ГИА. Квадратичная функция

Как построить параболу? Существует несколько способов построения графика квадратичной функции. Каждый из них имеет свои плюсы и минусы. Рассмотрим два способа.

Начнём с построения графика квадратичной функции вида y=x²+bx+c и y= -x²+bx+c.

Пример.

Построить график функции y=x²+2x-3.

Решение:

y=x²+2x-3 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

От вершины (-1;-4) строим график параболы y=x²(как от начала координат. Вместо (0;0) — вершина (-1;-4). От (-1;-4) идём вправо на 1 единицу и вверх на 1 единицу, затем влево на 1 и вверх на 1; далее: 2 — вправо, 4 — вверх, 2- влево, 4 — вверх; 3 — вправо, 9 — вверх, 3 — влево, 9 — вверх. Если этих 7 точек недостаточно, далее — 4 вправо, 16 — вверх и т. д.).

График квадратичной функции y= -x²+bx+c — парабола, ветви которой направлены вниз. Для построения графика ищем координаты вершины и от неё строим параболу y= -x².

Пример.

Построить график функции y= -x²+2x+8.

Решение:

y= -x²+2x+8 — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

От вершины строим параболу y= -x² (1 — вправо, 1- вниз; 1 — влево, 1 — вниз; 2 — вправо, 4 — вниз; 2 — влево, 4 — вниз и т. д.):

Этот способ позволяет построить параболу быстро и не вызывает затруднений, если вы умеете строить графики функций y=x² и y= -x². Недостаток: если координаты вершины — дробные числа, строить график не очень удобно. Если требуется знать точные значения точек пересечения графика с осью Ох, придется дополнительно решить уравнение x²+bx+c=0 (или —x²+bx+c=0), даже если эти точки непосредственно можно определить по рисунку.

Другой способ построения параболы — по точкам, то есть можно найти несколько точек графика и через них провести параболу (с учетом того, что прямая x=хₒ является её осью симметрии). Обычно для этого берут вершину параболы, точки пересечения графика с осями координат и 1-2 дополнительные точки.

Построить график функции y=x²+5x+4.

Решение:

y=x²+5x+4 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

то есть вершина параболы — точка (-2,5; -2,25).

Ищем . В точке пересечения с осью Ох y=0: x²+5x+4=0. Корни квадратного уравнения х1=-1, х2=-4, то есть получили две точки графике (-1; 0) и (-4; 0).

В точке пересечения графика с осью Оy х=0: y=0²+5∙0+4=4. Получили точку (0; 4).

Для уточнения графика можно найти дополнительную точку. Возьмем х=1, тогда y=1²+5∙1+4=10, то есть еще одна точка графика — (1; 10). Отмечаем эти точки на координатной плоскости. С учетом симметрии параболы относительно прямой, проходящей через её вершину, отметим еще две точки: (-5; 6) и (-6; 10) и проведем через них параболу:

Построить график функции y= -x²-3x.

Решение:

y= -x²-3x — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

Вершина (-1,5; 2,25) — первая точка параболы.

В точках пересечения графика с осью абсцисс y=0, то есть решаем уравнение -x²-3x=0. Его корни — х=0 и х=-3, то есть (0;0) и (-3; 0) — еще две точки графика. Точка (о; 0) является также точкой пересечения параболы с осью ординат.

При х=1 y=-1²-3∙1=-4, то есть (1; -4) — дополнительная точка для построения графика.

Построение параболы по точкам — более трудоёмкий, по сравнению с первым, способ. Если парабола не пересекает ось Oх, дополнительных точек потребуется больше.

Прежде чем продолжить построение графиков квадратичных функций вида y=ax²+bx+c, рассмотрим построение графиков функций с помощью геометрических преобразований. Графики функций вида y=x²+c также удобнее всего строить, используя одно из таких преобразований — параллельный перенос.

Рубрика: |

Вида у = kx + m с двумя переменными х, у. Правда, переменные х, у, фигурирующие в этом уравнении (в этой математической модели) считались неравноправными: х - независимая переменная (аргумент), которой мы могли придавать любые значения, независимо ни от чего; у - зависимая переменная, поскольку ее значение зависело от того, какое значение переменной х было выбрано. Но тогда возникает естественный вопрос: а не встречаются ли математические модели такого же плана, но такие, у которых у выражается через х не по формуле у = kx + m, а каким-то иным способом? Ответ ясен: конечно, встречаются. Если, например, х - сторона квадрата, а у - его
площадь, то у - х 2 . Если х - сторона куба, а у - его объем, то у - х 3 . Если х - одна сторона прямоугольника, площадь которого равна 100 см 2 , а у - другая его сторона, то . Поэтому, естественно, что в математике не ограничиваются изучением модели y-kx + m, приходится изучать и модель у = х 2 , и модель у = х 3 , и модель , и многие другие модели, имеющие такую же структуру: в левой части равенства находится переменная у, а в правой - какое-то выражение с переменной х. Для таких моделей сохраняют термин «функция», опуская прилагательное «линейная».

В этом параграфе мы рассмотрим функцию у = х 2 и построим ее график .

Дадим независимой переменной х несколько конкретных значений и вычислим соответствующие значения зависимой переменной у (по формуле у = x 2):

если х = 0, то у = О 2 = 0;
если х = 1, то у = I 2 = 1;
если х = 2, то у = 2 2 = 4;
если х = 3, то у = З 2 = 9;
если х = - 1, то у = (- I 2) - 1;
если х = - 2, то у = (- 2) 2 = 4;
если х = - 3, то у = (- З) 2 = 9;
Короче говоря, мы составили следующую таблицу:

X 0
1
2
3
-1
-2
-3
У 0
1
4
9
1
4
9

Построим найденные точки (0; 0), (1; 1), (2; 4), 93; 9), (-1; 1), (- 2; 4), (- 3; 9), на координатной плоскости хОу (рис. 54, а).

Эти точки расположены на некоторой линии, начертим ее (рис. 54, б). Эту линию называют параболой.

Конечно, в идеале надо было бы дать аргументу х все возможные значения, вычислить соответствующие значения переменной у и построить полученные точки (х; у). Тогда график был бы абсолютно точным, безупречным. Однако это нереально, ведь таких точек бесконечно много. Поэтому математики поступают так: берут конечное множество точек, строят их на координатной плоскости и смотрят, какая линия намечается этими точками. Если контуры этой линии проявляются достаточно отчетливо (как это было у нас, скажем, в примере 1 из § 28), то эту линию проводят. Возможны ли ошибки? Не без этого. Поэтому и надо все глубже и глубже изучать математику, чтобы были средства избегать ошибок.

Попробуем, глядя на рисунок 54, описать геометрические свойства параболы.

Во-первых , отмечаем, что парабола выглядит довольно красиво, поскольку обладает симметрией. В самом деле, если провести выше оси х любую прямую, параллельную оси х, то эта прямая пересечет параболу в двух точках, расположенных на равных расстояниях от оси у, но по разные стороны от нее (рис. 55). Кстати, то же можно сказать и о точках, отмеченных на рисунке 54, а:

(1; 1} и (- 1; 1); (2; 4) и (-2; 4); C; 9) и (-3; 9).

Говорят, что ось у является осью симметрии параболы у=х 2 или что парабола симметрична относительно оси у.

Во-вторых , замечаем, что ось симметрии как бы разрезает параболу на две части, которые обычно называют ветвями параболы.

В-третьих , отмечаем, что у параболы есть особая точка, в которой смыкаются обе ветви и которая лежит на оси симметрии параболы - точка (0; 0). Учитывая ее особенность, ей присвоили специальное название - вершина параболы.

В-четвертых , когда одна ветвь параболы соединяется в вершине с другой ветвью, это происходит плавно, без излома; парабола как бы «прижимается» к оси абсцисс. Обычно говорят: парабола касается оси абсцисс.

Теперь попробуем, глядя на рисунок 54, описать некоторые свойства функции у = х 2.

Во-первых , замечаем, что у - 0 при х = 0, у > 0 при х > 0 и при х < 0.

Во-вторых, отмечаем, что y наим. = 0, а у наиб не существует.

В-третьих , замечаем, что функция у = х 2 убывает на луче (-°°, 0] - при этих значениях х, двигаясь по параболе слева направо, мы «спускаемся с горки» (см. рис. 55). Функция у = х 2 возрастает на луче ;
б) на отрезке [- 3, - 1,5];
в) на отрезке [- 3, 2].

Решение,

а) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка (рис. 56). Для выделенной части графика находим у наим. = 1 (при х = 1), у наиб. = 9 (при х = 3).

б) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка [-3, -1,5] (рис. 57). Для выделенной части графика находим y наим. = 2,25 (при х = - 1,5), у наиб. = 9 (при х = - 3).

в) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка [-3, 2] (рис. 58). Для выделенной части графика находим у наим = 0 (при х = 0), у наиб. = 9 (при х = - 3).

Совет. Чтобы каждый раз не строить график функции у - х 2 по точкам, вырежьте из плотной бумаги шаблон параболы. С его помощью вы будете очень быстро чертить параболу.

Замечание. Предлагая вам заготовить шаблон параболы, мы как бы уравниваем в правах функцию у = х 2 и линейную функцию у = кх + m. Ведь графиком линейной функции является прямая, а для изображения прямой используется обычная линейка - это и есть шаблон графика функции у = кх + m. Так пусть у вас будет и шаблон графика функции у = х 2 .

Пример 2. Найти точки пересечения параболы у = х 2 и прямой у - х + 2.

Решение. Построим в одной системе координат параболу у = х 2 прямую у = х + 2 (рис. 59). Они пересекаются в точках А и В, причем по чертежу нетрудно найти координаты этих точек А и В: для точки А имеем: x = - 1, y = 1, а для точки В имеем: х - 2, у = 4.

Ответ: парабола у = х 2 и прямая у = х + 2 пересекаются в двух точках: А (-1; 1) и В(2;4).

Важное замечание. До сих пор мы с вами довольно смело делали выводы с помощью чертежа. Однако математики не слишком доверяют чертежам. Обнаружив на рисунке 59 две точки пересечения параболы и прямой и определив с помощью рисунка координаты этих точек, математик обычно проверяет себя: на самом ли деле точка (-1; 1) лежит как на прямой, так и на параболе; действительно ли точка (2; 4) лежит и на прямой, и на параболе?

Для этого нужно подставить координаты точек А и В в уравнение прямой и в уравнение параболы, а затем убедиться, что и в том, и в другом случае получится верное равенство. В примере 2 в обоих случаях получатся верные равенства. Особенно часто производят такую проверку, когда сомневаются в точности чертежа.

В заключение отметим одно любопытное свойство параболы, открытое и доказанное совместно физиками и математиками.

Если рассматривать параболу у = х 2 как экран, как отражающую поверхность, а в точке поместить источник света, то лучи, отражаясь от параболы экрана, образуют параллельный пучок света (рис. 60). Точку называют фокусом параболы. Эта идея используется в автомобилях: отражающая поверхность фары имеет параболическую форму, а лампочку помещают в фокусе - тогда свет от фары распространяется достаточно далеко.

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Презентация и урок на тему:
"График функции $y=ax^2+bx+c$. Свойства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Дорофеева Г.В. Пособие к учебнику Никольского С.М.

Ребята, на последних уроках мы строили большое количество графиков, в том числе много парабол. Сегодня мы обобщим полученные знания и научимся строить графики этой функции в самом общем виде.
Давайте рассмотрим квадратный трехчлен $a*x^2+b*x+c$. $а, b, c$ называются коэффициентами. Они могут быть любыми числами, но $а≠0$. $a*x^2$ называется старшим членом, $а$ – старшим коэффициентом. Стоит заметить, что коэффициенты $b$ и $c$ могут быть равными нулю, то есть трехчлен будет состоять из двух членов, а третий равен нулю.

Давайте рассмотрим функцию $y=a*x^2+b*x+c$. Это функция называется "квадратичной", потому что старшая степень вторая, то есть квадрат. Коэффициенты такие же, как определено выше.

На прошлом уроке в последнем примере, мы разобрали построение графика схожей функции.
Давайте докажем, что любую такую квадратичную функцию можно свести к виду: $y=a(x+l)^2+m$.

График такой функции строится с использованием дополнительной системы координат. В большой математике, числа встречаются довольно редко. Практически любую задачу требуется доказать в самом общем случае. Сегодня мы разберем одно из таких доказательств. Ребята, вы сможете, увидеть всю силу математического аппарата, но так же и его сложность.

Выделим полный квадрат из квадратного трехчлена:
$a*x^2+b*x+c=(a*x^2+b*x)+c=a(x^2+\frac{b}{a}*x)+c=$ $=a(x^2+2\frac{b}{2a}*x+\frac{b^2}{4a})-\frac{b^2}{4a}+c=a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}$.
Мы получили, то что хотели.
Любую квадратичную функцию можно представить в виде:
$y=a(x+l)^2+m$, где $l=\frac{b}{2a}$, $m=\frac{4ac-b^2}{4a}$.

Для построения графика $y=a(x+l)^2+m$ нужно построить график функции $y=ax^2$. Причем вершина параболы будет находиться в точке с координатами $(-l;m)$.
Итак, наша функция $y=a*x^2+b*x+c$ - парабола.
Осью параболы будет являться прямая $x=-\frac{b}{2a}$, причем координаты вершины параболы по оси абсцисс, как мы можем заметить, вычисляется формулой: $x_{в}=-\frac{b}{2a}$.
Для вычисления координаты вершины параболы по оси ординат, вы можете:

  • воспользоваться формулой: $y_{в}=\frac{4ac-b^2}{4a}$,
  • напрямую подставить в исходную функцию координату вершины по $х$: $y_{в}=ax_{в}^2+b*x_{в}+c$.
Как вычислять ординату вершины? Опять же выбор за вами, но обычно вторым способом посчитать будет проще.
Если требуется описать какие-то свойства или ответить на какие-то определенные вопросы, не всегда нужно строить график функции. Основные вопросы, на которые можно ответить без построения, рассмотрим в следующем примере.

Пример 1.
Без построения графика функции $y=4x^2-6x-3$ ответьте на следующие вопросы:


Решение.
а) Осью параболы служит прямая $x=-\frac{b}{2a}=-\frac{-6}{2*4}=\frac{6}{8}=\frac{3}{4}$.
б) Абсциссу вершины мы нашли выше $x_{в}=\frac{3}{4}$.
Ординату вершины найдем непосредственной подстановкой в исходную функцию:
$y_{в}=4*(\frac{3}{4})^2-6*\frac{3}{4}-3=\frac{9}{4}-\frac{18}{4}-\frac{12}{4}=-\frac{21}{4}$.
в) График, требуемой функции, получится параллельным переносом графика $y=4x^2$. Его ветви смотрят вверх, а значит и ветви параболы исходной функции также будет смотреть вверх.
Вообще, если коэффициент $а>0$, то ветви смотрят вверх, если коэффициент $a
Пример 2.
Построить график функции: $y=2x^2+4x-6$.

Решение.
Найдем координаты вершины параболы:
$x_{в}=-\frac{b}{2a}=-\frac{4}{4}=-1$.
$y_{в}=2*(-1)^2+4(-1)-6=2-4-6=-8$.
Отметим координату вершины на оси координат. В этой точке, как будто в новой системе координат построим параболу $y=2x^2$.

Существует множество способов, упрощающих построение графиков параболы.

  • Мы можем найти две симметричные точки, вычислить значение функции в этих точках, отметить их на координатной плоскости и соединить их с вершиной кривой, описывающей параболу.
  • Мы можем построить ветвь параболы правее или левее вершины и потом ее отразить.
  • Мы можем строить по точкам.

Пример 3.
Найти наибольшее и наименьшее значение функции: $y=-x^2+6x+4$ на отрезке $[-1;6]$.

Решение.
Построим график данной функции, выделим требуемый промежуток и найдем самую нижнюю и самую высокую точки нашего графика.
Найдем координаты вершины параболы:
$x_{в}=-\frac{b}{2a}=-\frac{6}{-2}=3$.
$y_{в}=-1*(3)^2+6*3+4=-9+18+4=13$.
В точке с координатами $(3;13)$ построим параболу $y=-x^2$. Выделим требуемый промежуток. Самая нижняя точка имеет координату -3, самая высокая точка - координату 13.
$y_{наим}=-3$; $y_{наиб}=13$.

Задачи для самостоятельного решения

1. Без построения графика функции $y=-3x^2+12x-4$ ответьте на следующие вопросы:
а) Укажите прямую, служащую осью параболы.
б) Найдите координаты вершины.
в) Куда смотрит парабола (вверх или вниз)?
2. Построить график функции: $y=2x^2-6x+2$.
3. Построить график функции: $y=-x^2+8x-4$.
4. Найти наибольшее и наименьшее значение функции: $y=x^2+4x-3$ на отрезке $[-5;2]$.

Рассмотрим выражение вида ах 2 +вх+с, где а, в, с - действительные числа, а отлично от нуля. Это математическое выражение известно как квадратный трехчлен.

Напомним, что ах 2 - это старший член этого квадратного трехчлена, а - его старший коэффициент.

Но не всегда у квадратного трехчлена присутствуют все три слагаемые. Возьмем для примера выражение 3х 2 + 2х, где а=3, в=2, с=0.

Перейдем к квадратичной функции у=ах 2 +вх+с, где а, в, с - любые произвольные числа. Эта функция является квадратичной, так как содержит член второй степени, то есть х в квадрате.

Довольно легко построить график квадратичной функции, например, можно воспользоваться методом выделения полного квадрата.

Рассмотрим пример построения графика функции у равно -3х 2 - 6х + 1.

Для этого первое, что вспомним, схему выделения полного квадрата в трехчлене -3х 2 - 6х + 1.

Вынесем -3 у первых двух слагаемых за скобки. Имеем -3 умножить на сумму х квадрат плюс 2х и прибавить 1. Добавив и отняв единицу в скобках, получаем формулу квадрата суммы, которую можно свернуть. Получим -3 умножить на сумму (х+1) в квадрате минус 1 прибавить 1. Раскрывая скобки и приводя подобные слагаемые, выходит выражение: -3 умноженное на квадрат суммы (х+1) прибавить 4.

Построим график полученной функции, перейдя к вспомогательной системе координат с началом в точке с координатами (-1; 4).

На рисунке из видео эта система обозначена пунктирными линиями. Привяжем функцию у равно -3х 2 к построенной системе координат. Для удобства возьмем контрольные точки. Например, (0;0), (1;-3), (-1;-3), (2;-12), (-2;-12). При этом отложим их в построенной системе координат. Полученная при построении парабола является необходимым нам графиком. На рисунке это красная парабола.

Применяя метод выделения полного квадрата, мы имеем квадратичную функцию вида: у = а*(х+1) 2 + m.

График параболы у = ах 2 + bx + c легко получить из параболы у=ах 2 параллельным переносом. Это подтверждено теоремой, которую можно доказать, выделив полный квадрат двучлена. Выражение ах 2 + bx + c после последовательных преобразований превращается в выражение вида: а*(х+l) 2 + m. Начертим график. Выполним параллельное перемещение параболы у = ах 2 , совмещая вершину с точкой с координатами (-l;m). Важно то, что х= -l, а значит -b/2а. Значит эта прямая является осью параболы ах 2 + bx + c, ее вершина находится в точке с абсциссой х нулевое равно минус в, деленное на 2а, а ордината вычисляется по громоздкой формуле 4ас - b 2 /. Но эту формулу запоминать не обязательно. Так как, подставив значение абсциссы в функцию, получим ординату.

Для определения уравнения оси, направления ее ветвей и координат вершины параболы, рассмотрим следующий пример.

Возьмем функцию у = -3х 2 - 6х + 1. Составив уравнение оси параболы, имеем, что х=-1. А это значение является координатой х вершины параболы. Осталось найти только ординату. Подставив значение -1 в функцию, получим 4. Вершина параболы находится в точке (-1; 4).

График функции у = -3х 2 - 6х + 1 получен при параллельном переносе графика функции у = -3х 2 , значит, и ведет себя аналогично. Старший коэффициент отрицателен, поэтому ветви направлены вниз.

Мы видим, что для любой функции вида y = ах 2 + bx + c, самым легким является последний вопрос, то есть направление веток параболы. Если коэффициент а положительный, то ветви - вверх, а если отрицательный, то - вниз.

Следующим по сложности идет первый вопрос, потому что требует дополнительных вычислений.

И самый сложный второй, так как, кроме вычислений, еще необходимы знания формул, по которым находятся х нулевое и у нулевое.

Построим график функции у = 2х 2 - х + 1.

Определяем сразу - графиком является парабола, ветви направлены вверх, так как старший коэффициент равен 2, а это положительное число. По формуле находим абсциссу х нулевое, она равна 1,5. Для нахождения ординаты вспомним, что у нулевое равно функции от 1,5, при вычислении получим -3,5.

Вершина - (1,5;-3,5). Ось - х=1,5. Возьмем точки х=0 и х=3. у=1. Отметим данные точки. По трем известным точкам строим искомый график.

Для построения графика функции ах 2 + bx + c необходимо:

Найти координаты вершины параболы и отметить их на рисунке, потом провести ось параболы;

На оси ох взять две симметричные, относительно оси, параболы точки, найти значение функции в этих точках и отметить их на координатной плоскости;

Через три точки построить параболу, при необходимости можно взять еще несколько точек и строить график по ним.

В следующем примере мы научимся находить наибольшее и наименьшее значения функции -2х 2 + 8х - 5 на отрезке .

По алгоритму: а=-2, в=8, значит х нулевое равно 2, а у нулевое - 3, (2;3) - вершина параболы, а х=2 является осью.

Возьмем значения х=0 и х=4 и найдем ординаты этих точек. Это -5. Строим параболу и определяем, что наименьшее значение функции -5 при х=0, а наибольшее 3, при х=2.