Геометрический смысл производной функции. Определение производной функции, ее геометрический и физический смысл

Тема. Производная. Геометрический и механический смысл производной

Если этот предел существует, то функция называется дифференцируемой в точке. Производная функции обозначается (формула 2).

  1. Геометрический смысл производной. Рассмотрим график функции. Из рис.1 видно, что для любых двух точек A и B графика функции можно записать формула 3). В ней - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует вывод.

Производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

  1. Уравнение касательной . Выведем уравнение касательной к графику функции в точке. В общем случае уравнение прямой с угловым коэффициентом имеет вид: . Чтобы найти b, воспользуемся тем, что касательная проходит через точку A: . Отсюда следует: . Подставляя это выражение вместо b, получаем уравнение касательной (формула 4).

Для выяснения геометрического значения производной рассмотрим график функции y = f(x). Возьмем произвольную точку М с координатами (x, y) и близкую к ней точку N (x + $\Delta $x, y + $\Delta $y). Проведем ординаты $\overline{M_{1} M}$ и $\overline{N_{1} N}$, а из точки М -- параллельную оси ОХ прямую.

Отношение $\frac{\Delta y}{\Delta x} $ является тангенсом угла $\alpha $1, образованного секущей MN с положительным направлением оси ОХ. При стремлении $\Delta $х к нулю точка N будет приближаться к M, а предельным положением секущей MN станет касательная MT к кривой в точке M. Таким образом, производная f`(x) равна тангенсу угла $\alpha $, образованного касательной к кривой в точке M (х, y) с положительным направлением к оси ОХ -- угловому коэффициенту касательной (рис.1).

Рисунок 1. График функции

Вычисляя значения по формулам (1), важно не ошибиться в знаках, т.к. приращение может быть и отрицательным.

Точка N, лежащая на кривой, может стремиться к M с любой стороны. Так, если на рисунке 1, касательной придать противоположное направление, угол $\alpha $ изменится на величину $\pi $, что существенно повлияет на тангенс угла и соответственно угловой коэффициент.

Вывод

Следует вывод, что существование производной связано с существованием касательной к кривой y = f(x), а угловой коэффициент -- tg $\alpha $ = f`(x) конечный. Поэтому касательная не должна быть параллельной оси OY, иначе $\alpha $ = $\pi $/2, а тангенс угла будет бесконечным.

В некоторых точках непрерывная кривая может не иметь касательной или иметь касательную параллельную оси OY (рис.2). Тогда в этих значениях функция не может иметь производную. Подобных точек может быть сколько угодно много на кривой функции.

Рисунок 2. Исключительные точки кривой

Рассмотрим рисунок 2. Пусть $\Delta $x стремится к нулю со стороны отрицательных или положительных значений:

\[\Delta x\to -0\begin{array}{cc} {} & {\Delta x\to +0} \end{array}\]

Если в данном случае отношения (1) имеют конечный придел, он обозначается как:

В первом случае -- производная слева, во втором -- производная справа.

Существование предела говорит о равносильности и равенстве левой и правой производной:

Если же левая и правая производные неравны, то в данной точке существуют касательные не параллельные OY (точка М1, рис.2). В точках М2, М3 отношения (1) стремятся к бесконечности.

Для точек N лежащих слева от M2, $\Delta $x $

Справа от $M_2$, $\Delta $x $>$ 0, но выражение также f(x + $\Delta $x) -- f(x) $

Для точки $M_3$ слева $\Delta $x $$ 0 и f(x + $\Delta $x) -- f(x) $>$ 0, т.е. выражения (1) и слева, и справа положительны и стремятся к +$\infty $ как при приближении $\Delta $x к -0, так и к +0.

Случай отсутствия производной в конкретных точках прямой (x = c) представлен на рисунке 3.

Рисунок 3. Отсутствие производных

Пример 1

На рисунке 4 изображен график функции и касательной к графику в точке с абсциссой $x_0$. Найти значение производной функции в абсциссе.

Решение. Производная в точке равна отношению~приращения функции к приращению аргумента. Выберем на касательной две точки с целочисленными координатами. Пусть, например, это будут точки F (-3,2) и C (-2.4).

Произво́дная (функции в точке) - основное понятие дифференциального исчисления , характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю , если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Процесс вычисления производной называется дифференци́рованием . Обратный процесс - нахождение первообразной - интегрирование .

Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой - вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.

4.Производная сложной и обратной функции.

Пусть теперь задана сложная функция , т.е. переменная есть функция переменной , а переменная есть, в свою очередь, функция от независимой переменной .

Теорема . Если и дифференцируемые функции своих аргументов, то сложная функция является дифференцируемой функцией и ее производная равна произведению производной данной функции по промежуточному аргументу и производной промежуточного аргумента по независимой переменной:

.

Утверждение легко получается из очевидного равенства (справедливого при и ) предельным переходом при (что в силу непрерывности дифференцируемой функции влечет ).

Перейдем к рассмотрению производной обратной функции .

Пусть на множестве дифференцируемая функция имеет множество значений и на множестве существует обратная функция .

Теорема . Если в точке производная , то производная обратной функции в точке существует и равна обратной величине производной данной функции : , или

Эта формула легко получается из геометрических соображений.

Так как есть тангенс угла наклона касательной линии к оси , то есть тангенс угла наклона той же касательной (той же линии ) в той же точке к оси .

Если и острые, то , а если тупые, то .

В обоих случаях . Этому равенству и равносильно равенство

5.Геометрический и физический смысл производной.

1) Физический смысл производной.

Если функция y = f(x) и ее аргумент x являются физическими величинами, то производная– скорость изменения переменной y относительно переменной x в точке. Например, если S = S(t) – расстояние, проходимое точкой за время t, то ее производная– скорость в момент времени. Если q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени t, то– скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени.

2) Геометрический смысл производной.

Пусть – некоторая кривая,– точка на кривой.

Любая прямая, пересекающая не менее чем в двух точках называется секущей.

Касательной к кривой в точкеназывается предельное положение секущей, если точкастремится к, двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке существует, то она единственная

Рассмотрим кривую y = f(x) (т.е. график функции y = f(x)). Пусть в точке он имеет невертикальную касательную. Ее уравнение:(уравнение прямой, проходящей через точкуи имеющую угловой коэффициент k).

По определению углового коэффициента , где– угол наклона прямойк оси.

Пусть– угол наклона секущейк оси, где. Так как– касательная, то при

Следовательно,

Таким образом, получили, что– угловой коэффициент касательной к графику функции y = f(x) в точке(геометрический смысл производной функции в точке). Поэтому уравнение касательной к кривой y = f(x) в точкеможно записать в виде

Конспект открытого урока преподавателя ГБПОУ «Педагогического колледжа № 4 Санкт-Петербурга»

Мартусевич Татьяны Олеговны

Дата: 29.12.2014.

Тема: Геометрический смысл производной.

Тип урока: изучение нового материала.

Методы обучения: наглядный, частично поисковый.

Цель урока.

Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.

Образовательные задачи:

    Добиться понимания геометрического смысла производной; вывода уравнения касательной; научиться решать базовые задачи;

    обеспечить повторение материала по теме «Определение производной»;

    создать условия контроля (самоконтроля) знаний и умений.

Развивающие задачи:

    способствовать формированию умений применять приемы сравнения, обобщения, выделения главного;

    продолжить развитие математического кругозора, мышления и речи, внимания и памяти.

Воспитательные задачи:

    содействовать воспитанию интереса к математике;

    воспитание активности, мобильности, умения общаться.

Тип урока – комбинированный урок с использованием ИКТ.

Оборудование – мультимедийная установка, презентация Microsoft Power Point .

Этап урока

Время

Деятельность преподавателя

Деятельность учащегося

1. Организационный момент.

Сообщение темы и цели урока.

Тема: Геометрический смысл производной.

Цель урока.

Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.

Подготовка студентов к работе на занятии.

Подготовка к работе на занятии.

Осознание темы и цели урока.

Конспектирование.

2. Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.

Организация повторения и актуализации опорных знаний: определения производной и формулирование её физического смысла.

Формулирование определения производной и формулирование её физического смысла. Повторение, актуализация и закрепление опорных знаний.

Организация повторения и формирование навыка нахождения производной степенной функции и элемениарных функций.

Нахождение производной данных функций по формулам.


Повторение свойств линейной функции.

Повторение, восприятие чертежей и высказываний преподавателя

3. Работа с новым материалом: объяснение.

Объяснение смысла отношения приращения функции к приращению аргумента

Объяснение геометрического смысла производной.

Введение нового материала посредством словесных объяснений с привлечением образов и наглядных средств: мультимедийной презентации с анимацией.

Восприятие объяснения, понимание, ответы на вопросы учителя.

Формулирование вопроса преподавателю в случае затруднения.

Восприятие новой информации, её первичное понимание и осмысление.

Формулирование вопросов преподавателю в случае затруднения.

Создание конспекта.

Формулирование геометрического смысла производной.

Рассмотрение трех случаев.

Конспектирование, выполнение рисунков.

4. Работа с новым материалом.

Первичное осмысление и применение изученного материала, его закрепление.

В каких точках производная положительна?

Отрицательна?

Равна нулю?

Обучение поиску алгоритма ответов на поставленные вопросы по графику.

Понимание и осмысление и применение новой информации для решения задачи.

5. Первичное осмысление и применение изученного материала, его закрепление.

Сообщение условия задачи.

Запись условия задачи.

Формулирование вопроса преподавателю в случае затруднения

6. Применение знаний: самостоятельная работа обучающего характера.

Решите задачу самостоятельно:

Применение полученных знаний.

Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения.

7. Работа с новым материалом: объяснение.

Вывод уравнения касательной к графику функции в точке.


Подробное объяснение вывода уравнения касательной к графику функции в точке с привлечением в качестве наглядности в виде мультимедийной презентации, ответы на вопросы учащихся.

Вывод уравнения касательной совместно с преподавателем. Ответы на вопросы преподавателя.

Конспектирование, создание рисунка.

8. Работа с новым материалом: объяснение.

В диалоге со студентами вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.

В диалоге с преподавателем вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.

Конспектирование.

Сообщение условия задачи.

Обучение применению полученных знаний.

Организация поиска путей решения задачи и их реализация. подробный разбор решения с объяснением.

Запись условия задачи.

Выдвижение предположений о возможных путях решения задачи при реализации каждого пункта плана действий. Решение задачи совместно с преподавателем.

Запись решения задачи и ответа.

9. Применение знаний: самостоятельная работа обучающего характера.

Индивидуальный контроль. Консультирование и помощь студентам по мере необходимости.

Проверка и объяснение решения с использованием презентации.

Применение полученных знаний.

Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения

10. Домашнее задание.

§48, задачи 1 и 3, разобраться в решении и записать его в тетрадь, с рисунками.

№ 860 (2,4,6,8),

Сообщение домашнего задания с комментариями.

Запись домашнего задания.

11. Подведение итогов.

Повторили определение производной; физический смысл производной; свойства линейной функции.

Узнали, в чём заключается геометрический смысл производной.

Научились выводить уравнение касательной к графику данной функции в данной точке.

Корректировка и уточнение итогов урока.

Перечисление итогов урока.

12. Рефлексия.

1. Вам было на уроке: а) легко; б) обычно; в) трудно.

а) усвоил(а) полностью, могу применить;

б) усвоил(а), но затрудняюсь в применении;

в) не усвоил(а).

3. Мультимедийная презентация на уроке:

а) помогала усвоению материала; б) не помогала усвоению материала;

в) мешала усвоению материала.

Проведение рефлексии.