География — определение, история, основные отрасли и научные дисциплины. Метод материалы по дисциплинам

Методологические основы географии и процесс географического познания, теория географической науки (проблемы, идеи, гипотезы, концепции, законы), теоретические основы географического прогноза.

Методология – совокупность наиболее существенных элементов теории, необходимых для развития самой науки, т.е. это концепция развития теории.

Методика – совокупность технических приемов и организационных форм для проведения научных исследований.

Гипотеза – это какое-то чисто теоретическое обобщение материала, без доказательств.

Теория – система знаний, подкрепленных доказательствами.

Концепция – это совокупность наиболее существенных элементов теории, изложенных в конструктивно приемлемой для практики форме, т.е. это теория, переведенная в алгоритм решения конкретной задачи.

Парадигма – исходная концептуальная схема, модель постановления проведенных решений, метод решения, господствующая в данное время.

Научный аппарат – аппарат фактов, систем и классификаций научных знаний. Основное содержание науки – это эмпирический научный аппарат.

Предмет изучения географии (физ-гео) – географическая оболочка, биосфера, учет основных характеристик географической оболочки – зональность, предельность и т.д.

Выделяется 4 принципа: территориальность, комплексность, конкретность, глобальность.

Зональность: следствие – наличие природных зон и подзон.

Целостность – взаимосвязь всего со всем.

Неоднородность вещества в любой точке земной поверхности (пример – азональность) – пространственный полиморфизм.

Цикличность – замкнутость. Ритмичность – имеет какой-то вектор.

Гироскопичность (параметры местоположения объекта) – появления гироскопического эффекта у любого предмета, движущегося параллельно поверхности Земли (сила Кориолиса).

Центросимметричность – центральная симметрия.

Предельность – существуют четкие границы сфер.

Вещественный полиморфизм – в результате наличия ландшафтной оболочки, физических, химических и других условий, способствующих возникновению многообразных форм и структур вещества.

Географическое мышление – комплексное; мышление, привязанное к территории.

Глобальность – соотношение локальных, региональных проблем с общеземным фоном.

Систематика – классификация и типизация. Классификация – деление на группы по совокупности, отличных по количественному признаку. Типизация – по качественному признаку.

Следует различать понятие “прогноз” и “прогнозирование”. Прогнозирование – это процесс получения данных о возможном состоянии исследуемого объекта. Прогноз – результат прогнозных исследований. Есть много общих определений термина “прогноз”: прогноз – это определение будущего, прогноз – это научная гипотеза о развитии объекта, прогноз – характеристика будущего состояния объекта, прогноз - оценка перспектив развития.



Несмотря на некоторые отличия определений термина “прогноз”, связанные, по – видимому, с различиями целей и объектов прогноза, во всех случаях мысль исследователя устремлена в будущее, то есть прогноз представляет собой специфический вид познания, где прежде всего исследуется не то, что есть, а то, что будет. Но суждение о будущем не всегда есть прогноз. Например, есть закономерные события, которые не вызывают сомнения и не требуют прогнозирования (смена дня и ночи, сезонов года). Кроме того, определение будущего состояния объекта – это не самоцель, а средство научного и практического решения многих общих и частных современных проблем, параметры которых, исходя из возможного будущего состояния объекта, задаются в настоящие время.

Общая логическая схема процесса прогнозирования представляется как последовательная совокупность:

1) представлений о прошлых и современных закономерностях и тенденциях развития объекта прогнозирования;

2) научного обоснования будущего развития и состояния объекта;

3) представлений о причинах и факторах, определяющих изменение объекта, а также условий, стимулирующих или препятствующих его развитию;

4) четвертых, прогнозных выводов и решений по управлению.

Географы определяют прогноз преимущественно как научно обоснованное предвидение тенденций в изменении природной среды и производственно территориальных систем.

Методы географии – совокупность (система ) включающая общенаучные методы, частные или рабочие приемы и методы получения фактического материала, методы и технические приемы сбора и обработки полученного фактического материала.

Метод – это система правил и приемов подхода к изучению явлений и закономерностей приро­ды, общества и мышления; путь, способ достижения определенных результатов в познании и практике, прием теоретического исследования или практических действий, исходящий из знания закономерностей развития объективной действительности и исследуемого предмета, явления, процесса. Метод является центральным элементом всей системы методологии. Его место в структуре науки вообще, его взаимоотношения с другими структурными элементами можно наглядно представить в виде пирамиды (рис. 11), в которой соответствующие элементы науки расположены восходящим образом в соответствии с происхождением научного знания.

По В. С. Преображенскому, современный этап развития всех наук характеризуется резким усилением внимания к проб­лемам методики, стремлением наук познать самое себя. Эта об­щая тенденция проявляется в усиленной разработке вопросов логики науки, теории познания, методологии.

Какими же объективными процессами обусловлены эти тенденции, с чем они связаны?

Во-первых, происходит расширение использования научных знаний, углубляется проникновение в сущность природных явле­ний и отношений между ними. Решить эту задачу невозможно, не совершенствуя методику.

Второй причиной является развитие науки как единого про­цесса познания природы. При этом возникают новые вопросы о свойствах природных тел и систем. А новые вопросы часто тре­буют для своего решения и поиска новых методических путей и приемов.

В современных условиях все важнее становится прог­нозировать поведение сложных систем, включающих как природные комплексы, так и технические сооружения. При этом обост­ряется потребность в новом подъеме работ по развитию методики.

Нельзя не отметить существование взаимной связи между ме­тодикой и теоретическим уровнем науки: чем совершеннее методика, тем глубже, шире и прочнее теоретические выводы, с другой стороны, чем глубже теория, тем многообразнее, четче, определеннее, отточеннее методика.

Третий толчок к ускоренному развитию методики определен гигантским ростом географической информации. Объем научных данных о земной природе растет столь быстро, что с помощью уже сложившейся методики, с помощью чисто интуитивных решений с этим потоком справиться невозможно. Возрастает необходимость в научной организации исследований, в выборе не просто каких-либо методов, а в создании наиболее рациональной и эффективной системы методов, методики.

Встает задача поиска принципиально новых методических приемов. Поиск же всегда связан с решением еще не решавшихся или оставшихся до сих пор нерешенными проблем.

Прежде чем перейти к рассмотрению собственно методов географии, нужно установить некоторые понятия.

Введение

География - многоотраслевая наука. Это обусловлено сложностью и многообразием главного объекта ее исследования - географической оболочки Земли. Располагаясь на границе взаимодействия внутриземных и внешних (в том числе космических) процессов, географическая оболочка включает в себя верхние слои твердой коры, гидросферу, атмосферу и рассеянное в них органическое вещество. В зависимости от положения Земли на эклиптической орбите и благодаря наклону ее оси вращения различные участки земной поверхности получают разное количество солнечного тепла, дальнейшее перераспределение которого в свою очередь обусловлено неравномерным по широте соотношением суши и моря.

Современное состояние географической оболочки следует рассматривать как результат ее длительной эволюции - начиная с возникновения Земли и становления ее на планетный путь развития.

Правильное понимание процессов и явлений различного пространственно-временного масштаба, протекающих в географической оболочке, требует, по меньшей мере, многоуровневого их рассмотрения, начиная с глобального - общепланетарного. Вместе с тем исследование процессов общепланетарного характера до последнего времени считалось прерогативой геологических наук. В общегеографическом синтезе информация этого уровня практически не использовалась, а если и привлекалась, то довольно пассивно и ограниченно. Однако отраслевое подразделение естественных наук достаточно условно и не имеет четких границ. Объект же исследований у них общий - Земля и ее космическое окружение. Изучение различных свойств этого единого объекта и процессов, протекающих в нем, потребовало разработки различных методов исследований, что в значительной мере и предопределило их отраслевое подразделение. В этом плане географическая наука имеет больше преимуществ перед другими отраслями знаний, т.к. обладает наиболее развитой инфраструктурой, позволяющей вести всестороннее изучение Земли и окружающего ее пространства.

В арсенале географии методы исследования твердой, жидкой и газовой компонентов географической оболочки, живого и косного вещества, процессов их эволюции и взаимодействия.

С другой стороны, нельзя не отметить тот важный факт, что еще 10-15 лет назад большая часть исследований по проблемам строения и эволюции Земли и ее внешних геосфер, включая географическую оболочку, оставалась “безводной”. Когда и как появилась вода на поверхности Земли и каковы пути ее дальнейшей эволюции - все это оставалось за пределами внимания исследователей.

Вместе с тем, как было показано (Орленок, 1980-1985), вода - это главнейший итог эволюции протовещества Земли и важнейший компонент географической оболочки. Ее постепенное накопление на поверхности Земли, сопровождавшееся вулканизмом и разноамплитудными нисходящими движениями верхов земной коры, предопределяло, начиная с протерозоя, а возможно, и раньше, ход эволюции газовой оболочки, рельефа, соотношения площади и конфигурации суши и моря, а с ними и условий седиментации, климата и жизни. Иными словами, вырабатываемая планетой и выносимая на поверхность свободная вода, по существу, определяла в основном ход и все особенности эволюции географической оболочки планеты. Без нее весь облик Земли, ее ландшафты, климат, органический мир были бы совершенно иными. Прообраз такой Земли легко угадывается на безводной и безжизненной поверхности Венеры, отчасти Луны и Марса


Система географической науки

Физическая география - греч. физис - природа, гео - Земля, графо - пишу. То же самое, дословно - описание природы Земли, или землеописание, землеведение.

Дословное определение предмета физической географии слишком общее. Сравните: "геология", "геоботаника".

Чтобы дать более точное определение предмету физической географии, надо:

показать пространственную структуру науки;

установить взаимоотношение данной науки с другими науками.

Из школьного курса географии вам известно, что география занимается изучением природы земной поверхности и теми материальными ценностями, которые созданы на ней человечеством. Другими словами, география - наука, которая существует не в единственном числе. Это, конечно, география физическая и география экономическая. Можно представить, что это система наук.

Системная парадигма (греч. пример, образец) пришла в географию из математики. Система - философское понятие, означающее совокупность элементов, находящихся во взаимодействии. Это - динамическое, функциональное понятие.


С системных позиций география - наука о геосистемах. Геосистема(ы), по В.Б.Сочаве (1978), - земные пространства всех размерностей, где отдельные компоненты природы находятся в системной связи друг с другом и как определённая целостность взаимодействуют с космической сферой и человеческим обществом.

Главные свойства геосистем:

а) Целостность, единство;

б) Компонентность, элементарность (элемент - греч. простейший, неделимый);

в) Иерархическая соподчинённость, определённый порядок построения, функционирования;

г) Взаимосвязь путём функционирования, обмена.

Выделяют связи внутренние, закрепляющие специфическое для данной науки строение, и через него - и присущий ей состав (структуру). Внутренние связи в природе - это, прежде всего, обмен веществом и энергией. Внешние связи - внутренний и взаимный обмен идей, гипотез, теорий, методов путём промежуточных, переходных научных подразделений (например, наук естественных, общественных, технических).

Подобно физике, химии, биологии и другим наукам, современная география представляет сложную систему обособившихся в разное время научных дисциплин (рис. 2).


Рис. 2. Система географической науки по В.А. Анучину


Экономическая и физическая география имеют свои различные объекты и предметы исследования, указанные в рис. 2. Но человечество и природа не только различны, но взаимно влияют, действуют друг на друга, образуя единство материального мира природы земной поверхности (на рис. 2 это взаимодействие обозначают стрелки). Люди, образуя общество, являются частью природы и относятся к ней как часть к целому.

Понимание общества как части природы начинает определять весь характер производства. Общество, испытывая воздействие природы, испытывает и воздействие законов природы. Но последние в обществе преломляются и становятся специфическими (закон размножения - закон народонаселения). Именно общественные законы определяют развитие общества (сплошная линия на рис. 2).

Общественное развитие осуществляется в природе земной поверхности. Природа, окружающая человеческое общество, испытывающая его воздействие, образует географическую среду. Географическая среда, благодаря техническому прогрессу, непрерывно расширяется и уже включает Ближний космос.

Человек разумный не должен забывать о существующей системной связи. Очень хорошо об этом сказал Н.Н. Баранский: "Не должно быть ни "бесчеловечной" физической географии, ни "противоестественной" экономической географии".

Кроме того, современный географ должен учитывать тот факт, что природа земной поверхности уже изменена человеческой деятельностью, поэтому современное общество должно соизмерять своё воздействие на природу с интенсивностью природного процесса.

Современная география - триединая наука, объединяющая природу, население, хозяйство.

Каждая из наук: физическая, экономическая, социальная география, в свою очередь, представляет комплекс наук.


Комплекс физико-географической науки

Физико-географический комплекс - одно из главных понятий физической географии. Он состоит из частей, элементов и компонентов: воздух, вода, литогенная основа (горные породы и неровности земной поверхности), почвы и живые организмы (растения, животные, микроорганизмы). Их совокупность образует природно-территориальный комплекс (ПТК) земной поверхности. ПТК можно рассматривать как всю земную поверхность, отдельные материки, океаны, так и небольшие участки: склон оврага, болотная кочка. ПТК - единство, которое существует в происхождении (в прошлом) и в развитии (настоящем, будущем).


Природу земной поверхности можно изучать в общем и в целом (физическая география), по компонентам (частные науки - гидрология, климатология, почвоведение, геоморфология и др.); можно изучать по странам и районам (страноведение, ландшафтоведение), в настоящем, прошедшем и будущем времени (общее землеведение, палеогеография и историческая география).

География животных (зоогеография) - наука о закономерностях распространения видов животных.

Биогеография - география органической жизни.

Океанология - наука о Мировом океане, как части гидросферы.

Ландшафтоведение - наука о ландшафтной среде, тонком, наиболее активном центральном слое географической оболочки, состоящей из природно-территориальных комплексов разного ранга.

Картография - общегеографическая (на уровне системы) наука о географических картах, методах их создания и использования.

Палеогеография и историческая география - науки о природе земной поверхности прошлых геологических эпох; об открытии, становлении и истории развития природно-социальных систем.

Страноведение физико-географическое, изучающее природу отдельных стран и районов (физическая география России, Азии, Африки и т. п.).

Гляциология и геокриология (мерзлотоведение) - науки об условиях возникновения, развития и формах наземных (ледники, снежники, снежные лавины, морские льды) и литосферных (вечная мерзлота, подземное оледенение) льдов.

Землеведение (собственно физическая география) изучает географическую оболочку (природу земной поверхности) как целостную материальную систему - общие закономерности её структуры, происхождения, внутренние и внешние взаимосвязи, функционирование для разработки системы моделирования и управления происходящими процессами.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Понятие геогр афической оболочки и ее границы

географический оболочка круговорот зональность

Географическая оболочка - единая материальная система, в пределах которой взаимодействуют и взаимопроникают литосфера, гидросфера, атмосфера и биосфера. В нее входит верхняя часть литосферы, нижняя - атмосферы, вся атмосфера и вся гидросфера. Мощность ГО около 50 км.

Границы ГО четко неопределенны. За верхнюю границу ученые принимают озоновый экран в атмосфере, за пределы которого не выходит жизнь на нашей планете. Нижняя граница чаще всего проводится в литосфере на глубинах не более 1000 м. это верхняя часть земной коры, которая образована под совместным воздействием атмосферы, гидросферы и живых организмов. Если говорить о нижней части ГО в моровом океане, то ее граница будет проходить по океаническому дну.

В результате взаимодействия в ГО развиваются некоторые процессы:

o преобразование солнечной энергии в растениях.

o пребывание веществ в трех агрегатных состояниях

o наличие органических веществ и жизни.

Свойства ГО: целостность означает, что все компоненты географической среды тесно связаны друг с другом и изменение одного из них ведет к изменению остальных.

Ритмичность, повторяемость сходных явлений во времени (смена дня и ночи, фотосинтез, процессы выветривания, сезонная ритмика).

Зональность, изменение всех компонентов ГО от экватора к полюсам.

Азональность (высотная поясность).

Круговорот веществ и энергии, вносят изменения в процессы жизнедеятельности.

Полярная ассиметрия.

Структура ГО горизонтальная: проводится в зависимости от эндо - экзогенных процессов (выделяются климатические зоны и пояса).

2. Этапы э волюции географической оболочки

Естественные изменения в ГО происходили всегда. Но с ростом населения земли и - развитием общества естественный ход процессов, протекающих в природных комплексах, все больше нарушается, становится иным и все чаще вызывает нежелательные последствия. Современная ГО - результат ее длительного развития, в процессе которого она непрерывно усложнялась.

Ученые выделяют три этапа ее развития.

I этап - добиогенный продолжался 3 млрд. лет. Во время этого периода существовали только простейшие животные, которые принимали слабое участие в развитии и формировали ГО Земли. Атмосфера во время этого периода отличалась низким содержанием свободного кислорода и высоким углекислого газа.

II этап биогенный - продолжался около 570 млрд. лет. Для этого этапа характерна ведущая роль живых существ в развития и формирования ГО. Живые существа оказывали большое влияние на все природные компоненты. Происходило накопление горных пород органического, изменился состав воды и атмосферы, повышалось содержание кислорода, уменьшалось содержание углекислого газа. В конце этапа появился человек.

III этап - современный, начался 40 тыс. лет назад. Характеризуется тем, что человек начинает активное влияние на разные части ГО. Поэтому именно от человека зависит, будет ли она существовать т.к. человек на Земле не может жить и развиваться изолированно от нее.

3. Б ольшой геологический круговорот веществ. Малый биологический (гео графический) круговорот веществ

Большой геологический круговорот веществ обусловлен взаимодействием солнечной энергии с глубинной энергий Земли и осуществляет перераспределение веществ между биосферой и более глубокими горизонтами Земли. Осадочные горные породы погружаются в зону высоких температур и давления в подвижных зонах земной коры. Там они переплавляются и образуют магму - источник новых магматических пород. После поднятия этих пород на земную поверхность и действия процессов выветривания вновь происходит трансформация их в новые осадочные породы.

Большой круговорот включает также и круговорот воды между сушей и океаном через атмосферу. Влага, испарившаяся с поверхности с поверхности мирового океана, переносится на сушу, куда выпадает в виде осадков, которые вновь в океан в виде поверхностного стока и подземного. Круговорот воды происходит и по более простой схеме: испарение влаги с поверхности океана - конденсация водяного пара - выпадение осадков на поверхность океана. В круговороте воды ежедневно участвует более 500 тыс. куб. км. воды. Весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Малый круговорот веществ (биогеохимический) совершается лишь в пределах биосферы. Сущность его заключается в образовании живого вещества из неорганических соединений в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения. Этот круговорот для жизни биосферы - главный и является продолжением самой жизни. Изменяясь, рождаясь и умирая, живое вещество поддерживает жизнь на нашей планете, обеспечивая биогеохимический круговорот веществ. Главным источником энергии круговорота является солнечный свет, который обеспечивает фотосинтез.

Суть биогеохимического цикла заключается в том, что химические элементы, поглощенные организмом, в последствии его покидают и уходят в абиотическую среду, через некоторое время они вновь попадают в живой организм. В биогеохимических круговоротах принято различать резервный фонд, или вещества, несвязанные с организмами; обменный фонд, обусловленный прямым обменом биогенными веществами между организмами и их непосредственным окружением. Если же рассматривать биосферу в целом, то можно выделить круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере и осадочный цикл с резервным фондом в земной коре в геологическом круговороте.

Круговороты целом обеспечивают выполнение следующих важнейших функций живого вещества в биосфере:

o Газовую: продукт разложения отмершей органики.

o Концентрационную: организмы накапливают многие химические элементы.

o Окислительно-восстановительную: организмы обитающие в водоемах, регулируют кислотный режим.

o Биохимическую: размножение, рост и перемещение в пространстве живого вещества

o Биогеохимическую деятельность человека: вовлечение природных веществ для хозяйственный и бытовых нужд человека.

Единственным на Земле процессом, который не расходует, а накапливает солнечную энергию - это создание органического вещества в результате фотосинтеза. В связывании и запасании солнечной энергии и заключается основная планетарная функция живого вещества на Земле. Наиболее важными биогенными веществами является углерод, азот, кислород, фосфор, сера.

4. Г еографические пояса, зоны и сектора. Полярная асимметрия

Географические пояса - самая крупная территориальная единица широтно-зонального деления ГО, характеризующаяся общностью термических условий.

Широтное расположение географических поясов определяется главным образом изменением количества солнечной радиации от экватора к полюсам Земли. Географические пояса отличаются друг от друга температурными характеристиками, а также общими особенностями циркуляции атмосферы. На суше выделяют следующие географические пояса: экваториальный; субэкваториальный, тропический, субтропический, умеренный в каждом полушарии; субантарктический и антарктический. Из-за различного соотношения тепла и влаги внутри поясов выделяют географические зоны и подзоны.

Природные зоны - крупные части географических поясов, закономерно сменяющиеся от экватора к полюсам и от океанов в глубь континентов. Положение физико-географических зон определяется главным образом особенностями соотношения тепла и влаги. Зоны обладают известной общностью почв, растительности и других компонентов природной среды (напр., зоны степей, зоны саванн). Природные зоны выражены как на суше, так и в океане, где проявляются менее отчетливо.

Природные зоны вытянуты в виде широких полос с запада на восток. Между ними нет четких границ, они плавно переходят из одной зоны в другую. Широтное расположение природных Зон нарушается неравномерным распределением суши и океанов, рельефом, удаленности от океанов.

Сектора - учитывается общая циркуляция атмосферы, управляющая переносом влаги. Выделяется три сектора: два океанических и континентальный. В холодном поясе секторы не выделяют, т.к. морская и континентальная области не имеют резких различий. По классификации А.Г. Исаченко целесообразно выделение пяти секторов: западный приокеанический, восточный приокеанический, слабо- и умеренно континентальный, континентальный, резко континентальный.

Полярная асимметрия выражается, в частности, в том, что Северное полушарие более материковое, чем Южное (39 и 19% площади суши). Кроме того, различаются географическая зональность высоких широт Северного и Южного полушарий и распространение организмов. Например, в Южном полушарии нет именно тех географических зон, которые занимают самые большие пространства на материках в Северном полушарии. На пространствах суши и океана в Северном и Южном полушариях обитают разные группы животных и птиц: для высоких широт Северного полушария характерен белый медведь, а для высоких широт Южного полушария - пингвин.

Ряд признаков полярной асимметрии: все зоны (горизонтальные и высотные) сдвинуты к северу в среднем на 10°. Например, пустынный пояс расположен в Южном полушарии ближе к экватору (22° ю.ш.), чем в Северном полушарии (37° с.ш.); антициклональный пояс высокого давления в Южном полушарии расположен на 10° ближе к экватору, чем в Северном полушарии (25 и 35°); большая часть теплых океанических вод направляется из экваториальных широт в Северное, а не в Южное полушарие, поэтому в средних и высоких широтах климат Северного полушария теплее, чем Южного.

5. Периодический закон географической зональности . Радиационный индекс сухости

Зональность - изменение природных компонентов и процессов от экватора к полюсам (зависит от шарообразности формы Земли, угла наклона земной оси к плоскости эклиптики (орбитальное вращение), размера Земли, расстояния Земли от Солнца).

Впервые термин ввел Гумбольд в начале 18 века. Основоположник учения о зональности Докучаев.

По Докучаеву проявление зональности в: земная кора, вода, воздух, растительность, почвы, животный мир.

Периодический закон географической зональности - это наличие однотипных ландшафтных зон в разных поясах связанное с повторением одинаковых соотношений тепла и влаги. Этот закон сформировали А.А. Григорьев и М.И. Будыко.

Согласно периодическому закону географической зональности в основе деления географической оболочки лежат: 1) количество поглощаемой солнечной энергии; 2) количество поступающей влаги; 3) соотношение тепла и влаги.

Климатические условия географических поясов и зон можно оценить с помощью показателей: коэффициента увлажнения Высоцкого-Иванова и радиационного индекса сухости Будыко. Значение показателей определяют характер увлажненности ландшафтов: аридный (засушливый) и гумидный (влажный).

Последняя величина, радиационный индекс сухости, колеблется от О до 5, трижды между полюсом и экватором проходя через значения, близкие к единице: в зонах лиственных лесов умеренного пояса, дождевых лесов субтропического пояса и экваториальных лесов, переходящих в светлые тропические леса.

Три периода радиационного индекса сухости имеют свои отличия. Вследствие возрастания в направлении экватора абсолютная величин радиационного баланса и осадков, каждое прохождение индекса сухости через единицу происходит при всё более высоком притоке тепла и влаги. Это приводит к увеличению от высоких широт к низким интенсивности природных процессов и особенно продуктивности органического мира.

Значение показателей могут повторяться в зонах, относящихся к разным географическим поясам. При этом величина коэффициента увлажнения определяет тип ландшафтной зоны, а величина радиационного индекса сухости конкретный характер и облик зоны.

Радиационный индекс сухости - показатель степени засушливости климата, разработанный отечественными учёными А.А. Григорьевым и М.И. Будыко в середине ХХ в. Радиационный индекс сухости рассчитывается по формуле:

R - радиационный баланс поверхности в ккал/см 2 за год,

L - скрытая теплота испарения в ккал/г,

r - сумма осадков в г/см 2 за год.

Числитель в данной формуле - это количество тепла, которое в конечном итоге получает земная поверхность и которое расходуется на прогрев атмосферного воздуха.

Знаменатель - сумма осадков (r) выражает влагообеспеченность территории. Влага, выпавшая в виде атмосферных осадков, испарятся лишь частично. Сколько именно влаги испарилось с земной поверхности можно оценить количеством солнечного тепла, затрачиваемого на испарение (количеством скрытой теплоты испарения). Поэтому знаменатель формулы состоит из произведения величины скрытой теплоты испарения на величину годового количества осадков.

При радиационном индексе сухости 0,8-1,0 тепла хватает на испарение большей части осадков, наблюдается умеренный сток, достаточное увлажнение и хорошая аэрация почвы, интенсивное выветривание и в целом наилучшие условия для развития органического мира, в частности - лесов.

При радиационном индексе сухости менее 0,8 увлажнение избыточно, тепла не хватает для испарения осадков, происходит заболачивание.

При радиационном индексе сухости более 1,0 увлажнение недостаточно, влага испаряется почти полностью и избыточное тепло тратится на перегрев почвы и атмосферы. В обоих крайних случаях органический мир угнетается.

Величина радиационном индексе сухости менее 0,3 соответствует зоне тундры, 0,3 -1,0 - лесной зоне, 1,0-2.0 - степи, 2,0 - 3,0 - полупустыне, более 3,0 - пустыне.

6. Физико-географические следствия вза имодействия океанов и материков

Взаимодействие материков и океанов обуславливается:

1. особенностями циркуляции атмосферы (у нас преобладает западный перенос воздушных масс). Пассаты в низких широтах между тропиками и экваторам. Муссоны дуют на восточном побережье материка.

2. Температура. Океаны сглаживают температуры на материках. Материки влияют на испарение.

3. Течения. Повторяют движение ветров. Самые распространенные течения - дрейфовые.

4. Соленость воды. Она везде неодинакова.

7. Понятие ноосферы В.И. Вернадского

Ноосфера - это современная биосфера, частью которой является человечество. Прослеживая развитие биосферы, обретающее геологическую мощь воздействие человека на биосферу, В.И. Вернадский формирует учение о ноосфере как особом периоде в развитии планеты и окружающего космического пространства. Становление ноосферы определяется социально-природной деятельностью человека, его трудом и знаниями, т.е. тем, что относится к космопланетарному измерению человека.

Ноосфера - это новое, эволюционное состояние биосферы, при котором разумная деятельность человека становится, решающим фактором ее развития. В.И. Вернадский был убежден, в том, что наша планета вступает в новую стадию своего развития, на которой определяющую роль будет играть человек разумный как сила невиданного масштаба. Гигантская геологическая деятельность человечества выражается в том, что сейчас нет такого быстротекущего геологического процесса, с которым можно было бы сравнить мощь человечества, вооруженного огромным арсеналом всяческих воздействий на природу, в том числе и фантастических, по мощности разрушительных сил.

Под ноосферой мы понимаем высшую стадию биосферы, связанную с возникновением и развитием человечества, которое, познавая законы природы и совершенствуя технику, начинает оказывать определяющее влияние на ход процессов на Земле и в околоземном пространстве, изменяя их своей деятельностью.

В работах В.И. Вернадского можно встретить разные определения и представления о ноосфере, которые менялись на протяжении жизни ученого. В.И. Вернадский начал развивать данную концепцию с начала 30-х годов после разработки учения о биосфере. Осознавая огромную роль и значение человека в жизни и преобразовании планеты, русский ученый употреблял понятие «ноосфера» в разных смыслах:

1) как состояние планеты, когда человек становится крупнейшей преобразующей геологической силой;

2) как область активного проявления научной мысли как главного фактора перестройки и изменения биосферы.

Ноосферу можно охарактеризовать как единство «природы» и «культуры». Сам Вернадский говорил о ней то, как о реальности будущего, то, как о действительности наших дней, что неудивительно, поскольку он мыслил масштабами геологического времени.

Понятие «ноосфера» предстаёт в двух аспектах:

1. ноосфера в стадии становления, развивающаяся стихийно с момента появления человека;

2. ноосфера развитая, сознательно формируемая совместными усилиями людей в интересах всестороннего развития всего человечества и каждого отдельного человека.

По мнению В.И. Вернадского, ноосфера только-только создается, возникает в результате реального, вещественного преобразования человеком геологии Земли усилиями мысли и труда.

Мы подходим к новой эре в жизни человечества и жизни на нашей планете вообще, когда точная наука как планетная сила выступает на первый план, проникая и изменяя всю духовную среду человеческих обществ, когда ею охватываются и изменяются техника жизни, художественное творчество, философская мысль, религиозная жизнь. Это явилось неизбежным следствием - впервые на нашей планете - захвата все растущими человеческими обществами, как единого целого, всей поверхности Земли, превращения с помощью направляемого разума человека биосферы в ноосферу.

Таковы объективные основы и последствия ноосферной глобализации по Вернадскому и ее кардинальное отличие от нынешней модели глобализации, осуществляемой в интересах государств и ведущей к дальнейшему разрушению природной среды и экокатастрофе.

Согласно теории Вернадского, человек, охватив научной мыслью всю планету, стремится двигаться в направлении постижения Божественных законов. В центре внимания Вернадского - биосфера и ноосфера Земли. Биосфера как совокупная оболочка Земли пронизана жизнью (сфера жизни), закономерно под воздействием деятельности человеческого общества переходит в ноосферу - новое состояние биосферы, которое несет в себе результаты человеческого труда.

Итак, Вернадский исходит из того, что исходным пунктом в познании Вселенной является человек, поскольку возникновение человека связано с главным процессом эволюции космического вещества. Описывая наступающую эпоху разума на энергетическом уровне, Вернадский указывает на эволюционный переход от геохимических процессов к биохимическим, и, наконец, к энергии мысли.

На определенном этапе своего развития биосфера, перерабатываемая научной мыслью человека, превращается в ноосферу, область человеческой культуры, тесно связанную с научным знанием. Порождение космических сил, ноосфера лежит вне космических просторов, где она теряется как бесконечное малое, и вне области микромира, где она отсутствует, как бесконечно большое.

Вернадский воспринимает ноосферу как неэнтропийный фактор. Снижение скорости процесса энтропии происходит за счет создания системы биосферы и перехода ее во все более самоорганизующуюся систему ноосферы. Именно ноосфера придает космосу идею, смысл и цель.

Таким образом, прорыв научной мысли подготовлен всем прошлым биосферы и имеет эволюционные корни.

Размещено на Allbest.ru

Подобные документы

    Изучение особенностей географической оболочки, как материальной системы: ее границы, строение и качественные отличия от других земных оболочек. Круговорот вещества и энергии в географической оболочке. Система таксономических единиц в физической географии.

    контрольная работа , добавлен 17.10.2010

    Современное состояние географической оболочки как результат ее эволюции. Сущность геосистемы по В.Б. Сочаве. Общая характеристика комплекса физико-географической науки. Анализ развития основных представлений о системе и комплексе географической науки.

    реферат , добавлен 29.05.2010

    Понятие о геосфере и развитии земной поверхности. Распределение солнечной энергии и климатические пояса. Гидротермические условия и продуктивность биомассы. Географические пояса, динамика географической зональности. Проблемы ландшафтной дифференциации.

    реферат , добавлен 31.01.2010

    Общая характеристика, горизонтальная и поясно-зональная структура географической оболочки. Понятие зональности, содержание соответствующего периодического закона, формы проявления. Распределение тепла на Земле. Барический рельеф и система ветров.

    курсовая работа , добавлен 12.11.2014

    Эндогенные и экзогенные (космическая и солнечная энергия) энергетические источники географических процессов, их влияние на географическую оболочку. Соотношение различных потоков энергии. Циклы круговорота вещества и энергии. Формы динамики земной коры.

    презентация , добавлен 01.12.2013

    Основные предпосылки развития географической науки. Метод научного объяснения мира от Аристотеля, который основывается на использовании логики. География в эпоху Великих географических открытий. Становление современной географии, методы исследований.

    реферат , добавлен 15.02.2011

    Достижения вавилонской астрономии. Понятие системы географических координат (параллели и меридианы). Исторические представления о долготе и широте. Определение местного времени, часового пояса. Нахождение географической долготы места из уравнения времени.

    контрольная работа , добавлен 20.10.2011

    Геологическая история Земли. Основные закономерности цикличности изменений в географической оболочке. Виды и классификация ритмических движений. Влияние смены освещения и погодных условий на динамику биоты. Чередование ледниковых эпох и "теплых" периодов.

    курсовая работа , добавлен 17.03.2015

    Характеристика понятия о природном комплексе. Анализ объекта изучения физической географии - географической оболочки нашей планеты, как комплексной материальной системы. Особенности учения о природно-территориальном комплексе, географическом ландшафте.

    реферат , добавлен 31.05.2010

    История развития и становления географии как науки. Географические идеи древнего мира, античности и средневековья. Развитие географической науки в эпоху великих экспедиций. История русской картографии, вклад ученых в развитие теоретической географии.

Введение

География - многоотраслевая наука. Это обусловлено сложностью и многообразием главного объекта ее исследования - географической оболочки Земли. Располагаясь на границе взаимодействия внутриземных и внешних (в том числе космических) процессов, географическая оболочка включает в себя верхние слои твердой коры, гидросферу, атмосферу и рассеянное в них органическое вещество. В зависимости от положения Земли на эклиптической орбите и благодаря наклону ее оси вращения различные участки земной поверхности получают разное количество солнечного тепла, дальнейшее перераспределение которого в свою очередь обусловлено неравномерным по широте соотношением суши и моря.

Современное состояние географической оболочки следует рассматривать как результат ее длительной эволюции - начиная с возникновения Земли и становления ее на планетный путь развития.

Правильное понимание процессов и явлений различного пространственно-временного масштаба, протекающих в географической оболочке, требует, по меньшей мере, многоуровневого их рассмотрения, начиная с глобального - общепланетарного. Вместе с тем исследование процессов общепланетарного характера до последнего времени считалось прерогативой геологических наук. В общегеографическом синтезе информация этого уровня практически не использовалась, а если и привлекалась, то довольно пассивно и ограниченно. Однако отраслевое подразделение естественных наук достаточно условно и не имеет четких границ. Объект же исследований у них общий - Земля и ее космическое окружение. Изучение различных свойств этого единого объекта и процессов, протекающих в нем, потребовало разработки различных методов исследований, что в значительной мере и предопределило их отраслевое подразделение. В этом плане географическая наука имеет больше преимуществ перед другими отраслями знаний, т.к. обладает наиболее развитой инфраструктурой, позволяющей вести всестороннее изучение Земли и окружающего ее пространства.

В арсенале географии методы исследования твердой, жидкой и газовой компонентов географической оболочки, живого и косного вещества, процессов их эволюции и взаимодействия.

С другой стороны, нельзя не отметить тот важный факт, что еще 10-15 лет назад большая часть исследований по проблемам строения и эволюции Земли и ее внешних геосфер, включая географическую оболочку, оставалась “безводной”. Когда и как появилась вода на поверхности Земли и каковы пути ее дальнейшей эволюции - все это оставалось за пределами внимания исследователей.

Вместе с тем, как было показано (Орленок, 1980-1985), вода - это главнейший итог эволюции протовещества Земли и важнейший компонент географической оболочки. Ее постепенное накопление на поверхности Земли, сопровождавшееся вулканизмом и разноамплитудными нисходящими движениями верхов земной коры, предопределяло, начиная с протерозоя, а возможно, и раньше, ход эволюции газовой оболочки, рельефа, соотношения площади и конфигурации суши и моря, а с ними и условий седиментации, климата и жизни. Иными словами, вырабатываемая планетой и выносимая на поверхность свободная вода, по существу, определяла в основном ход и все особенности эволюции географической оболочки планеты. Без нее весь облик Земли, ее ландшафты, климат, органический мир были бы совершенно иными. Прообраз такой Земли легко угадывается на безводной и безжизненной поверхности Венеры, отчасти Луны и Марса


Система географической науки

Физическая география - греч. физис - природа, гео - Земля, графо - пишу. То же самое, дословно - описание природы Земли, или землеописание, землеведение.

Дословное определение предмета физической географии слишком общее. Сравните: «геология», «геоботаника».

Чтобы дать более точное определение предмету физической географии, надо:

показать пространственную структуру науки;

установить взаимоотношение данной науки с другими науками.

Из школьного курса географии вам известно, что география занимается изучением природы земной поверхности и теми материальными ценностями, которые созданы на ней человечеством. Другими словами, география - наука, которая существует не в единственном числе. Это, конечно, география физическая и география экономическая. Можно представить, что это система наук.

Системная парадигма (греч. пример, образец) пришла в географию из математики. Система - философское понятие, означающее совокупность элементов, находящихся во взаимодействии. Это - динамическое, функциональное понятие.


С системных позиций география - наука о геосистемах. Геосистема(ы), по В.Б.Сочаве (1978), - земные пространства всех размерностей, где отдельные компоненты природы находятся в системной связи друг с другом и как определённая целостность взаимодействуют с космической сферой и человеческим обществом.

Главные свойства геосистем:

а) Целостность, единство;

б) Компонентность, элементарность (элемент - греч. простейший, неделимый);

в) Иерархическая соподчинённость, определённый порядок построения, функционирования;

г) Взаимосвязь путём функционирования, обмена.

Выделяют связи внутренние, закрепляющие специфическое для данной науки строение, и через него - и присущий ей состав (структуру). Внутренние связи в природе - это, прежде всего, обмен веществом и энергией. Внешние связи - внутренний и взаимный обмен идей, гипотез, теорий, методов путём промежуточных, переходных научных подразделений (например, наук естественных, общественных, технических).

Подобно физике, химии, биологии и другим наукам, современная география представляет сложную систему обособившихся в разное время научных дисциплин (рис. 2).

Рис. 2. Система географической науки по В.А. Анучину


Экономическая и физическая география имеют свои различные объекты и предметы исследования, указанные в рис. 2. Но человечество и природа не только различны, но взаимно влияют, действуют друг на друга, образуя единство материального мира природы земной поверхности (на рис. 2 это взаимодействие обозначают стрелки). Люди, образуя общество, являются частью природы и относятся к ней как часть к целому.

Понимание общества как части природы начинает определять весь характер производства. Общество, испытывая воздействие природы, испытывает и воздействие законов природы. Но последние в обществе преломляются и становятся специфическими (закон размножения - закон народонаселения). Именно общественные законы определяют развитие общества (сплошная линия на рис. 2).

Общественное развитие осуществляется в природе земной поверхности. Природа, окружающая человеческое общество, испытывающая его воздействие, образует географическую среду. Географическая среда, благодаря техническому прогрессу, непрерывно расширяется и уже включает Ближний космос.

Человек разумный не должен забывать о существующей системной связи. Очень хорошо об этом сказал Н.Н. Баранский: «Не должно быть ни „бесчеловечной“ физической географии, ни „противоестественной“ экономической географии».

Кроме того, современный географ должен учитывать тот факт, что природа земной поверхности уже изменена человеческой деятельностью, поэтому современное общество должно соизмерять своё воздействие на природу с интенсивностью природного процесса.

Современная география - триединая наука, объединяющая природу, население, хозяйство.

Каждая из наук: физическая, экономическая, социальная география, в свою очередь, представляет комплекс наук.


Комплекс физико-географической науки

Физико-географический комплекс - одно из главных понятий физической географии. Он состоит из частей, элементов и компонентов: воздух, вода, литогенная основа (горные породы и неровности земной поверхности), почвы и живые организмы (растения, животные, микроорганизмы). Их совокупность образует природно-территориальный комплекс (ПТК) земной поверхности. ПТК можно рассматривать как всю земную поверхность, отдельные материки, океаны, так и небольшие участки: склон оврага, болотная кочка. ПТК - единство, которое существует в происхождении (в прошлом) и в развитии (настоящем, будущем).

Природу земной поверхности можно изучать в общем и в целом (физическая география), по компонентам (частные науки - гидрология, климатология, почвоведение, геоморфология и др.); можно изучать по странам и районам (страноведение, ландшафтоведение), в настоящем, прошедшем и будущем времени (общее землеведение, палеогеография и историческая география).

География животных (зоогеография) - наука о закономерностях распространения видов животных.

Биогеография - география органической жизни.

Океанология - наука о Мировом океане, как части гидросферы.

Ландшафтоведение - наука о ландшафтной среде, тонком, наиболее активном центральном слое географической оболочки, состоящей из природно-территориальных комплексов разного ранга.

Картография - общегеографическая (на уровне системы) наука о географических картах, методах их создания и использования.

Палеогеография и историческая география - науки о природе земной поверхности прошлых геологических эпох; об открытии, становлении и истории развития природно-социальных систем.

Страноведение физико-географическое, изучающее природу отдельных стран и районов (физическая география России, Азии, Африки и т. п.).

Гляциология и геокриология (мерзлотоведение) - науки об условиях возникновения, развития и формах наземных (ледники, снежники, снежные лавины, морские льды) и литосферных (вечная мерзлота, подземное оледенение) льдов.

Землеведение (собственно физическая география) изучает географическую оболочку (природу земной поверхности) как целостную материальную систему - общие закономерности её структуры, происхождения, внутренние и внешние взаимосвязи, функционирование для разработки системы моделирования и управления происходящими процессами.

Общегеографические (или синтетические) науки - физико-географические и экономгеографические одновременно.

Прикладные физико-географические науки (инженерная геоморфология, синоптическая метеорология и др.) изучают проблемы практического характера, связанные с отраслями народного хозяйства.

Современная география изучает земные пространства всех размерностей, их строение, движение, а также их взаимодействие в природе и обществе.


Развитие основных представлений о системе и комплексе географической науки

Из истории географии известно, что географы не сразу пришли к представлениям географии в нашем современном понимании - к географии, изучающей ПТК и ТПК в некотором взаимосвязанном единстве.

В развитии географии выделяют несколько хронологических эпох: географии древнего мира, Средневековья, Великих географических открытий, Нового и Новейшего времён, но все они группируются по целям и задачам исследований в два крупных этапа:

До середины - конца XIX в.,

Начала XX столетия по наши дни.

В первый этап география была всеобъемлющей, мировоззренческой наукой. Землеописание - вот её главная задача. В течение веков её цель - сбор сведений о земном шаре, его окружении - космосе, о народах, населяющих близкие и дальние уголки Земли, их территориях, занятиях, верованиях.

Главные вопросы, интересующие географию:

Что это такое? Где это находится? Это и есть вопросы описания. С ответа на них начинается любая наука.

К середине XIX в. сбор материала о земной поверхности, в основном, был завершён. Остались неоткрытыми только пространства крайнего севера и крайнего юга.

К этому времени единой науки уже не существовало, внутри неё возникли частные науки: ботаника (сначала в форме систематики растений), геология (сначала в виде рудознатства); выделились науки социальные и экономические. Эти новые науки с большей полнотой и глубиной, чем прежняя география, исследовали природу и общество. География, потеряв предмет своего исследования (единую, неделимую природу), вступила в полосу кризиса и потеряла былую славу. Из авангардной науки она превратилась в отсталую. Потребовались десятилетия, чтобы свершился переворот в познании, и возникла география в современном смысле слова (наука системная и комплексная). Успехи любой науки опираются на труды и достижения учёных всего мирового сообщества.

Среди предшественников этого научного переворота в географии следует назвать прежде всего русских и немецких географов. Германия в XIX в. - передовая промышленная страна с развитой наукой и культурой, перенимать опыт которой традиционно ездили русские учёные. Возвращаясь домой в Россию на богатую и разнообразную «почву», они создавали российскую географию, оригинальную, не похожую ни на какую другую.

Варений Бернхард (1622-1650). Основной труд - «Всеобщая география» (1650). Родился в Гамбурге. Окончил Гамбургский и Кёнигсбергский университеты, впоследствии жил в Голландии. С него начинает отсчёт времени современная география. По Варению, география изучает земноводный круг, образованный взаимопроникающими друг в друга частями - землёй, водой, атмосферой. Земноводный круг изучает всеобщая география, отдельные области - частная география. Это первый со времени античной древности опыт широкого общеземлеведческого обобщения, первая попытка определить предмет и содержание географии, основываясь на новых данных о Земле, собранных в эпоху Великих географических открытий.

Гумбольдт Александр (1769-1859). Немецкий естествоиспытатель, энциклопедист, географ и путешественник, поставивший перед собой цель создать единую картину мира. Исследуя природу Южной Америки, вскрыл значение анализа взаимосвязей как всеобщей нити всей географической науки. Он выявил биоклиматическую широтную зональность и высотную поясность, предложил употребить изотермы в климатических характеристиках, заложил основы сравнительной физической географии. В главной своей работе - «Космос, опыт физического мироописания» - он обосновал взгляд на земную поверхность (предмет географии) как особую оболочку взаимодействия воздуха, моря, Земли, - единства неорганической и органической природы. Ему принадлежит термин «жизнесфера», аналогичный содержанию биосферы, а в заключительных строках первой части «Космоса...» говорится о сфере разума, получившей много позже название ноосферы. Основные труды: «Картины природы» (1808, русский перевод в 1959 г.), «Центральная Азия» (1843, в трёх томах, русский перевод: Т. 1 - М., 1915), «Космос, опыт физического мироописания», 5 т. (1845-62).

Риттер Карл (1779-1859) работал в одно время с А. Гумбольдтом. Основные труды: «Землеведение в отношении к природе и к истории человека, или Всеобщая сравнительная география», «Идеи о сравнительном землеведении». Профессор Берлинского университета, основатель первой в Германии кафедры географии, которой руководил с 1820 г. до конца жизни. Блестящий преподаватель, которого слушали молодой Карл Маркс, Элизе Реклю, П.П. Семёнов-Тян-Шанский. Автор множества трудов, одно «Землеведение» охватывает 19 томов, в которых он противопоставлял пространственное и историческое развитие. В его трудах множество противоречивых суждений, поэтому одни географы восторгались его произведениями, другие подвергали их уничтожающей критике. Но главное его суждение ясно: Земля - предмет географии, «жилище рода человеческого». В географии Риттеру отводят такое же место, как Гегелю в философии.

Семёнов-Тян-Шанский Пётр Петрович (1827-1914) - выдающийся русский географ, исследователь Азии. С 1873 по 1914 гг. руководил Русским географическим обществом. Именно в этот период знаменитые экспедиции Н.М. Пржевальского, Н.Н. Миклухо-Маклая и других российских географов принесли всемирную славу отечественной географии. Основные труды: «Путешествие в Тянь-Шань в 1856-57 гг.» (впервые опубликован в 1946 г.; новое издание - М., 1958), «Предисловие к книге „Землеведение Азии“. Под его руководством написаны и изданы „Географо-статистический словарь Российской империи“, 5 томов, СПб., 1865-1885; „Россия. Полное географическое описание нашего отечества“, 1911, 1899-1914. Понимал географию как „целую естественную группу наук“, включающую гидрологию, климатологию, метеорологию, орографию, картографию, биогеографию, геогнозию (геоморфологию), а также ряд общественных дисциплин: антропологию, историческую географию, демографию, статистику, политическую географию. Соединив теоретические и практические вопросы освоения природной среды, создал оригинальную географическую школу.

Рихтгофен Фердинанд (1833-1905). Видный немецкий географ, путешественник. В различные годы был профессором в Боннском, Лейпцигском и Берлинском университетах. Один из создателей геоморфологии. Он считал, что география призвана раскрыть процесс взаимодействия многообразных явлений с рельефом земной поверхности. Решающее значение в выявлении сущности географического знания он придавал исследованию взаимодействия человека со всей совокупностью природных явлений, в пределах земной поверхности, а географию представлял наукой, пограничной между естественными и общественными науками. Основные труды: „Задачи и методы современной географии“ (1883); „Китай. Результаты собственных путешествий“, 5 томов с атласом (1877-1911); „Геоморфологические этюды Восточной Азии“, 4 тома (1903-11).

Докучаев Василий Васильевич (1846-1903). Естествоиспытатель, профессор Петербургского университета, основатель первой в России кафедры почвоведения (1895) и учения о природных зонах. В.В. Докучаев - явление исключительное в масштабе нашей страны и в мировой науке. Он и его ученики создали сильную и плодотворную научную школу, которая обогатила многие науки: геологию, минералогию, почвоведение, ботанику; в школе появилось учение о лесе. В числе наук, испытавших сильнейшее влияние Василия Васильевича, находится география. В среде учеников Докучаева были минералог и геохимик В.И. Вернадский, геолог и петрограф Ф.Ю. Левинсон, Лессинг, почвоведы Н.М. Сибирцев и К.Д. Глинка, ботаники и географы А.Н. Краснов, Г.И. Танфильев, Г.Н. Высоцкий, гидрогеолог П.В. Отоцкий, основоположник учения о лесе Г.Ф. Морозов. К числу докучаевцев второго поколения принадлежат почвоведы и географы Л.И. Прасолов, Б.Б. Поланов, С.С. Неустроев, Ю.А. Ливеровский, ботаники и географы В.Н. Сукачёв (ученик Г.Ф. Морозова), геохимики А.Е. Ферсман и А.П. Виноградов (ученики В.И. Вернадского). К числу докучаевцев третьего поколения относятся почвоведы и географы Ин.П. Герасимов, М.А. Глазовская, А.И. Перельман и другие. Учеником А.Н. Краснова был Г.Г. Григор, долгое время заведовавший кафедрой географии в Томском университете. Учениками и соратниками Г.Г. Григора являются профессора Л.Н. Ивановский, А.А. Земцов, А.М. Малолетко, П.А. Окишев. Географические идеи докучаевской школы сохраняются и развиваются до сих пор. Основные труды: „Русский чернозём“ (1883), „Наши степи прежде и теперь“ (1892), „К учению о зонах природы“ (1886).

География изучает происхождение и развитие земной поверхности на основе комплексных исследований, рассматривает природные процессы в пространстве и времени. Это есть сочетание теории и практики науки.

На первом этапе развития науки географы занимались сбором фактического материала: описанием того, что и где находится. Но к концу XIX столетия, когда сбор материала был завершён, они перешли к анализу и синтезу собранного, к изучению внутренних закономерностей природно-общественного развития. Теперь главные вопросы географии - почему? - объяснение, выявление причин существования и развития природных и социально-экономических комплексов, а также вопросы: следовательно? когда? - предвидение, предсказание, прогноз выявленных закономерностей развития. Это самое сложное, что может быть в науке. И, наконец, последний вопрос: для чего это нужно? - Для конструирования природных, социальных и экономических процессов, с целью управления ими.

Современная география давно уже не описательная наука. Она конструктивная - инженерно-преобразовательная, по Ин.П. Герасимову, и прогнозная, занимающаяся фундаментальными разработками задач современного взаимодействия природы и общества - ноосферы.

1. Можно ли в Северном полушарии к северу от Северного тропика наблюдать Солнце на севере?

При существующем угле наклона земной оси (66 градусов 30′), Земля бывает обращена к Солнцу своими приэкваториальными районами. Для живущих в Северном полушарии Солнце видно с Юга, а в Южном полушарии, с Севера. Но если быть более точным Солнце бывает в зените во всей зоне между тропиками, поэтому солнечный диск виден с той стороны, где Солнце в данный момент в зените. Если Солнце в зените над Северным Тропиком, то оно светит с Севера для всех находящихся южнее, в том числе и для жителей Северного полушария между экватором и тропиком. В России за полярным кругом в течение полярного дня Солнце не заходит за горизонт, совершая полный круг по небосводу. Поэтому, проходя через самую северную точку Солнце, находится в нижней кульминации, этот момент соответствует полночи. Именно за полярным кругом можно наблюдать Солнце на Севере с территории России в условно ночное время суток.

2. Если бы земная ось имела наклон к плоскости земной орбиты 45 градусов изменилось бы положение тропиков и полярных кругов и как?

Мысленно представим, что мы придадим земной оси наклон в половину прямого угла. В пору равноденствий (21 марта и 23 сентября) смена дней и ночей на Земле будет такая же, как и теперь. Но в июне Солнце окажется в зените для 45-й параллели (а не для 23½°): эта широта играла бы роль тропиков.

На широте 60 °, Cолнце не доходило бы до зенита только на 15°; высота Солнца поистине тропическая. Жаркий пояс непосредственно примыкал бы к холодному, а умеренного не существовало бы вовсе. В Москве, в Харькове и других городах весь июнь царил бы непрерывный, беззакатный день. Зимой, напротив, целые декады длилась бы сплошная полярная ночь в Москве, Киеве, Харькове, Полтаве…

Жаркий же пояс на это время превратился бы в умеренный, потому что Солнце поднималось бы там в полдень не выше 45°.

Тропический пояс много потерял бы от этой перемены, также как и умеренный. Полярная же область и на этот раз кое-что выгадала бы: здесь после очень суровой (суровее, чем ныне) зимы наступал бы умеренно-теплый летний период, когда даже на самом полюсе Солнце стояло бы в полдень на высоте 45° и светило бы дольше полугода. Вечные льды Арктики стали бы постепенно исчезать.

3. Какой вид солнечной радиации и зачем преобладает над восточной Сибирью зимой, над Прибалтикой летом?

Восточная Сибирь. На рассматриваемой территории все компоненты радиационного баланса подчиняются в основном широтному распределению.

Территория Восточной Сибири , лежащая к югу от полярного круга, располагается в двух климатических поясах – субарктическом и умеренном. В этом регионе велико влияние рельефа на климат, что обуславливает выделение семи областей: Тунгусской, Центрально-якутской, Северо-Восточной Сибири, Алтае-Саянской, Приангарской, Байкальской, Забайкальской.

Годовые суммы солнечной радиации на 200–400 МДж/см 2 больше, чем на тех же широтах Европейской России. Они изменяются от 3100–3300 МДж/см 2 на широте полярного круга до 4600– 4800 МДж/см 2 на юго-востоке Забайкалья. Над Восточной Сибирью атмосфера чище, чем над европейской территорией. Прозрачность атмосферы уменьшается с севера на юг. Зимой большая прозрачность атмосферы определяется низким влагосодержанием, особенно в южных районах Восточной Сибири. Южнее 56° с.ш. прямая солнечная радиация преобладает над рассеянной. На юге Забайкалья и в Минусинской котловине на долю прямой радиации приходится 55–60% от суммарной радиации. Благодаря длительному залеганию снежного покрова (6–8 месяцев) до 1250 МДж/см 2 в год расходуется на отражённую радиацию. Радиационный баланс увеличивается с севера на юг от 900–950 мДж/см 2 на широте полярного круга до 1450– 1550 МДж/см 2 .

Выделяются два района, характеризующиеся увеличением прямой и суммарной радиации в результате повышенной прозрачности атмосферы — озеро Байкал и высокогорье Восточного Саяна.

Годовой приход принятой солнечной радиации на горизонтальную поверхность при ясном небе (то есть возможный приход) составляет 4200 МДж/м 2 на севере Иркутской области и увеличивается до 5150 МДж/м 2 к югу. На берегу Байкала годовая сумма возрастает до 5280 МДж/м 2 , а в высокогорных районах Восточного Саяна достигает 5620 МДж/м 2 .

Годовые суммы рассеянной радиации при безоблачном небе составляют 800-1100 МДж/м 2 .

Увеличение облачности в отдельные месяцы года снижает поступление прямой солнечной радиации в среднем на 60% от возможной и в то же время увеличивает долю рассеянной радиации в 2 раза. В результате, годовой приход суммарной радиации колеблется в пределах 3240-4800 МДж/м 2 при общем увеличении с севера на юг. При этом вклад рассеянной радиации составляет от 47% на юге области до 65% на севере. В зимнее время вклад прямой радиации незначителен, особенно в северных районах.

В годовом ходе максимум месячных сумм суммарной и прямой радиации на горизонтальную поверхность на большей части территории приходится на июнь (суммарная 600 — 640 МДж/м 2 , прямая 320-400 МДж/м 2 ), в северных районах — сдвигается на июль.

Минимальный приход суммарной радиации повсеместно отмечается в декабре — от 31 МДж/м 2 в высокогорном Ильчире до 1,2 МДж/м 2 в Ербогачене. Прямая радиация на горизонтальную поверхность уменьшается от 44 МДж/м 2 в Ильчире до 0 в Ербогачене.

Приведем значения помесячных сумм прямой радиации на горизонтальную поверхность по некоторым пунктам Иркутской области.

Помесячные суммы прямой радиации на горизонтальную поверхность (МДж/м 2 )

Пункты

Для годового хода прямой и суммарной радиации характерно резкое увеличение месячных сумм от февраля к марту, что объясняется как возрастанием высоты солнца, так и прозрачностью атмосферы в марте и уменьшением облачности.

Суточный ход солнечной радиации определяется прежде всего уменьшением высоты солнца в течение дня. Поэтому максимум солнечной радиации объемно наблюдается в полдень. Но наряду с этим на суточный ход радиации оказывает влияние прозрачность атмосферы, что заметно проявляется в условиях ясного неба. Особо выделяются два района, характеризующихся увеличением прямой и суммарной радиации в результате повышенной прозрачности атмосферы – оз. Байкал и высокогорье Восточного Саяна.

В летнее время обычно в первой половине дня атмосфера более прозрачна, чем во второй, поэтому изменение радиации в течение дня несимметрично относительно полдня. Что касается облачности, то именно она является причиной занижения облучения восточных стен по сравнению с западными в городе Иркутске. Для южной стены солнечное сияние составляет около 60% от возможного летом и всего 21-34% зимой.

В отдельные годы в зависимости от облачности соотношение прямой и рассеянной радиации и общий приход суммарной радиации может значительно отличаться от средних величин. Различие между максимальным и минимальным месячным приходом суммарной и прямой радиации может достигать в летние месяцы 167,6-209,5 МДж/м 2 . Различия рассеянной радиации составляют 41,9-83,8 МДж/м 2 . Еще большие изменения наблюдаются в суточных суммах радиации. Средние максимальные суточные суммы прямой радиации могут отличаться от средних в 2-3 раза.

Приход радиации к различно ориентированным вертикальным поверхностям зависит от высоты солнца над горизонтом, альбедо подстилающей поверхности, характера застройки, количества ясных и пасмурных дней, хода облачности в течение суток.

Прибалтика. Облачность уменьшает в среднем за год приход суммарной солнечной радиации на 21 %, а прямой солнечной радиации на 60 %. Число часов солнечного сияния - 1628 в год .

Годовой приход суммарной солнечной радиации составляет 3400 МДж/м2. В осенне-зимнее время преобладает рассеянная радиация (70 -80% от общего потока). Летом возрастает доля прямой солнечной радиации, достигая примерно половины общего прихода радиации. Радиационный баланс составляет около 1400 МДж/м2 в год. С ноября по февраль он отрицателен, но потеря тепла в значительной мере компенсируется адвекцией теплых воздушных масс с Атлантического океана.

4. Объясните, почему в пустынях умеренного и тропического поясов температура ночью сильно понижается?

Действительно, в пустынях велики суточные колебания температуры. Днем при отсутствии облаков поверхность сильно нагревается, но быстро остывает после захода солнца. Здесь основную роль играет подстилающая поверхность, то есть пески, для которых характерен свой микроклимат. Их термический режим зависит от цвета, влажности, структуры и т.д.

Особенностью песков является то, что температура в верхнем слое очень быстро понижается с глубиной. Верхний слой песка обычно бывает сухим. Сухость этого слоя не вызывает затраты тепла на испарение воды с его поверхности, и поглощенная песком солнечная энергия идет главным образом на его нагревание. Песок при таких условиях днем очень сильно прогревается. Этому способствует еще и его малая теплопроводность, препятствующая уходу тепла из верхнего слоя в более глубокие слои. Ночью же верхний слой песка значительно охлаждается. Такие колебания температуры песка и отражаются на температуре приземного слоя воздуха.

Из-за вращения получается, что на земле циркулирует не 2 воздушных потока, а шесть. И вот в тех местах, где воздух опускается к земле он холодный, но постепенно нагревается и приобретает возможность вбирать в себя пар и как бы «выпивает» влагу с поверхности. Планету обвивают два пояса засушливого климата – это и есть место, где зарождаются пустыни.

Жарко в пустыне – потому что сухо. Низкая влажность влияет на температуру. В воздухе нет влаги, следовательно, солнечные лучи не задерживаясь, достигают поверхности почвы и нагревают ее. Поверхность почвы нагревается очень сильно, а отдачи тепла не происходит – нет воды, чтобы испарять. Поэтому так жарко. И в глубину тепло распространяется очень медленно – из-за отсутствия все той же теплопроводной воды.

Ночью в пустыне холодно. Из-за сухости воздуха. В почве нет воды, а над землей нет облаков – значит, нечему удерживать тепло.

Задачи

1. Определить высоту уровня конденсации и сублимации поднимающегося адиабатически от поверхности Земли воздуха не насыщенного паром, если известна его температура t =30º и упругость водяных паров е = 21,2гПа.

Упругость водяного пара – основная характеристика влажности воздуха, определяемая психрометром: парциальное давление водяного пара, содержащегося в воздухе; измеряется в Па или мм рт. ст.

В поднимающемся воздухе температура изменяется вследствие адиабатического процесса, т. е. без обмена теплом с окружающей средой, за счет преобразования внутренней энергии газа в работу и работы во внутреннюю энергию. Так как внутренняя энергия пропорциональна абсолютной температуре газа, происходит изменение температуры. Поднимающийся воздух расширяется, производит работу, на которую затрачивает внутреннюю энергию, и температура его понижается. Опускающийся воздух, наоборот, сжимается, затраченная на расширение энергия освобождается, и температура воздуха растет.

Сухой или содержащий водяные пары, но ненасыщенный ими воздух, поднимаясь, адиабатически охлаждается на 1° на каждые 100 м. Воздух, насыщенный водяными парами, при подъеме на 100 м охлаждается менее чем на 1°, так как в нем происходит конденсация, сопровождающаяся выделением тепла, частично компенсирующего тепло, затраченное на расширение.

Величина охлаждения насыщенного воздуха при подъеме его на 100 м зависит от температуры воздуха и от атмосферного давления и изменяется в значительных пределах. Ненасыщенный воздух, опускаясь нагревается на 1° на 100 м, насыщенный на меньшую величину, так как в нем происходит испарение, на которое затрачивается тепло. Поднимающийся насыщенный воздух обычно теряет влагу в процессе выпадения осадков и становится ненасыщенным. При опускании такой воздух нагревается на 1° на 100 м.

Так как воздух нагревается главным образом от деятельной поверхности, температура с высотой в нижнем слое атмосферы, как правило, понижается. Вертикальный градиент для тропосферы в среднем составляет 0,6° на 100 м. Он считается положительным, если температура с высотой убывает, и отрицательным, если она повышается. В нижнем, приземном слое воздуха (1,5-2 м) вертикальные градиенты могут быть очень большими.

Конденсация и сублимация. В воздухе, насыщенном водяным паром, при понижении его температуры до точки росы или увеличении в нем количества водяного пара происходит конденсация - вода из парообразного состояния переходит в жидкое. При температуре ниже 0°С вода может, минуя жидкое состояние, перейти в твердое. Этот процесс называется сублимацией. И конденсация и сублимация могут происходить в воздухе на ядрах конденсации, на земной поверхности и на поверхности различных предметов. Когда температура воздуха, охлаждающегося от подстилающей поверхности, достигает точки росы, на холодную поверхность из него оседают роса, иней, жидкий и твердый налеты, изморозь.

Чтобы найти высоту уровня конденсации, необходимо по псхрометрическим таблицам определить точку росы Т поднимающегося воздуха, вычислить на сколько градусов должна понизиться температура воздуха, чтобы началась конденсация содержащегося в нем водяного пара, т.е. определить разность. Точка росы = 4, 2460

Определяем разницу между температурой воздуха и точкой росы (t – Т) = (30 — 4,2460) = 25,754

Умножим эту величину на 100м и найдем высоту уровня конденсации = 2575,4м

Для определения уровня сублимации надо найти разницу температур от точки росы до температуры сублимации и помножить эту разницу на 200м.

Сублимация происходит при температуре — 10°. Разница = 14,24°.

Высота уровня сублимации 5415м.

2. Привести давление к уровню моря при температуре воздуха 8º С, если: на высоте 150 м давление 990,8 гПа

зенит радиация конденсация давление

На уровне моря среднее атмосферное давление составляет 1013 гПа. (760мм.) Естественно, что с высотой атмосферное давление будет уменьшаться. Высота, на которую надо подняться (или опуститься), чтобы давление изменилось на 1 гПа, называют барической (барометрической) ступенью. Она увеличивается при теплом воздухе и росте высоты над уровнем моря. У земной поверхности при температуре 0ºC и давлении 1000 гПа барическая ступень равна 8 м/гПа, а на высоте 5 км, где давление около 500 гПа, при той же нулевой температуре она возрастает до 16 м/гПа.

«Нормальным» атмосферным давлением называется давление, равное весу ртутного столба высотой 760 мм, находящегося при температуре 0°C, на широте 45° и на уровне моря. В системе СГС 760 мм рт. ст. эквивалентно 1013.25 мб. Основной единицей давления в системе СИ, служит паскаль [Па]; 1 Па = 1 Н/м 2 . В системе СИ давление 1013,25 мб эквивалентно 101325 Па или 1013,25 гПа. Атмосферное давление – очень изменчивый метеоэлемент. Из его определения следует, что оно зависит от высоты соответствующего столба воздуха, его плотности, от ускорения силы тяжести, которая меняется от широты места и высоты над уровнем моря.

1 гПа = 0,75 мм рт. ст. или 1 мм рт. ст. = 1,333 гПа.

Увеличение высоты на 10 метром ведет к уменьшению давлению на 1 мм ртутного столба. Приводим давление к уровню моря, оно =1010,55 гПа (758,1 мм. рт.ст.), если на высоте 150 м, давление = 990,8 гПа (743,1 мм.)

Температура 8º С на высоте 150 метров, то на уровне моря = 9,2º.

Литература

1. Задачи по географии: пособие для учителей/ Под ред. Наумова. - М.: МИРОС, 1993

2. Вуколов Н.Г. «Сельскохозяйственная метеорология», М., 2007 г.

3. Неклюкова Н.П. Общее землеведение. М.: 1976

4. Пашканг К.В. Практикум по общему землеведению. М.: Высшая школа.. 1982