (СаO) – негашеная или жженая известь – белое огнестойкое вещество, образованное кристаллами. Кристаллизуется в кубической гранецентрированной кристаллической решетке. Температура плавления – 2627 °C, температура кипения – 2850 °C.

Называется жженой известью из-за способа его получения – обжигание карбоната кальция. Обжиг производят в высоких шахтных печах. В печь закладывают слоями известняк и топливо, а затем разжигают снизу. При накаливании происходит разложение карбоната кальция с образованием оксида кальция:

Так как концентрации веществ в твердых фазах неизменны, то константу равновесия этого уравнения можно выразить так: K = .

При этом концентрация газа может быть выражена с помощью его парциального давления, то есть равновесие в системе устанавливается при определенном давлении диоксида углерода.

Давление диссоциации вещества – равновесное парциальное давление газа, получающееся при диссоциации вещества.

Чтобы спровоцировать образование новой порции кальция, необходимо повысить температуру или удалить часть получившегося CO2 , при этом уменьшится парциальное давление. Поддерживая постоянное более низкое парциальное давление, чем давление диссоциации, можно добиться непрерывного процесса получения кальция. Для этого при обжигании извести в печах делают хорошую вентиляцию.

Получение:

1) при взаимодействии простых веществ: 2Ca + O2 = 2CaO;

2) при термическом разложении гидроксида и солей: 2Ca(NO3)2 = 2CaO + 4NO2? + O2?.

Химические свойства:

1) взаимодействует с водой: СаO + H2O = Са(OH)2;

2) реагирует с оксидами неметаллов: СаO + SO2 = CaSO3;

3) растворяется в кислотах, образуя соли: CaO + 2HCl = CaCl2 +H2O.

Гидроксид кальция (Ca(OH)2 – гашеная известь, пушонка) – белое кристаллическое вещество, кристаллизуется в гексагональной кристаллической решетке. Является сильным основанием, плохо растворимым вводе.

Известковая вода – насыщенный раствор гидроксида кальция, имеющий щелочную реакцию. На воздухе мутнеет в результате поглощения углекислого газа, образуя карбонат кальция .

Получение:

1) образуется при растворении кальция и оксида кальция вводе: CaO + H2O = Са(OH)2 + 16 ккал;

2) при взаимодействии солей кальция со щелочами: Ca(NO3)2 + 2NaOH = Ca(OH)2 + 2NaNO3.

Химические свойства:

1) при нагревании до 580 °C разлагается: Са(OH)2 = СаO + H2O;

2) реагирует с кислотами: Ca(OH)2 + 2HCl = CaCl2 + 2H2O.

58. Жесткость воды и способы ее устранения

Так как кальций широко распространен в природе, его соли в большом количестве содержатся в природных водах. Вода, имеющая в своем составе соли магния и кальция, называется жесткой водой . Если соли присутствуют в воде в небольших количествах или отсутствуют, то вода называется мягкой . В жесткой воде мыло плохо пенится, поскольку соли кальция и магния образуют с ним нерастворимые соединения. В ней плохо развариваются пищевые продукты. При кипячении на стенках паровых котлов образуется накипь, которая плохо проводит теп-лоту, вызывает увеличение расхода топлива и изнашивание стенок котла. Жесткой водой нельзя пользоваться, проводя ряд технологических процессов (крашение). Образование накипи: Са + 2НСО3 = Н2О + СО2 + СаСО3?.

Перечисленные выше факторы указывают на необходимость удаления из воды солей кальция и магния. Процесс удаления этих солей называется водоумягчением , является одной из фаз обработки воды (водоподготовки).

Водоподготовка – обработка воды, используемая для различных бытовых и технологических процессов.

Жесткость воды подразделяется на:

1) карбонатную жесткость (временную), которая вызывается наличием гидрокарбонатов кальция и магния и устраняется с помощью кипячения;

2) некарбонатную жесткость (постоянную), которая вызывается присутствием в воде сульфитов и хлоридов кальция и магния, которые при кипячении не удаляются, поэтому она называется постоянной жесткостью.

Верна формула: Общая жесткость = Карбонатная жесткость + Некарбонатная жесткость.

Общую жесткость ликвидируют добавлением химических веществ или при помощи катиони-тов. Для полного устранения жесткости воду иной раз перегоняют.

При применении химического метода растворимые соли кальция и магния переводят в нерастворимые карбонаты:

Более модернизированный процесс устранения жесткости воды – при помощи катионитов .

Катиониты – сложные вещества (природные соединения кремния и алюминия, высокомолекулярные органические соединения), общая формула которых – Na2R, где R – сложный кислотный остаток.

При пропускании воды через слой катионита происходит обмен ионов (катионов) Na на ионы Са и Mg: Са + Na2R = 2Na + CaR.

Ионы Са из раствора переходят в катионит, а ионы Na переходят из катионита в раствор. Чтобы восстановить использованный катионит, его необходимо промыть раствором поваренной соли. При этом происходит обратный процесс: 2Na + 2Cl + CaR = Na2R + Ca + 2Cl.

Ca(OH)2 - это гидроксид кальция (от латинского Calcium hydroxide), он является довольно распространенным химическим веществом. Оно по своей природе считается сильным основанием. Представляет собой мелкокрупинчатый порошок желтоватого цвета или бесцветные кристаллы. Способен разлагаться при нагревании, в результате выделяется оксид кальция. Он плохо растворим в воде. При этом водный раствор гидроксида кальция по своим химическим свойствам является средним основанием. В присутствии металлов может выделять водород, который признан взрывоопасным газом.

Гидроксид кальция при поступлении в организм через рот или в результате вдыхания аэрозоля может всасываться в ткани и накапливаться в них. При обычной комнатной температуре в 20-22 градусов это вещество практически не испаряется, но при распылении его частиц может быть опасно для здоровья. Попадая на кожу, в дыхательные пути или слизистые оболочки глаз, гидроксид кальция оказывает раздражающее, даже разъедающее действие. Длительный контакт с кожными покровами может стать причиной дерматита. Также может поражаться легочная ткань при постоянном воздействии частиц гидроксида кальция.

Это химическое соединение имеет много тривиальных названий, таких как (ее получают методом гашения оксида кальция обычной водой), известковая вода (представляет собой прозрачный водный раствор). Другие названия: пушонка (гидроксид кальция в виде сухого порошка) и известковое молоко (насыщенная водная суспензия). Зачастую или известкой принято называть также оксид кальция.

Гидроксид кальция, химические свойства которого считаются агрессивными по отношению к другим веществам, получают методом гашения извести, то есть, в результате взаимодействия (химической реакции) оксида кальция и воды. Схематически эта реакция выглядит таким образом:

CaO + H2O = Ca(OH)2

Для полученного водного раствора характерна щелочная реакция среды. Как и все типичные кальция реагирует с:

1. неорганическими кислотами с образованием типичных солей кальция

H2SO4 +Ca(OH)2 = CaSO4 + 2H2O

2. углекислым газом, который растворен в воде, поэтому водный раствор очень быстро мутнеет на воздухе, при этом образуется белый нерастворимый осадок - карбонат кальция

CO2 + Ca(OH)2 = CaCO3 + H2O

3. угарным газом при повышении температуры до 400 градусов Цельсия

CO (t°) + Ca(OH)2 = CaCO3 + H2

4. солями, в результате также выпадает белый осадок - сульфат кальция

Na2SO3 + Ca(OH)2 = CaSO3 + 2NaOH

Использование гидроксида кальция очень популярно. Наверняка, каждому известно, что известью обрабатывают стены помещений, стволы деревьев, а также используют ее как компонент строительного известкового раствора. Применение гидроксида кальция в строительстве известно с древнейших времен. А в настоящее время его включают в состав штукатурки, из него производят силикатный кирпич и бетон, составы которых практически одинаковы со строительным раствором. Основное отличие состоит в методе приготовления этих самых растворов.

Гидроксид кальция используется для смягчения для изготовления известковых неорганических удобрений, каустификации карбоната калия и натрия. Также это вещество незаменимо при дублении кож в текстильной промышленности, при получении различных соединений кальция, а также для нейтрализации кислых растворов, и в том числе. На его основе получают органические кислоты.

Гидроксид кальция нашел свое применение и в пищевой промышленности, где он больше известен как пищевая добавка Е526, использующаяся как регулятор кислотности, отвердитель и загуститель. В сахарной промышленности он применяется для обессахаривания патоки.

В лабораторных и демонстрационных опытах известковая вода является незаменимым индикатором обнаружения углекислого газа при протекании химических реакций. Известковым молоком обрабатывают растения в целях борьбы с болезнями и вредителями.

L.A. Kazeko, I.N. Fyodorova

Calcium hydroxide: yesterday, today, tomorrow

Гидроксид кальция Ca(OH) 2 - сильное основание, мало растворимое в воде. Насыщенный раствор гидроксида кальция называется известковой водой и имеет щелочную реакцию. На воздухе известковая вода быстро становится мутной вследствие поглощения ею диоксида углерода и образования нерастворимого карбоната кальция .

Гидроксид кальция («гашеная известь») представляет собой белый, очень мелкий порошок, малорастворимый в воде (1,19 г/л), растворимость можно увеличить за счет глицерина и сахарозы. Водородный показатель (pH) - около 12,5. Гидроксид кальция очень чувствителен к соприкосновению с атмосферным углекислым газом, который трансформирует его в карбонат кальция. Препарат должен храниться в герметичной упаковке вдали от света, может сохраняться в перенасыщенном водном растворе (дистиллированная вода) в герметичном флаконе.

Основанием для применения гидроксида кальция в эндодонтии стали сведения об этиологии и патогенезе пульпита и апикального периодонтита. Наиболее распространенная причина этих заболеваний - микроорганизмы в системе корневых каналов зуба. Kakehashi et al. (1965), Moller et al. (1981) в экспериментах показали, что периапикальное воспаление и деструктивные процессы вокруг верхушки зуба развиваются только при участии микроорганизмов корневого канала . Благоприятными факторами для существования микрофлоры являются сложная анатомия корневых каналов, способность бактерий проникать в дентинные канальцы на глубину до 300 мкм, анаэробные условия развития, возможность питаться от живой или некротизированной пульпы, белков слюны, тканевой жидкости периодонта. Таким образом, качество эндодонтического лечения предопределяется качеством проведения дезинфекции системы корневых каналов .

Поломка эндодонтического инструмента, перфорация корня, уступы, чрезмерное или недостаточное пломбирование считаются главными причинами эндодонтических неудач. Однако в большинстве случаев эти ошибки не влияют на результат эндодонтического лечения, пока не присоединяется сопутствующая инфекция. Безусловно, грубые ошибки препятствуют или делают невозможным завершение внутриканальных процедур, но шансы успешного лечения значительно возрастают, если инфекционно-токсическое содержимое корневых каналов эффективно удаляется перед пломбированием.

Микроорганизмы, сохранившиеся после инструментальной обработки и ирригации, быстро размножаются и вновь заселяют корневые каналы, которые остаются пустыми между посещениями . Вероятность реинфекции зависит от качества пломбирования корневого канала и полноценности коронковой реставрации. Однако во всех случаях, когда бактерии остаются в системе корневых каналов, существует риск дальнейшего развития пери-апикальных изменений .

В нелеченных зубах с первичной внутриканальной инфекцией обычно встречается один или несколько видов бактерий, без очевидного преобладания факультативных или анаэробных форм. При вторичном инфицировании при неудачном лечении присутствует смешанная инфекция, доминируют грамотрицательные анаэробные штаммы .

Существуют разные мнения в отношении необходимого количества этапов лечения пациентов с периапикальными проблемами. Так, одни авторы обосновывают необходимость лечения инфицированных корневых каналов в несколько посещений, с использованием временных внутриканальных повязок, что позволяет постепенно и контролируемо добиваться уничтожения микроорганизмов в них. Другие предлагают предотвращать рост оставшихся микроорганизмов, лишая их питания и жизненного пространства путем полноценной обработки, дезинфекции и трехмерного пломбирования корневых каналов во время первого и единственного посещения.

Противовоспалительная и антибактериальная активность гидроксида кальция

Инструментальная обработка корневого канала уменьшает количество микроорганизмов в 100-1000 раз, но полное их отсутствие наблюдается только в 20-30% случаев. Антибактериальное орошение 0,5% раствором гипохлорита натрия увеличивает этот эффект до 40-60% . Добиться полной дезинфекции инфицированных корневых каналов даже после полной механической очистки и ирригации антисептическими растворами на практике очень сложно. Уничтожить сохранившихся в корневом канале бактерий можно, используя временное заполнение корневого канала противомикробными средствами до следующего посещения. Такие препараты должны иметь широкий спектр антибактериального действия, быть нетоксичными и обладать физико-химическими свойствами, позволяющими им диффундировать через дентинные канальцы и латеральные каналы корневой системы зуба .

В качестве временного внутриканального средства в эндодонтии широко используется гидроксид кальция, который в водном растворе распадается на ионы кальция и гидроксид-ионы. Основные биологические свойства гидроксида: бактерицидная активность, противовоспалительные свойства, тканевая растворимость, кровоостанавливающее действие, торможение резорбции тканей зуба, стимулирование процессов регенерации кости .

Гидроксид кальция обладает бактерицидной активностью благодаря своей высокой щелочности и высвобождению в водной среде гидроксид-ионов - высокоактивных свободных радикалов. Их воздействие на бактериальные клетки объясняется следующими механизмами:

- повреждением цитоплазматической мембраны бактериальной клетки, играющей важную роль в сохранении клетки. Именно клеточная мембрана обеспечивает избирательную проницаемость и транспорт веществ, окислительную фосфориляцию в аэробных штаммах, выработку ферментов и транспорт молекул для биосинтеза ДНК, клеточных полимеров и мембранных липидов. Гидроксид-ионы из гидроксида кальция вызывают липидное окисление, что приводит к образованию свободных липидных радикалов и деструкции фосфолипидов, являющихся структурными компонентами клеточных мембран. Липидные радикалы инициируют цепную реакцию, в результате чего теряются ненасыщенные жирные кислоты и клеточные мембраны повреждаются;

- денатурацией белков вследствие того, что щелочная среда гидроксида кальция вызывает разрушение ионных связей, обеспечивающих структуру протеинов. В щелочной среде полипептидные цепи ферментов хаотично соединяются и трансформируются в беспорядочные образования. Эти изменения часто приводят к потере биологической активности ферментов и нарушению клеточного метаболизма;

- повреждением микробной ДНК, с которой реагируют гидроксид-ионы, вызывая ее расщепление и приводя к по-вреждению генов вследствие нарушения репликации ДНК. Кроме этого, свободные радикалы самостоятельно могут вызывать разрушающие мутации.

Бактерицидное действие гидроксида кальция зависит от концентрации гидроксид-ионов, высокой только в зоне непосредственного контакта с препаратом. Когда гидроксид кальция диффундирует глубже в дентин, концентрация гидроксид-ионов уменьшается из-за действия буферных систем (бикарбонатной или фосфатной), кислот, протеинов и СО 2 , антибактериальная активность препарата может снижаться или замедляться . Нейтрализация высокого рН гидроксида кальция может происходить также в результате коронкового микроподтекания, просачивания тканевой жидкости через верхушку корня, присутствия некротических масс в канале, продуцирования кислых веществ микробами. В корневом канале рН бывает 12-12,5, в прилегающем дентине, где имеется плотный контакт с гидроксидом, рН варьирует от 8 до 11, а в глубине дентина значения рН составляют 7-9. Самые верхние значения рН были получены в период от 7 до 14 дней после внесения в канал водной суспензии гидроксида кальция .

Микроорганизмы отличаются по стойкости к изменениям рН, большинство их размножается при рН 6-9. Некоторые штаммы могут выживать при рН 8-9, именно они обычно являются причиной вторичной инфекции. Энтерококки (Е. faecalis ), устойчивые к рН 9-11, в норме не обнаруживаются в корневых каналах или в небольших количествах присутствуют в нелеченных зубах. Они играют важную роль при неудачном эндодонтическом лечении и часто (в 32-38% случаев) присутствуют в зубах с апикальным периодонтитом.

Одной из важных составляющих эффективного дезинфицирующего действия препарата в эндодонтии является его способность растворяться и проникать в систему корневых каналов. Щелочи (NaOH и КОН) обладают высокой растворимостью и могут диффундировать глубже, чем гидроксид кальция. Данные вещества обладают выраженной антибактериальной активностью. Но высокая растворимость и активная диффузия усиливают цитотоксический эффект на клетки организма. Из-за высокой цитотоксичности они не используются в эндодонтии. Гидроксид кальция является биосовместимым, так как благодаря его слабой водорастворимости и диффузии происходит медленное повышение рН, необходимое для уничтожения бактерий, локализующихся в дентинных канальцах и других труднодоступных анатомических образованиях. Из-за этих особенностей гидроксид кальция относится к эффективным, но медленно действующим антисептикам .

Время, необходимое для оптимальной дезинфекции корневого канала гидроксидом кальция, до сих пор точно не определено. Клинические исследования дают противоречивые результаты. Cwikla et al. (1998) обнаружили, что в 90% случаев после 3 месяцев применения гидроксида бактериальный рост не отмечается . В исследовании Bystrom et al. (1999) гидроксид кальция эффективно уничтожил микроорганизмы за 4 недели применения. Reit и Dahlen применяли препарат 2 недели - инфекция сохранилась в 26% корневых каналов . В эксперименте Basrani et al. после одной недели применения гидроксида кальция в 27% случаев в каналах остались бактерии .

Механизмы устойчивости микроорганизмов к действию внутриканальных дезинфектантов

Факторы, определяющие устойчивость микроорганизмов к действию дезинфектантов, способность выживать после применения внутриканальных (временных и постоянных) пломбировочных материалов:

Нейтрализация препарата буферными системами или продуктами бактериальных клеток;

Недостаточная для уничтожения микроорганизмов экспозиция дезинфектанта в корневом канале;

Низкая антибактериальная эффективность препарата по отношению к микроорганизмам корневого канала;

Воздействие препарата на микроорганизмы ограничено по анатомическим причинам;

Способность микроорганизмов к изменению своих свойства (генов) после изменения окружающей среды .

Важный механизм устойчивости бактерий - существование их в виде биопленки. Биопленка - это микробиологическая популяция (бактериальная экосистема), связанная с органическим или неорганическим субстратом, окруженная продуктами жизнедеятельности бактерий. Собранные в биопленке различные штаммы микроорганизмов способны к организации ассоциаций для совместного выживания, обладают повышенной устойчивостью к антимикробным средствам и защитным механизмам . Свыше 95% существующих в природе бактерий находятся в биоплёнках.

Уничтожать бактерии в составе биопленок труднее, чем в планктонных суспензиях, если дезинфицирующее средство не обладает свойством растворять ткани. При повторном лечении инфицированных зубов гидроксид кальция не может на 100% уничтожать стойкие бактерии (Е. faecalis ), которые в состоянии размножаться между посещениями стоматолога. Большое значение имеет полноценное препарирование, очищение канала от всех микроорганизмов в первое посещение (с использованием обильных промываний гипохлоритом натрия). Предупреждение повторного инфицирования корневого канала достигается путем полноценной герметизации коронки зуба с помощью качественных временных пломб .

Влияние растворителей на антибактериальную активность гидроксида кальция

Вещества, применяющиеся в качестве среды для гидроксида кальция, обладают различной водорастворимостью. Оптимальная среда не должна изменять рН гидроксида кальция. Многие растворители не обладают антибактериальной активностью, например дистиллированная вода, физиологический раствор и глицерин. Феноловые производные, такие как парамонохлорфенол, камфорный фенол, имеют выраженные антибактериальные свойства и могут использоваться в виде среды для гидроксида. Гидроксид кальция с парамонохлорфенолом имеет большой радиус действия, уничтожает бактерии в участках, отдаленных от мест нанесения пасты .

Siqueira et al. выявили, что гидроксид кальция в физиологическом растворе не уничтожает Е. faecalis и F. nucleatum в дентинных канальцах в течение недели применения. А паста гидроксида кальция с парамонохлорфенолом и глицерином эффективно уничтожала бактерии в канальцах, включая Е. faecalis , за 24 часа применения. То есть парамонохлорфенол усиливает антибактериальную активность гидроксида кальция .

Результаты исследования дезинфекции дентинных канальцев с помощью трех препаратов гидроксида кальция (Са(ОН) 2 в дистиллированной воде, Са(ОН) 2 с йодидом калия и Са(ОН) 2 с йодоформом (Metapex)) показали, что Са(ОН) 2 в чистом виде менее эффективен для уничтожения микробов в дентинных канальцах. В каналах с гидроксидом кальция наблюдался рост некоторых микроорганизмов (Е. faecalis , С. albicans ) на глубину 250 мкм в течение 7 дней. Это объясняется тем, что у Са(ОН) 2 низкая степень проницаемости и его высокий рН (12) частично нейтрализуется буферными системами дентина. Са(ОН) 2 с йодидом калия эффективнее, чем чистый гидроксид. Но самой действенной оказалась паста Metapex (Ca(OH) 2 с йодоформом): кроме Е. faecalis она обезвредила другие микробы и проникла в канальцы на глубину более 300 мкм (Cwikla et al.) .

Abdullah et al. (2005) изучали эффективность различных внутриканальных средств (гидроксид кальция, 0,2% хлоргексидин, 17% ЭДТА, 10% повидон-йодин, 3% гипохлорит натрия) в отношении штаммов Е. faecalis , находящихся в составе бактериальных биопленок. В составе биопленки Е. faecalis в 100% случаев был уничтожен 3%-ным гипохлоритом натрия через 2 минуты и 10%-ным повидон-йодином через 30 минут. Гидроксид кальция устранил эти бактерии частично .

Поскольку некоторые микроорганизмы, особенно Е. faecalis , устойчивы к гидроксиду кальция, оправдана комбинация его с другими антимикробными средствами, которые повышают его активность, например с йдоформом, камфорным парамонохлорфенолом. Имеющие низкое поверхностное натяжение, жирорастворимые фенолы проникают глубоко в ткани зуба.

В эндодонтии к широкому использованию в качестве ирриганта и внутриканальной повязки рекомендован хлоргексидин, эффективный против многих бактерий, определяющих эндодонтическую инфекцию. Молекула хлоргексидина, взаимодействуя с фосфатными группами стенки бактериальной клетки, проникает в бактерию и оказывает внутриклеточное токсическое действие .

Гидроксид кальция в сочетании с 2% гелем хлоргексидина обладает повышенной антимикробной активностью, особенно против резистентных микроорганизмов. Хлоргексидин в форме геля имеет такие положительные свойства, как низкая токсичность для периодонтальных тканей, вязкость, которая позволяет удерживать активные вещества в постоянном контакте со стенками корневого канала и дентинными канальцами, водорастворимость. Установлена высокая эффективность комбинации геля хлоргексидина и гидроксида кальция против Е. faecalis в инфицированном корневом дентине . Высокий рН (12,8) в первые два дня увеличивает проникающую способность препаратов.

Эффективен против Е. faecalis после 1, 2, 7 и 15 дней применения 2% гель хлоргексидина. По данным Gomes et al., 2% гель хлоргексидина обладает большей антибактериальной активностью в отношении Е. faecalis , чем гидроксид кальция, но эта способность теряется при использовании его в течение длительного времени. Это подтверждают и другие исследования, даже при использовании хлоргексидина в виде раствора или геля в концентрациях 0,05%, 0,2% и 0,5%. Комбинация хлоргексидина и гидроксида кальция на 100% ингибирует рост Е. faecalis после 1-2 дней контакта .

Гидроксид кальция как физический барьер

Вторичные внутриканальные инфекции вызываются микроорганизмами, которые проникают в канал во время лечения, между посещениями или после лечения зуба. Основные источники вторичной инфекции: зубные отложения на зубах, кариес, инфицированные эндодонтические инструменты. Причинами инфицирования между посещениями могут быть микроподтекание через временную пломбу из-за ее разрушения; перелом зуба; задержка при замещении временной пломбы постоянной, когда зуб остается открытым для дренажа. Вторичное инфицирование позволяет появиться новым, вирулентным микроорганизмам, вызывающим острое периапикальное воспаление .

Внутриканальные препараты уничтожают оставшиеся после хемомеханической обработки канала бактерии, а также используются как физико-химический барьер, который предотвращает размножение микроорганизмов и сокращает риск реинфекции со стороны полости рта. Реинфицирование канала возможно вследствие того, что препарат растворяется слюной, слюна просачивается в пространство между медикаментом и стенками канала. Однако, ecли препарат обладает антибактериальным эффектом, сначала произойдет его нейтрализация и только потом бактериальная инвазия.

Для предотвращения реинфекции более важна герметизирующая способность гидроксида кальция, чем его химическая активность, так как он имеет низкую водорастворимость, медленно растворяется в слюне, остается в канале на длительный срок, задерживая продвижение бактерий по направлению к апексу . Несмотря на использование растворителей, гидроксид кальция действует как эффективный физический барьер, уничтожает часть оставшихся бактерий и предотвращает их рост, ограничивая пространство для размножения .

В качестве надежного изолирующего барьера при различных эндодонтических проблемах (перфорация дна полости, корня зуба, резорбция корня и др.) предложен новый класс материалов - минеральный триоксидный агрегат (ПроРут МТА). Основу МТА составляют соединения кальция .

Влияние гидроксида кальция на качество постоянного пломбирования корневого канала

Перед постоянной обтурацией гидроксид кальция удаляется из корневого канала с помощью гипохлорита натрия, физиологического раствора и эндодонтических инструментов.

Lambrianidis et al. (1999) исследовали возможность удаления некоторых препаратов гидроксида кальция из корневых каналов: Calxyl (42% гидроксида кальция) и водную суспензию (95% гидроксида кальция). Процентное содержание гидроксида кальция не влияло на эффективность очищения стенок корневого канала. Остатки пасты могут влиять на механические свойства силера и ухудшать апикальный герметизм. Есть мнение о невозможности полностью удалить пасту со стенок корневого канала .

Остаточный гидроксид кальция отрицательно влияет па затвердевание цинк-оксид-эвгенольных силеров, так как взаимодействует с эвгенолом пасты с образованием эвгенолата кальция. В клинике это может проявляться блокированием продвижения гуттаперчевого штифта на всю рабочую длину канала. Если остатки гидроксида кальция не удаляются полностью, они уплотняются апикально или в углублениях канала, что механически мешает эффективному пломбированию каналов, затрудняет апикальный герметизм и может повлиять на результат эндодонтического лечения. Апикальную пробку из гидроксида кальция предпочтительно удалить.

Гидроксид кальция эффективно удаляется со стенок канала ручными инструментами с промыванием гипохлоритом натрия и 17% ЭДТА . Сложности очищения корневых каналов после временного пломбирования обусловливают пастообразующие вещества и наполнители, а не гидроксид кальция. Препараты гидроксида кальция на водной основе (особенно готовящиеся ex tempore ) абсолютно лишены данных недостатков. Более того, материалами выбора для постоянной обтурации корневых каналов после их временного пломбирования гидроксидом кальция следует считать силеры на основе гидроксида кальция.

Показания к временному пломбированию корневых каналов

Применение нетвердеющих паст на основе гидроксида кальция показано в качестве временного внутриканального средства для лечения острых форм апикального периодонтита, деструктивных форм хронического апикального периодонтита, кистогранулем, радикулярных кист, прогрессирующей резорбции корня, зубов с несформированной верхушкой корня в детской практике.

Методика применения гидроксида кальция:

1) гидроксид кальция в виде порошка замешивается до пастообразного состояния на дистиллированной воде либо глицерине;

2) в тщательно инструментально и медикаментозно обработанный корневой канал паста вводится с помощью каналонаполнителя;

3) для обеспечения прилегания к дентину корня паста уплотняется при помощи бумажного штифта, закрывается герметичной повязкой.

Особенности применения гидроксида кальция при разных состояниях апикального периодонта. При острых формах апикального периодонтита временное пломбирование гидроксидом кальция преследует цель оказать противовоспалительное и антимикробное действие. Гидроксид кальция вводится в корневой канал рыхло, без уплотнения, сначала на сутки, затем повторно на 1-3-7 дней в зависимости от клинической картины. При остром периапикальном абсцессе по показаниям проводится периостотомия.

При хронических деструктивных процессах в апикальном периодонте преследуется цель оказать не только противовоспалительное и антимикробное действие, но и стимулировать репаративные процессы в кости. Гидроксид кальция вводится в корневой канал с уплотнением к стенкам, на 3-8 недель, время обновления материала зависит от клинической картины. Лечение рассчитано на период от 0,5 до 1 года, его продолжительность зависит от степени инфицирования корневого канала, резистентности организма, возраста пациента, мотивации к сотрудничеству. Восстановление зоны деструкции апикального периодонта продолжается после постоянного пломбирования корневого канала силером на основе гидроксида кальция в течение 3-5 лет.

Пломбирование зубов с апикальным периодонтитом в первое посещение не приводит к ликвидации острого воспаления. Резорбция цемента и дентина сохраняется даже спустя 9 месяцев после пломбирования. При этом в 80% случаев формируется хронический процесс. Если же канал после дренирования заполняли гидроксидом кальция на 7 дней до обтурации, происходило замещение периапикального дефекта новой костной тканью, хотя в 18,8% случаев воспаление прогрессировало .

Острые реакции при герметичном закрытии коронковой полости сохранялись лишь у 5% зубов при наличии периапикального абсцесса. Временная повязка и герметичная пломба предотвращают повторное инфицирование канала и увеличивают успех консервативного лечения до 61,1% (по сравнению с 22,2% без антибактериальной повязки) .

При применении гидроксида кальция в качестве временной повязки через 3 года наблюдается полная регенерация кости 82% периапикальных очагов даже крупного размера. В 18% случаев дефекты кости сохранялись или слегка уменьшались в размерах. Наиболее активное сокращение размеров дефекта отмечалось в первый год лечения. Первые положительные признаки обнаруживались на рентгенограммах через 12 недель после введения повязки с Са(ОН) 2 , а на цифровых рентгенограммах - уже через 3-6 недель .

«Вчера» гидроксида кальция. Информационные материалы, научные статьи о препаратах гидроксида кальция 20-30-летней давности убеждали (и убедили) нас в его уникальных способностях: пасты на основе гидроксида кальция обладают сильнощелочной реакцией, неограниченным бактерицидным действием, способностью стимулировать репаративные процессы в костной ткани.

Применение гидроксида кальция в эндодонтии расширило показания к консервативному лечению деструктивных процессов в апикальном периодонте. Появилась возможность полноценного сохранения зубов, ранее считавшихся безнадежными. «Биосовместимость гидроксида кальция превратила его в поливалентный препарат, адаптированный почти ко всем клиническим ситуациям, встречающимся в эндодонтии» . Появились рекомендации об обязательности этапа временного пломбирования корневых каналов при эндодонтическом лечении: «Это полезно!».

«Сегодня» накоплен багаж клинических наблюдений, которые подтверждают очень высокую эффективность гидроксида кальция (рис. 1-4; из собственных наблюдений авторов). Качественное выполнение всех этапов эндодонтического лечения в сочетании с временным пломбированием корневых каналов гидроксидом кальция позволяет признать данный метод лечения органосберегающим.

Но сегодня в стоматологической литературе дискутируются вопросы широты антибактериального действия препаратов гидроксида кальция, прицельного воздействия на наиболее устойчивые и агрессивные штаммы микроорганизмов, обусловливающих развитие периапикальных очагов деструкции, повторное инфицирование и развитие обострений.

Так, А.А. Антанян пишет : «Многосторонний анализ научной литературы последних лет (2003-2006) показал, что гидроксид кальция имеет множество недостатков, которые ставят под сомнение его рутинное и массовое применение в эндодонтии. В современной эндодонтии важнейшее значение имеет полноценное препарирование, очищение канала от инфекции в первое посещение (с использованием обильных промываний гипохлоритом натрия) и предупреждение повторного инфицирования канала полноценной герметизацией коронки зуба с помощью качественных временных пломб. Следовательно, во многих клинических ситуациях дополнительная дезинфекция гидроксидом кальция не обязательна».

«Завтра» гидроксида кальция. Опыт клинического использования гидроксида кальция показывает, что необходимость его применения в эндодонтии не может быть обоснована только его противомикробной эффективностью, на которую в прошлые годы возлагали основную ответственность за результат лечения. С появлением чувствительных методов микробиологического исследования, с расширением спектра высокоэффективных средств для ирригации корневых каналов возможности и свойства гидроксида кальция как материала для временного пломбирования могут быть переосмыслены и переоценены. Но не уценены! В непростых клинических ситуациях по эндодонтическому лечению и перелечиванию зубов благодаря препаратам гидроксида кальция удается сохранить пациенту зубы и здоровье.

ЛИТЕРАТУРА

1. Антанян А. А. // Эндодонтия today. - 2007. - № 1. - С. 59-69.

2. Беер Р., Бауман М.А. Иллюстрированный справочник по эндодонтологии. - М., 2006. - 240 с.

3. Глинка Н.Л. Общая химия: Учеб. пособие для вузов. - 20-е изд., испр. / Под ред. Рабиновича В.А. - Л., 1979. - С. 614-617.

4. Гутман Дж. Л., Думша Т.С., Ловдэл П.Э. Решение проблем в эндодонтии: Профилактика, диагностика и лечение / Пер. с англ. - М., 2008. - 592 с.

5. Полтавский В.П. Интраканальная медикация: Современные методы. - М., 2007. - 88 с.

6. Симакова Т.Г., Пожарицкая М.М., Синицына В.И. // Эндодонтия today. - 2007. - № 2. - С. 27-31.

7. Соловьева А.Б. // Новости Dentsplay. - 2003. - № 8. - С. 14-16.

8. Холина М.А. // Новости Дентсплай. - 2007. - №14. - С. 42-45.

9. Abdullah M., Yuan-Ling N., Moles D., Spratt D. // J. Endod. - 2005. - V. 31, N 1. - P. 30-36.

10. Allais G. // Новое в стоматологии. - 2005. - № 1. - С. 5-15.

11. Athanassiadis B., Abbott P.V., Walsh L.J. // Austr. Dent. J. - 2007. - Mar; 52 (Suppl 1). - S. 64-82.

12. Basrani B., Santos J.M., Tjäderhane L. et al. // Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. - 2002. - Aug; 94(2). - P. 240-245.

13. Cwikla S., Belanger M., Giguere S., Vertucci F. // J. Endod. - 2005. - V. 31, N 1. - P. 50-52.

14. Ercan E., Ozekinci T., Atakul F., Gül K. // J. Endod. - 2004. - Feb; 30(2). - P. 84-87.

15. Gomes B., Souza S., Ferraz C. // Intern. Endod. J. - 2003 - V. 36. - P. 267-275.

16. Heckendorff M., Hulsmann М . // Новое в стоматологии. - 2003. - № 5. - С. 38-41.

17. Lambrianidis T., Margelos J., Beites P. // Intern. Endod. J. - 1999. - V. 25, N 2. - P. 85-88.

18. Regan J.D., Fleury A.A. // J. Ir. Dent. Assoc. - 2006. - Autumn; 52 (2) - P. 84-92.

19. Sathorn C., Parashos P., Messer H. // Intern. Endod. J. - 2007. - V. 40, Issue 1. - P. 2-10.

20. Siqueira J.F., Paiva S.S., Rôças I.N. // J. Endod. - 2007. - May; 33 (5). - P. 541-547.

Современная стоматология. - 2009. - №2. - С. 4-9.

Внимание! Статья адресована врачам-специалистам. Перепечатка данной статьи или её фрагментов в Интернете без гиперссылки на первоисточник рассматривается как нарушение авторских прав.

Кальций - элемент 4-го периода и ПА-группы Периодической системы, порядковый номер 20. Электронная формула атома [ 18 Ar]4s 2 , степени окисления +2 и 0. Относится к щелочноземельным металлам. Имеет низкую электроотрицательность (1,04), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Многие соли кальция малорастворимы в воде. В природе — шестой по химической распространенности элемент (третий среди металлов), находится в связанном виде. Жизненно важный элемент для всех организмов.Недостаток кальция в почве восполняется внесением известковых удобрений (СаС0 3 , СаО, цианамид кальция CaCN 2 и др.). Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно-оранжевый цвет (качественное обнаружение ).

Кальций Са

Серебристо-белый металл, мягкий, пластичный. Во влажном воздухе тускнеет и покрывается пленкой из СаО и Са(ОН) 2 .Весьма реакционноспособный; воспламеняется при нагревании на воздухе, реагирует с водородом, хлором, серой и графитом:

Восстанавливает другие металлы из их оксидов (промышленно важный метод — кальцийтермия ):

Получение кальция в промышленности :

Кальций применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для выделения редких металлов из их оксидов.

Оксид кальция СаО

Основный оксид. Техническое название негашёная известь. Белый, весьма гигроскопичный. Имеет ионное строение Ca 2+ O 2- . Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает влагу и углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзо- эффектом), образует сильно щелочной раствор (возможен осадок гидроксида), процесс называется гашение извести. Реагирует с кислотами, оксидами металлов и неметаллов. Применяется для синтеза других соединений кальция, в производстве Са(ОН) 2 , СаС 2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

Уравнения важнейших реакций:

Получение СаО в промышленности — обжиг известняка (900-1200 °С):

СаСО3 = СаО + СО2

Гидроксид кальция Са(ОН) 2

Основный гидроксид. Техническое название гашёная известь. Белый, гигроскопичный. Имеет ионное строение Са 2+ (ОН —) 2 . Разлагается при умеренном нагревании. Поглощает влагу и углекислый газ из воздуха. Малорастворим в холодной воде (образуется щелочной раствор), еще меньше — в кипящей воде. Прозрачный раствор (известковая вода) быстро мутнеет из-за выпадения осадка гидроксида (суспензию называют известковое молоко). Качественная реакция на ион Са 2+ — пропускание углекислого газа через известковую воду с появлением осадка СаС0 3 и переходом его в раствор. Реагирует с кислотами и кислотными оксидами, вступает в реакции ионного обмена. Применяется в производстве стекла, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды, а также для приготовления известковых строительных растворов — тестообразных смесей (песок + гашёная известь + вода), служащих связующим материалом для каменной и кирпичной кладки, отделки (оштукатуривания) стен и других строительных целей. Отвердевание («схватывание») таких растворов обусловлено поглощением углекислого газа из воздуха.

Гидрокси́д ка́льция (Ca(OH) 2 , гашёная известь или «пушонка») - химическое вещество, сильное основание . Представляет собой порошок белого цвета , плохо растворимый в воде .

Тривиальные названия

  • Гашёная известь - так как её получают путём «гашения» (то есть взаимодействия с водой) «негашеной» извести (оксида кальция).
  • Известковое молоко - взвесь (суспензия), образуемая при смешивании избытка гашёной извести с водой. Похожа на молоко .
  • Известковая вода - прозрачный раствор гидроксида кальция, получаемый при фильтровании известкового молока.

Получение

Получают путём взаимодействия оксида кальция (негашёной извести) с водой (процесс получил название «гашение извести»):

\mathsf{CaO + H_2O \rightarrow Ca(OH)_2}

Свойства

Внешний вид - белый порошок, мало растворимый в воде:

Гидроксид кальция является довольно сильным основанием , из-за чего водный раствор имеет щелочную реакцию. Растворимость падает с ростом температуры.

Как и все основания, реагирует с кислотами; как щелочь - является компонентом реакции нейтрализации (см. реакция нейтрализации) с образованием соответствующих солей кальция:

\mathsf{Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4\downarrow + 2H_2O}

по этой же причине раствор гидроксида кальция мутнеет на воздухе, так как гидроксид кальция, как и другие сильные основания, реагирует с растворённым в воде углекислым газом:

\mathsf{Ca(OH)_2 + CO_2 \rightarrow CaCO_3\downarrow + H_2O}

Если продолжить обработку углекислым газом, выпавший осадок растворится, так как образуется кислая соль - гидрокарбонат кальция, причём при нагревании раствора гидрокарбонат снова разрушается и выпадает осадок карбоната кальция:

\mathsf{CaCO_3 + H_2O + CO_2 \rightleftarrows Ca(HCO_3)_2}

Гидроксид кальция реагирует с оксидом углерода при температуре около 400 °C:

\mathsf{Ca(OH)_2 + CO \xrightarrow{400^oC} CaCO_3 + H_2}

Как сильное основание реагирует с солями, но только если в результате реакции выпадает осадок:

\mathsf{Ca(OH)_2 + Na_2SO_3 \rightarrow CaSO_3\downarrow + 2NaOH}

Применение

  • При побелке помещений.
  • Для приготовления известкового строительного раствора . Известь применялась для строительной кладки с древних времён. Смесь обычно приготавливают в такой пропорции: к одной части смеси гидроксида кальция (гашёной извести) с водой добавляют три-четыре части песка (по массе). В ходе реакции выделяется вода . Это является отрицательным фактором, так как в помещениях, построенных с помощью известкового строительного раствора, долгое время сохраняется повышенная влажность. В связи с этим, а также благодаря ряду других преимуществ перед гидроксидом кальция, цемент практически вытеснил его в качестве связующего строительных растворов.
  • Для приготовления силикатного бетона . Состав силикатного бетона аналогичен составу известкового строительного раствора, однако его твердение происходит на несколько порядков быстрее, так как смесь оксида кальция и кварцевого песка обрабатывается не водой, а перегретым (174,5-197,4 °C) водяным паром в автоклаве при давлении 9-15 атмосфер.
  • Для устранения карбонатной жёсткости воды (умягчение воды).
  • Для производства хлорной извести .
  • Для производства известковых удобрений и нейтрализации кислых почв.
  • Каустификация карбоната натрия и калия .
  • Получение других соединений кальция, нейтрализация кислых растворов (в том числе сточных вод производств), получение органических кислот и проч.
  • В пищевой промышленности зарегистрирован в качестве пищевой добавки E526.
  • Известковая вода - прозрачный раствор гидроксида кальция. Она используется для обнаружения углекислого газа. При взаимодействии с ним она мутнеет.
  • Известковое молоко - взвесь (суспензия) гидроксида кальция в воде, белая и непрозрачная. Она используется для производства сахара и приготовления смесей для борьбы с болезнями растений, побелки стволов .
  • В стоматологии - для дезинфекции корневых каналов зубов.
  • В электротехнике - при устройстве очагов заземления в грунтах с высоким сопротивлением, в качестве добавки, снижающей удельное сопротивление грунта.
  • Известковое молоко используется как основа при приготовлении классического фунгицида - бордоской жидкости .

Напишите отзыв о статье "Гидроксид кальция"

Примечания

Источники и литература

  • Монастырев А. Производство цемента, извести. - М ., 2007.
  • Штарк Йохан, Вихт Бернд. Цемент и известь / пер. с нем. - Киев, 2008.

Ссылки

  • Крупский А. К. , Менделеев Д. И. // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

Отрывок, характеризующий Гидроксид кальция

– Воля твоя! – с отчаянием в голосе вскрикнула Соня, оглядев платье Наташи, – воля твоя, опять длинно!
Наташа отошла подальше, чтоб осмотреться в трюмо. Платье было длинно.
– Ей Богу, сударыня, ничего не длинно, – сказала Мавруша, ползавшая по полу за барышней.
– Ну длинно, так заметаем, в одну минутую заметаем, – сказала решительная Дуняша, из платочка на груди вынимая иголку и опять на полу принимаясь за работу.
В это время застенчиво, тихими шагами, вошла графиня в своей токе и бархатном платье.
– Уу! моя красавица! – закричал граф, – лучше вас всех!… – Он хотел обнять ее, но она краснея отстранилась, чтоб не измяться.
– Мама, больше на бок току, – проговорила Наташа. – Я переколю, и бросилась вперед, а девушки, подшивавшие, не успевшие за ней броситься, оторвали кусочек дымки.
– Боже мой! Что ж это такое? Я ей Богу не виновата…
– Ничего, заметаю, не видно будет, – говорила Дуняша.
– Красавица, краля то моя! – сказала из за двери вошедшая няня. – А Сонюшка то, ну красавицы!…
В четверть одиннадцатого наконец сели в кареты и поехали. Но еще нужно было заехать к Таврическому саду.
Перонская была уже готова. Несмотря на ее старость и некрасивость, у нее происходило точно то же, что у Ростовых, хотя не с такой торопливостью (для нее это было дело привычное), но также было надушено, вымыто, напудрено старое, некрасивое тело, также старательно промыто за ушами, и даже, и так же, как у Ростовых, старая горничная восторженно любовалась нарядом своей госпожи, когда она в желтом платье с шифром вышла в гостиную. Перонская похвалила туалеты Ростовых.
Ростовы похвалили ее вкус и туалет, и, бережа прически и платья, в одиннадцать часов разместились по каретам и поехали.

Наташа с утра этого дня не имела ни минуты свободы, и ни разу не успела подумать о том, что предстоит ей.
В сыром, холодном воздухе, в тесноте и неполной темноте колыхающейся кареты, она в первый раз живо представила себе то, что ожидает ее там, на бале, в освещенных залах – музыка, цветы, танцы, государь, вся блестящая молодежь Петербурга. То, что ее ожидало, было так прекрасно, что она не верила даже тому, что это будет: так это было несообразно с впечатлением холода, тесноты и темноты кареты. Она поняла всё то, что ее ожидает, только тогда, когда, пройдя по красному сукну подъезда, она вошла в сени, сняла шубу и пошла рядом с Соней впереди матери между цветами по освещенной лестнице. Только тогда она вспомнила, как ей надо было себя держать на бале и постаралась принять ту величественную манеру, которую она считала необходимой для девушки на бале. Но к счастью ее она почувствовала, что глаза ее разбегались: она ничего не видела ясно, пульс ее забил сто раз в минуту, и кровь стала стучать у ее сердца. Она не могла принять той манеры, которая бы сделала ее смешною, и шла, замирая от волнения и стараясь всеми силами только скрыть его. И эта то была та самая манера, которая более всего шла к ней. Впереди и сзади их, так же тихо переговариваясь и так же в бальных платьях, входили гости. Зеркала по лестнице отражали дам в белых, голубых, розовых платьях, с бриллиантами и жемчугами на открытых руках и шеях.
Наташа смотрела в зеркала и в отражении не могла отличить себя от других. Всё смешивалось в одну блестящую процессию. При входе в первую залу, равномерный гул голосов, шагов, приветствий – оглушил Наташу; свет и блеск еще более ослепил ее. Хозяин и хозяйка, уже полчаса стоявшие у входной двери и говорившие одни и те же слова входившим: «charme de vous voir», [в восхищении, что вижу вас,] так же встретили и Ростовых с Перонской.
Две девочки в белых платьях, с одинаковыми розами в черных волосах, одинаково присели, но невольно хозяйка остановила дольше свой взгляд на тоненькой Наташе. Она посмотрела на нее, и ей одной особенно улыбнулась в придачу к своей хозяйской улыбке. Глядя на нее, хозяйка вспомнила, может быть, и свое золотое, невозвратное девичье время, и свой первый бал. Хозяин тоже проводил глазами Наташу и спросил у графа, которая его дочь?
– Charmante! [Очаровательна!] – сказал он, поцеловав кончики своих пальцев.
В зале стояли гости, теснясь у входной двери, ожидая государя. Графиня поместилась в первых рядах этой толпы. Наташа слышала и чувствовала, что несколько голосов спросили про нее и смотрели на нее. Она поняла, что она понравилась тем, которые обратили на нее внимание, и это наблюдение несколько успокоило ее.
«Есть такие же, как и мы, есть и хуже нас» – подумала она.
Перонская называла графине самых значительных лиц, бывших на бале.
– Вот это голландский посланик, видите, седой, – говорила Перонская, указывая на старичка с серебряной сединой курчавых, обильных волос, окруженного дамами, которых он чему то заставлял смеяться.
– А вот она, царица Петербурга, графиня Безухая, – говорила она, указывая на входившую Элен.
– Как хороша! Не уступит Марье Антоновне; смотрите, как за ней увиваются и молодые и старые. И хороша, и умна… Говорят принц… без ума от нее. А вот эти две, хоть и нехороши, да еще больше окружены.
Она указала на проходивших через залу даму с очень некрасивой дочерью.
– Это миллионерка невеста, – сказала Перонская. – А вот и женихи.
– Это брат Безуховой – Анатоль Курагин, – сказала она, указывая на красавца кавалергарда, который прошел мимо их, с высоты поднятой головы через дам глядя куда то. – Как хорош! неправда ли? Говорят, женят его на этой богатой. .И ваш то соusin, Друбецкой, тоже очень увивается. Говорят, миллионы. – Как же, это сам французский посланник, – отвечала она о Коленкуре на вопрос графини, кто это. – Посмотрите, как царь какой нибудь. А всё таки милы, очень милы французы. Нет милей для общества. А вот и она! Нет, всё лучше всех наша Марья то Антоновна! И как просто одета. Прелесть! – А этот то, толстый, в очках, фармазон всемирный, – сказала Перонская, указывая на Безухова. – С женою то его рядом поставьте: то то шут гороховый!