Гелиевая энергетика. Луна и грош, или история гелиевой энергетики

В последнее время, особенно после того, как США усилили темпы работ по своей лунной программе, все сильнее стала муссироваться тема о гелии-3, как основе ядерной энергетики будущего. О данном элементе даже снимают фантастические фильмы. Что же такое гелий-3, где его добыть и какие выгоды он сулит человечеству!

РЕАКТОР БЕЗ РАДИАЦИИ

Гелий-3 (³He) является одним из изотопов гелия, в ядре которого находится один нейтрон, а не два. На Земле запасы гелия-3 составляют 0,000137% от общего количества элементов и оцениваются в 35 тысяч тонн. Практически весь имеющийся в наличии гелий-3 сохранился с момента образования нашей планеты.

Интерес к этому изотопу гелия усилился после того, как стало ясно, что человечество вплотную приблизилось к серьезному энергетическому кризису. Запасы углеводородов подходят к концу, и уже через несколько десятилетий мы их полностью исчерпаем. Альтернативные источники энергии, такие как ветер, Солнце, приливы и отливы, геотермальная активность, не могут покрыть всех потребностей человечества. Остаются еще запасы каменного угля, которых хватит примерно на 200-300 лет. Однако по мере того, как доля угля в современной энергетике будет возрастать, этот срок может существенно сократиться. Кроме того, процессы сжигания и добычи угля серьезно ударяют по экосистеме планеты.

Таким образом, единственным источником энергии, которого хватит надолго, - это энергия, основанная на делении ядер урана. Уже сегодня атомная энергетика занимает почти 7% в мировом энергетическом балансе. И с каждым годом доля ее участия возрастает. Но вместе с этим все серьезнее встает вопрос о главной проблеме всех АЭС - утилизации и хранении радиоактивных отходов, которых с каждым годом становится все больше. И тут идеальным выходом было бы использование топлива, основанного на реакциях термоядерного синтеза с гелием-3.

Дело в этом, что ядерные реакции, протекающие с участием гелия-3, в отличие от других ядерных реакций, идут с выделением не нейтронов, а протонов. Нейтроны - крайне активные частицы, они способны глубоко проникнуть в конструкционные материалы ядерного реактора, разрушая их структуру и делая радиоактивными. Это приводит к тому, что отдельные детали и узлы каждые несколько лет приходится менять, чтобы реактор мог работать в штатном режиме. Кроме того, возникает проблема утилизации и захоронения ядерных отходов.

Протоны же, в отличие от нейтронов, не наводят радиоактивности и не способны проникать внутрь конструкций. Поток протонов - это, по сути, поток водорода. И материалы, из которых созданы узлы реактора, работающего на гелии-3, могут служить десятилетиями. В целом реакция с участием ³He в 50 раз менее радиоактивна, чем обычная реакция взаимодействия дейтерия с тритием (D + T).

Таким образом, главное достоинство гелия-3 не столько в его энергетической ценности, сколько в его практически полной экологической безопасности.

ЛУННЫЕ ЗАЛЕЖИ

Где же можно добывать гелий-3 в необходимых масштабах? На Земле этот изотоп содержится в таких ничтожно малых количествах, что о его промышленной добыче и речи быть не может. Ответ на этот вопрос известен давно - на Луне.

То, что Луна обладает огромными запасами гелия-3, стало известно, когда первые образцы лунного грунта были доставлены на Землю советскими автоматическими аппаратами «Луна» и американскими астронавтами во время выполнения программы «Аполлон».

Относительная концентрация изотопа в лунном грунте оказалась в 1000 раз выше, чем в земных недрах. Причина этого явления кроется в регулярном облучении поверхности Луны корпускулярным излучением Солнца. Дело в том, что, не имея защиты в виде сильного магнитного поля, поверхностный пылевидный слой (реголит) Луны регулярно получает огромную дозу облучения. Во время этого процесса в него внедряется большое количество элементов, в первую очередь изотопы водорода и гелия.

По предварительным оценкам, общие запасы гелия-3 на Луне составляют около миллиона тонн. Такого количества изотопа человечеству хватило бы на тысячу лет. Энергетическая эффектность его такова, что 1 тонна гелия-3 может заменить 20 млн тонн нефти, что позволит в течение года обеспечивать выходную мощность АЭС в 10 ГВт. В одной тонне лунного грунта содержится 10 мг гелия-3, что соответствует энерговыделению 1 м³ нефти. Можно сказать, что поверхность Луны представляет собой сплошной океан нефти. Человечеству нужно 200 тонн ³He ежегодно, потребность российской энергетики оценивается в 20-30 тонн гелия-3 в год.

Однако как бы ни были велики общие запасы ³He, содержание изотопа в лунной почве все равно очень невелико (примерно 10 мг на тонну породы). Таким образом, чтобы обеспечить потребности человечества, нужно вскрывать 20 млрд тонн реголита в год. Учитывая среднюю толщину слоя реголита в 3 м, общая площадь добычи будет составлять 30 на 100 км.

Сегодня, когда доставка даже нескольких сот килограммов груза на Луну считается большим достижением, переработка миллиардов тонн лунного грунта воспринимается как совершенно фантастический проект. Поэтому правильным решением было бы не транспортировка лунного грунта на Землю, а организация на самой Луне полного цикла получения готового изотопа гелия-3 - начиная от добычи породы и заканчивая ее обогащением.

ТРУДНОСТИ ДОБЫЧИ

Впрочем, 20 млрд тонн вскрышных работ лунного грунта только кажутся фантастическим мероприятием. На Земле сейчас добывают порядка 5 млрд тонн угля в год. Объем вскрышных работ земного грунта составляет порядка 50 млрд тонн. То есть нынешние темпы разработки земных недр вполне сопоставимы по масштабам с тем, что нас может ожидать на Луне. Б то же время на Луне не будет стоять проблем, связанных с экологическими последствиями проведения вскрышных работ, поэтому общая эффективность разработки лунного грунта может быть в несколько раз выше, чем на Земле. Не стоит забывать и о том, что сила тяжести на Луне в шесть раз меньше, чем на Земле. Это, в свою очередь, позволит серьезно увеличить скорость выработки грунта.

Что же касается технической стороны вопроса, то земная наука и техника достаточно развиты для того, чтобы начать организацию процесса переноса части горно-обогатительной и добывающей промышленности на Луну. Конечно, этот процесс займет не один десяток лет, поэтому чем раньше мы его начнем, тем быстрее получим необходимый результат.

Уже сейчас надо начинать подготовительный этап, содержащий в себе геологоразведочные и испытательные работы, которые должны проводиться в рамках общих исследовательских работ на Луне. Одними из первых должны быть работы по изучению внутреннего строения Луны, запланированные в программе «Луна-Глоб». В ходе выполнения этой программы планируется с помощью химико-минералогической интерпретации сейсмических данных получить данные о химическом строении нижней мантии Луны, а также определить размеры лунного ядра.

Следующим этапом работ будет доставка фунта с Луны на Землю. Основной упор здесь нужно сделать на беспилотные аппараты, которые будут собирать образцы лунного грунта и доставлять их к посадочным модулям. Кроме того, луноходам можно поручить задачу создания долговременной сети сейсмических датчиков, импульсы которых позволят получить исчерпывающее представление о том, что происходит в недрах Луны. Одновременно с этим необходимо будет проводить картирование лунной поверхности на предмет содержания гелия-3.

РЕАКТОР НА ГЕЛИИ-3

И наконец, остается последний вопрос - создание термоядерного реактора, в работе которого используется топливо на основе гелия-3. Сегодня такой реактор существует только в теории. Хотя работы над управляемым термоядерным синтезом уже переходят в практическую плоскость. Во Франции полным ходом идет строительство экспериментального термоядерного реактора ИТЭР, который будет использовать в своей работе реакцию синтеза дейтерия с тритием. Стоимость стройки изначально оценивалась в 5 млрд евро, а первую очередь реактора планировалось пустить к 2016 году. Однако позже расходы возросли вдвое, а срок начала эксплуатации сдвинулся на 2020 год. ИТЭР будет представлять собой сооружение высотой 60 метров и массой около 23 тысяч тонн. Особое внимание при его создании было уделено проблеме радиационной безопасности. Однако для работы с гелием-3 реактор типа ИТЭР не годится. Дело в том, что для такой реакции необходимо будет создать температуру, которая в три раза выше, чем температура в активной зоне ИТЭР.

Учитывая, что с момента открытия ядерных реакций и до создания термоядерного реактора типа ИТЭР человечество шло долгих 50 лет, можно предположить, что создание реактора на гелии-3 займет примерно 20-30 лет.

Наверное мало чего в области термоядерной энергетики окружено мифами, как Гелий 3. В 80х-90х он был активно популяризирован, как топливо, которое решит все проблемы управляемого термоядерного синтеза, а так же как один из поводов выбраться с Земли (т.к. на земле его буквально считанные сотни килограмм, а на луне миллиард тонн) и заняться, наконец, освоением солнечной системы. Все это базируется на очень странных представлениях о возможностях, проблемах и потребностях несуществующей сегодня термоядерной энергетики, о чем мы и поговорим.

Машина для добычи гелия3 на луне уже готова, дело за малым - найти ему применение.

Когда говорят про гелий3, то имеют в виду реакции термоядерного слияния He3 + D -> He4 + H или He3 + He3 -> 2He4 + 2H . По сравнению с классической D + T -> He4 +n в продуктах реакции нет нейтронов, а значит нет активации сверхэнергичными нейтронами конструкции термоядерного реактора. Кроме того, проблемой считается тот факт, что нейтроны из “классики” уносят из плазмы 80% энергии, поэтому баланс самонагрева наступает при бОльшей температуре. Еще одним записываемым гелиевому варианту преимуществом является то, что электроэнергию можно снимать прямо с заряженных частиц реакции, а не нагревом нейтронами воды - как в старых угольных электростациях.

Так вот, все это - неправда, точнее очень маленькая часть правды.

Начнем с того, что при одинаковой плотности плазмы и оптимальной температуре реакция He3 + D даст в 40 раз меньше энерговыделение на кубометр рабочей плазмы. При этом температура, нужная для хотя бы 40 кратного разрыва будет в 10 раз выше - 100 кЭв (или один миллиард градусов ) против 10 для D +T. Сама по себе, такая температура вполне достижима (рекорд токамаков на сегодня - 50 кЭв, всего в два раза хуже), но что бы завязать энергобаланс (скорость остывания VS скорость нагрева в т.ч. самонагрева) нам нужно поднять в 50 раз энерговыделение с кубометра He3 +D реакции, что можно сделать только подняв плотность в те же в 50 раз. В сочетании с выросшей в 10 раз температурой это дает увеличение давления плазмы в 500 раз - с 3-5 атм до 1500-2500 атм, и такое же увеличение противодавления, что бы эту плазму удержать.

Зато картинки вдохновляющие.

Помните, я писал, что магниты тороидального поля ИТЭР, которые создают противодавление плазме - абсолютно рекордные изделия, единственные по параметрам в мире? Так вот, поклонники He3 предлагают сделать магниты в 500 раз мощнее.

Ок, забудем про сложности, может преимущества этой реакции их окупают?

Разные термоядерные реакции, которые применимы для УТС. He3 + D дает слегка больше энергии, чем D + T, но на преодалевание кулоновского отталкивания тратится очень много энергии (заряд 3 а не 2), поэтому реакция идет медленно.

Начнем с нейтронов. Нейтроны в промышленном реакторе будут представлять собой серьезную проблему, повреждать материалы корпуса, греть все элементы обращенные к плазме настолько, что их придется охлаждать приличным расходом воды. А главное - активация материалов нейтронами приведут к тому, что и через 10 лет после остановки термоядерного реактора у нем будет тысячи тонн радиоактивных конструкций, которые невозможно разбирать руками, и которые будут вылеживаться уже в хранилище сотни и тысячи лет. Избавление от нейтронов очевидно бы облегчило задачу создания термоядерной электростанции.

Доля энергии, уносимая нейтронами. Если добавить побольше He3 в реактор, то можно снизить ее до 1%, но это еще ужесточит условия зажигания.

Ок, ну а как насчет прямого преобразования энергии заряженных частиц в электричество? Опыты показывают, что поток ионов с энергией 100 кЭв можно преобразовать в электричество с 80% кпд. У нас же тут нет нейтронов…. ну в смысле они не уносят всю энергию, которую мы можем получить только в виде тепла - давайте избавимся от паровых турбин и поставим ионные коллекторы?

Да, технологии прямого преобразования энергии плазмы в электроэнергию есть, они активно исследовались в 60х-70х, и показали кпд в районе 50-60% (не 80, надо заметить). Однако эта идея слабо применима как в D +T реакторах, так и в He3 +D. Почему это так, помогает понять вот эта картинка.

На ней показаны потери тепла плазмой по разным каналам. Сравните D+T и D + He3. Transport - это то, что можно использовать для прямого преобразования энергии плазмы в электричество. Если в D + T варианте у нас все забирают мерзкие нейтроны, то в случае He3 + D все забирает электромагнитное излучение плазмы, в основном синхротронное и рентгеновское тормозное (на картинке Bremsstrahlung). Ситуация практически симметричная, все равно надо отводить тепло от стенок и все равно прямым преобразованием мы не может вытащить больше 10-15% энергии термоядерного горения, а остальное - по старинке, через паросиловую машину.

Иллюстрация в исследовании по прямому преобразованию энергии плазмы на крупнейшей открытой ловушке Gamma-10 в японии.

Кроме теоретических ограничений есть и инженерные - в мире (в т.ч. в СССР) были потрачены гигантские усилия на создание установок прямого преобразования энергии плазмы в электричество для обычных электростанций, что позволяло поднять кпд с 35% до 55%. В основном на базе МГД-генераторов. 30 лет работы больших коллективов закончились пшиком - ресурс установки составлял сотни часов, когда энергетикам нужны тысячи и десятки тысяч. Гигантское количество ресурсов, потраченное на эту технологию привело, в частности, к тому, что наша страна отстала в производстве энергетических газовых турбин и установок парогазотурбинного цикла (которые дают ровно такое же повышение кпд - с 35 до 55%!).

Кстати, мощные сверхпроводящие магниты нужны и для МГД-генераторов. Здесь показаны СП магниты для 30 мегаваттного МГД-генератора.

ГИПОТЕЗЫ, ФАКТЫ, РАССУЖДЕНИЯ

Лунный Гелий-3 - термоядерное горючее будущего.

Комментарий автора сайта: С активацией американской Лунной космической программы всё чаще приходится слышать о том, что наряду с наличием воды, на Луне находятся огромные запасы изотопа гелия-3 - топлива ядерной энергетики будущего. Так ли это, какие перспективы это сулит человечеству, нужно ли вообще нам исследовать Луну и каким образом это можно осуществить - вот только небольшой перечень вопросов, ответы на которые Вы узнаете в данной статье, являющейся главой "Гелий-3" из книги академика РАН Эрика Михайловича Галимова "Замыслы и просчёты: Фундаментальные космические исследования в России последнего двадцатилетия. Двадцать лет бесплодных усилий."

Тот факт, что Луна обогащена гелием-3, известен с тех пор, как на Землю было впервые доставлено лунное вещество. В образцах лунного грунта, привезенных американскими астронавтами в ходе экспедиций «Аполлон» и доставленных советскими автоматическими аппаратами «Луна», относительная концентрация изотопа гелия 3 Не (отношение 3 Не/ 4 Не) оказалась в тысячу раз выше, чем в земном гелии. Это - результат облучения незащищенной атмосферой поверхности Луны корпускулярным излучением Солнца. В течение миллиардов лет в поверхностный пылевидный слой (реголит) Луны внедряются атомы элементов, испускаемых Солнцем, больше всего - водород и гелий в изотопном соотношении, присущем Солнцу. Другой факт - что 3 Не является эффективным термоядерным горючим - известен был физикам ещё раньше. Однако никакого практического вывода из этих фактов в те годы не делалось. Земная энергетика обеспечивалась за счёт быстро развивающейся добычи нефти и газа. Атомная энергетика базировалась на доступном урановом сырье. Управляемый термоядерный синтез не был осуществлен даже на более простой реакции дейтерия с тритием. На Земле гелий-3 в промышленных количествах отсутствует.

В конце 80-х - начале 90-х гг. появились публикации о возможном использовании Луны в качестве источника энергии для Земли. Предлагались, например, проекты передачи на Землю собранной на поверхности Луны солнечной энергии в форме сфокусированного высокочастотного луча. Высказывалась и идея добычи и доставки лунного гелия-3. Энтузиастом этой идеи, в частности, был побывавший на Луне американский астронавт Гарольд Шмидт. Он написал серьезную книгу о возможности использования гелия-3.

Призывая вернуться к исследованиям Луны, я помимо конкретной и актуальной задачи исследования внутреннего строения Луны, постоянно упоминал в качестве задачи, которую нужно иметь в виду в качестве отдаленной перспективы, освоение ресурсов лунного гелия-3.

Я думаю, что сегодня мы не предвидим в полной мере того, что даст нам освоение Луны, и потому приступаем к этому неуверенно, робко и с задержкой. Мне не раз приходилось писать о том, что исследование Луны имеет большое значение для фундаментальной геологии. Реконструкция ранней истории Земли, возникновения на ней атмосферы, океанов и жизни, невозможна без изучения Луны. Хотя бы просто потому, что следы первых 500-600 млн. лет истории Земли полностью стерты в ее геологической летописи, а на Луне они сохранились. И потому что Луна и Земля представляют генетически единую систему.

Этот изотоп планируется добывать на Луне для нужд термоядерной энергетики. Однако это дело далекого будущего. Тем не менее гелий-3 чрезвычайно востребован уже сегодня — в частности, в медицине.

Владимир Тесленко

Общее количество гелия-3 в атмосфере Земли оценивается всего лишь в 35 000 т. Его поступление из мантии в атмосферу (через вулканы и разломы в коре) составляет несколько килограммов в год. В лунном реголите гелий-3 постепенно накапливался в течение сотен миллионов лет облучения солнечным ветром. В результате тонна лунного грунта содержит 0,01 г гелия-3 и 28 г гелия-4; это изотопное соотношение (~0,04%) значительно выше, чем в земной атмосфере.

Амбициозные планы добычи гелия-3 на Луне, на полном серьезе рассматриваемые не только космическими лидерами (Россия и США), но и новичками (Китай и Индия), связаны с надеждами, которые возлагают на этот изотоп энергетики. Ядерная реакция 3Не+D→4Не+p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T+D→4Не+n.

К этим преимуществам относится в десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведенную радиоактивность и деградацию конструкционных материалов реактора. Кроме того, один из продуктов реакции — протоны — в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии. При этом и гелий-3, и дейтерий неактивны, их хранение не требует особых мер предосторожности, а при аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю. Есть у гелий-дейтериевой реакции и серьезный недостаток — значительно более высокий температурный порог (для начала реакции требуется температура порядка миллиарда градусов).


Хотя все это дело будущего, гелий-3 чрезвычайно востребован и сейчас. Правда, не для энергетики, а для ядерной физики, криогенной промышленности и медицины.

Магнитно-резонансная томография

С момента своего появления в медицине магнитно-резонансная томография (МРТ) стала одним из основных диагностических методов, позволяющих без всякого вреда заглянуть «внутрь» различных органов.

Примерно 70% массы человеческого тела приходится на водород, ядро которого, протон, обладает определенным спином и связанным с ним магнитным моментом. Если поместить протон во внешнее постоянное магнитное поле, спин и магнитный момент ориентируются либо вдоль поля, либо навстречу, причем энергия протона в первом случае будет меньше, чем во втором. Протон можно перевести из первого состояния во второе, передав ему строго определенную энергию, равную разнице между этими энергетическими уровнями, — например, облучая его квантами электромагнитного поля с определенной частотой.

Как намагнитить гелий-3

Простейшим и самым прямым способом намагнитить гелий-3 является его охлаждение в сильном магнитном поле. Однако эффективность этого метода весьма низка, к тому же он требует сильных магнитных полей и низких температур. Поэтому на практике применяют метод оптической накачки — передачи атомам гелия спина от поляризованных фотонов накачки. В случае с гелием-3 это происходит в два этапа — оптическая накачка в метастабильном состоянии и спиновый обмен между атомами гелия в основном и метастабильном состоянии. Технически это реализуется путем облучения лазерным излучением с круговой поляризацией ячейки с гелием-3, переведенного в метастабильное состояние слабым высокочастотным электрическим разрядом, в присутствии слабого магнитного поля. Поляризованный гелий можно хранить в сосуде с внутренним покрытием из цезия при давлении 10 атмосфер в течение порядка 100 часов.

Именно так и устроен МР-томограф, только обнаруживает он не отдельные протоны. Если поместить образец, содержащий большое количество протонов в мощное магнитное поле, то количества протонов с магнитным моментом, направленным вдоль и навстречу полю, окажутся примерно равными. Если начать облучать этот образец электромагнитным излучением строго определенной частоты, все протоны с магнитным моментом (и спином) «вдоль поля» перевернутся, заняв положение «навстречу полю». При этом происходит резонансное поглощение энергии, а во время процесса возвращения к исходному состоянию, называемому релаксацией, — переизлучение полученной энергии, которое можно обнаружить. Это явление и называется ядерным магнитным резонансом, ЯМР. Средняя поляризация вещества, от которой зависит полезный сигнал при ЯМР, прямо пропорциональна напряженности внешнего магнитного поля. Чтобы получить сигнал, который можно обнаружить и отделить от шумов, требуется сверхпроводящий магнит — только ему под силу создать магнитное поле с индукцией порядка 1−3 Тл.

Магнитный газ

МР-томограф «видит» скопления протонов, поэтому отлично подходит для изучения и диагностики мягких тканей и органов, содержащих большие количества водорода (в основном в виде воды), а также дает возможность различать магнитные свойства молекул. Таким способом можно, скажем, отличить артериальную кровь, содержащую гемоглобин (основной переносчик кислорода в крови), от венозной, содержащей парамагнитный дезоксигемоглобин, — именно на этом основана фМРТ (функциональная МРТ), позволяющая отслеживать активность нейронов головного мозга.


Но, увы, такая замечательная методика, как МРТ, совершенно не приспособлена для изучения заполненных воздухом легких (даже если наполнить их водородом, сигнал от газообразной среды с низкой плотностью будет слишком слаб на фоне шумов). Да и мягкие ткани легких не слишком хорошо видны с помощью МРТ, поскольку они «пористые» и содержат мало водорода.

Можно ли обойти это ограничение? Можно, если использовать «намагниченный» газ — в этом случае средняя поляризация будет определяться не внешним полем, потому что все (или почти все) магнитные моменты будут ориентированы в одном направлении. И это вовсе не фантастика: в 1966 году французский физик Альфред Кастлер получил Нобелевскую премию с формулировкой «За открытие и разработку оптических методов исследования резонансов Герца в атомах». Он занимался вопросами оптической поляризации спиновых систем — то есть как раз «намагничиванием» газов (в частности, гелия-3) с помощью оптической накачки при резонансном поглощении фотонов с круговой поляризацией.


Ядерный магнитный резонанс использует магнитные свойства ядер водорода — протонов. Без внешнего магнитного поля магнитные моменты протонов ориентированы произвольно (как на первом изображении). При наложении мощного магнитного поля магнитные моменты протонов ориентируются параллельно полю — либо «вдоль», либо «навстречу». Два этих положения имеют разную энергию (2). Радиочастотный импульс с резонансной частотой, соответствующей разнице энергий, «переворачивает» магнитные моменты протонов «навстречу» полю (3). После окончания радиочастотного импульса происходит обратный «переворот», и протоны излучают на резонансной частоте. Этот сигнал принимается радиочастотной системой томографа и используются компьютером для построения изображения (4).

Дышите глубже

Пионерами использования поляризованных газов в медицине стала группа исследователей из Принстона и Нью-йоркского университета в Стони-Брук. В 1994 году ученые опубликовали в журнале Nature статью, в которой впервые было продемонстрировано изображение легких мыши, полученное с помощью МРТ.

Правда, МРТ не совсем стандартной — методика была основана на отклике не ядер водорода (протонов), а ядер ксенона-129. К тому же газ был не совсем обычным, а гиперполяризованным, то есть заранее «намагниченным». Так родился новый метод диагностики, который вскоре начали применять и в человеческой медицине.

Гиперполяризованный газ (обычно в смеси с кислородом) попадает в самые дальние закоулки легких, что дает возможность получить МРТ-снимок с разрешением на порядок выше лучших рентгеновских снимков. Можно даже построить детальную карту парциального давления кислорода в каждом участке легких и потом сделать заключение о качестве кровяного потока и диффузии кислорода в капиллярах. Эта методика позволяет изучить характер вентиляции легких у астматиков и контролировать процесс дыхания критических пациентов на уровне альвеол.


Как работает МРТ. МР-томограф обнаруживает скопления протонов — ядер атомов водорода. Поэтому МР-томография показывает различия в содержании водорода (в основном воды) в различных тканях. Существуют и другие способы отличать одну ткань от другой (скажем, различия в магнитных свойствах), которые применяются в специализированных исследованиях.

Достоинства МРТ с использованием гиперполяризованных газов этим не ограничиваются. Поскольку газ гиперполяризован, уровень полезного сигнала оказывается значительно выше (примерно в 10000 раз). Это означает, что отпадает необходимость в сверхсильных магнитных полях, и приводит к конструкции так называемых слабопольных МР-томографов — они дешевле, мобильнее и гораздо просторнее. В таких установках используются электромагниты, создающие поле порядка 0,005 Тл, что в сотни раз слабее стандартных МР-томографов.

Маленькое препятствие

Хотя первые эксперименты в этой области проводились с гиперполяризованным ксеноном-129, вскоре его заменил гелий-3. Он безвреден, позволяет получать более четкие изображения, чем ксенон-129, имеет в три раза больший магнитный момент, что обусловливает более сильный сигнал в ЯМР. Кроме того, обогащение ксенона-129 из-за близости массы с другими изотопами ксенона — дорогой процесс, да и достижимая поляризация газа существенно ниже, чем у гелия-3. К тому же ксенон-129 обладает седативным эффектом.

Но если слабопольные томографы просты и дешевы, почему же метод МРТ с гиперполяризованным гелием не используется сейчас в каждой поликлинике? Есть одно препятствие. Но зато какое!


Наследие холодной войны

Единственный способ получения гелия-3 — распад трития. Большая часть запасов 3He обязана своим происхождением распаду трития, произведенного во время ядерной гонки вооружений в период холодной войны. В США к 2003 году было накоплено примерно 260 000 л «сырого» (неочищенного) гелия-3, а к 2010 году осталось только 12000 л незадействованного газа. В связи с возрастанием спроса на этот дефицитный газ в 2007 году даже было восстановлено производство ограниченных количеств трития, и до 2015 года планируется дополнительно получать по 8000 л гелия-3 ежегодно. При этом годовой спрос на него уже сейчас составляет не менее 40 000 л (из них только 5% используется в медицине). В апреле 2010 года американский Комитет по науке и технологии США сделал вывод, что нехватка гелия-3 приведет к реальным негативным последствиям для многих областей. Даже ученые, работающие в ядерной отрасли США, испытывают трудности с приобретением гелия-3 из запасов государства.

Охлаждение смешиванием

Еще одна отрасль, которая не может обойтись без гелия-3 — это криогенная промышленность. Для достижения сверхнизких температур применяется т.н. рефрижератор растворения, который использует эффект растворения гелия-3 в гелии-4. При температуре ниже 0.87 К смесь разделяется на две фазы — богатую гелием-3 и гелием-4. Переход между этими фазами требует энергии, и это дает возможность охлаждения до очень низких температур — до 0,02 К. Простейшее такое устройство имеет достаточный запас гелия-3, который постепенно перемещается через границу раздела фаз в фазу, богатую гелием-4 с поглощением энергии. Когда запас гелия-3 закончится, устройство не сможет работать далее — оно «одноразовое».
Именно такой способ охлаждения, в частности, использовался в орбитальной обсерватории Planck Европейского космического агентства. В задачу «Планка» входила регистрация анизотропии реликтового излучения (с температурой около 2,7 К) с высоким разрешением с помощью 48 болометрических детекторов HFI (High Frequency Instrument), охлаждаемых до 0,1 К. До того, как запас гелия-3 в системе охлаждения был исчерпан, «Планк» успел сделать 5 снимков неба в микроволновом диапазоне.

Аукционная цена гелия-3 колеблется в районе $2000 за литр, причем никаких тенденций к снижению не наблюдается. Дефицит этого газа обусловлен тем, что основная часть гелия-3 используется для изготовления нейтронных детекторов, которые применяются в устройствах для обнаружения ядерных материалов. Такие детекторы регистрируют нейтроны по реакции (n, p) — захвату нейтрона и испусканию протона. А чтобы засечь попытки завоза ядерных материалов, таких детекторов требуется очень много — сотни тысяч штук. Именно по этой причине гелий-3 стал фантастически дорог и малодоступен для массовой медицины.

Впрочем, надежды есть. Правда, возлагаются они не на лунный гелий-3 (его добыча остается отдаленной перспективой), а на тритий, образующийся в тяжеловодных реакторах типа CANDU, которые эксплуатируются в Канаде, Аргентине, Румынии, Китае и Южной Корее.

Не исключено, что в ближайшие годы мы станем свидетелями Лунной гонки-2, победитель (или победители) которой получит в свои руки практически неисчерпаемый источник энергии. Это в свою очередь, позволит человечеству выйти на качественно новый технологический уклад, о параметрах которого мы можем только догадываться.

Что такое гелий-3?

Из школьного курса физики мы помним, что атомная масса гелия равняется четырем и этот элемент является инертным газом. Его проблематично использовать в каких-либо химических реакциях, тем более с выделением энергии. Совсем другое дело - изотоп гелия с атомной массой 3. Он способен входить в термоядерную реакцию с дейтерием (изотопом водорода с атомной массой 2) в результате чего образуется гигантская энергия за счет синтеза обычного гелия-4 с выделением протона (3 Не + D → 4 Не + p + энергия). Подобным образом из всего одного грамма гелия-3 можно получить такую же энергию, как при сжигании 15-ти тонн нефти.

Тонны гелия-3 хватит для энерговыделения на уровне 10 ГВт в течение года. Таким образом, чтобы закрыть все сегодняшние энергопотребности России, ежегодно понадобится 20 тонн гелия-3, а для всего человечества потребуется примерно 200 тонн данного изотопа в год. При этом отпадет необходимость жечь нефть и газ, запасы которых не безграничны, по последним оценкам разведанных запасов углеводородов - человечеству хватит всего на полвека. Не нужно будет эксплуатировать и достаточно опасные АЭС, что после Чернобыля и Фукусимы приобрело особую актуальность.


Где взять гелий-3?

При современном развитии технологий единственным реально доступным источником этого элемента является поверхность Луны. Сам по себе гелий-3 образуется в недрах звезд (например, нашего Солнца) в результате соединения двух атомов водорода.

При этом основным продуктом данной реакции является обычный гелий-4, а изотоп-3 образуется в малых количествах. Часть его выносится солнечным ветром и равномерно распределяется по планетной системе.


На Землю гелий-3 практически не выпадает, поскольку его атомы отклоняются магнитным полем нашей планеты. Зато на планетах, у которых такое поле отсутствует, элемент осаждается в верхних слоях грунта и постепенно накапливается. Ближайшим к Земле небесным телом, у которого отсутствует магнитное поле, является Луна, поэтому именно здесь сосредоточены доступные человечеству запасы этого ценного энергоносителя.


Подтверждением тому служат не только теоретические выкладки, но и результаты эмпирических исследований. Во всех пробах лунного грунта, доставленных на Землю, был обнаружен гелий-3 в относительно высоких концентрациях. В среднем - на 100 тонн реголита приходится 1 гр. данного энергоизотопа.

Таким образом, чтобы извлечь вышеупомянутые 20 тонн гелия-3 для полного удовлетворения годовых энергопотребностей РФ, понадобится «перелопатить» 2 000 млн. тонн лунного грунта.

Физически это соответствует участку на Луне размерами 20х20 км с глубиной карьера 3 м. Задача по организации столь масштабной добычи - достаточно сложная, но вполне решаемая, уверены современные инженеры. Судя по всему, более трудной и дорогостоящей проблемой станет доставка десятков тонн топлива для теромоядерных печей на Землю.


Чего не хватает человечеству для гелиевой энергореволюции?

Для развития на Земле полноценной термоядерной энергетики на базе гелия-3 людям предстоит решить три основных задачи.

1. Создание надежных и мощных средств доставки грузов по маршруту Земля-Луна и обратно.

2. Возведение лунных баз и комплексов по добыче гелия-3, которое сопряжено с множеством технологических проблем.

3. Строительство собственно термоядерных электростанций на Земле, для чего также предстоит преодолеть определенные технологические барьеры.

К решению первой задачи человечество придвинулось практически вплотную. Все четыре страны, участвующие в Лунной гонке-2 плюс Европейский Союз, уже разработали или разрабатывают ракеты тяжелого класса, способны забрасывать тонны груза на лунную орбиту. Например, к 2027 г. в России запланирована реализация «в железе» ракеты-носителя «Ангара-А5В», которая будет способна доставить к Луне не менее 10 тонн полезного груза. С обратной транспортировкой будет попроще, поскольку сила притяжения Луны в 6 раз меньше земной, но здесь проблемой будет топливо. Его придется либо завозить с Земли, либо вырабатывать на поверхности нашего спутника.



Гораздо более серьезной является вторая задача, поскольку помимо организации собственно добычи гелия-3 из реголита инженерам придется создать надежные лунные базы с системами жизнеобеспечения для шахтеров будущего. В этом сильно помогут технологии, наработанные благодаря многолетней эксплуатации орбитальных станций, прежде всего МКС и «Мир». Как в России, так и в других странах сегодня активно проектируются лунные базы и, пожалуй, наша страна на сегодня имеет максимум технологий для реального воплощения подобных проектов.


Что касается третьей проблемы, то работы по созданию термоядерных реакторов идут на Земле последние три десятилетия. Основной технологической трудностью здесь является проблема удержания высокотемпературной плазмы (необходимой для «розжига» термоядерного синтеза) в т.н. «магнитных ловушках».

Этот вопрос уже решен для реакторов, работающих на принципе соединения дейтерия и трития (D + T = 4 He + n + энергия). Для поддержания такой реакции достаточно температуры в 100 млн. градусов.

Однако подобные реакторы никогда не станут массовыми, поскольку они чрезвычайно радиоактивны. Для запуска реакции с участием гелия-3 и дейтерия понадобятся температуры в 300-700 млн. градусов. Пока такую плазму не удается длительно удерживать в магнитных ловушках, но возможно к прорыву в этой области приведет запуск Международного экспериментального термоядерного реактора (ITER), который сейчас строится во Франции и будет введен в эксплуатацию к 2025 г.


Таким образом, десятилетие между 2030-2040 гг. имеет все шансы оказаться стартовым в деле развития энергетики на базе гелия-3, поскольку к этому времени, судя по всему, будут преодолены технологические препятствия, указанные выше. Соответственно, останется найти деньги на реализацию энергопроекта, который способен перевести человечество в эру чрезвычайно дешевой (почти дармовой) энергии со всеми вытекающими последствиями, как для экономики, так и качества жизни каждого человека.