Где применяется закон бернулли. Школьная энциклопедия

Какое отношение к авиации имеет закон Бернулли? Оказывается, самое прямое. С его помощью можно объяснить возникновение подъёмной силы крыла самолёта и других аэродинамических сил.

Закон Бернулли

Автор этого закона - швейцарский физик-универсал, механик и математик. Даниил Бернулли - сын известного швейцарского математика Иоганна Бернулли. В 1838 г. он опубликовал фундаментальный научный труд «Гидродинамика», в котором и вывел свой знаменитый закон.

Следует сказать, что в те времена аэродинамика как наука ещё не существовала. А закон Бернулли описывал зависимость скорости потока идеальной жидкости от давления. Но в начале ХХ века начала зарождаться авиация. И вот тут закон Бернулли оказался очень кстати. Ведь если рассматривать воздушный поток как несжимаемую жидкость, то этот закон справедлив и для воздушных потоков. С его помощью смогли понять, как поднять в воздух летательный аппарат тяжелее воздуха. Это важнейший законом аэродинамики, так как он устанавливает связь между скоростью движения воздуха и действующим в нём давлением, что помогает делать расчёты сил, действующих на летательный аппарат.

Закон Бернулли - это следствие закона сохранения энергии для стационарного потока идеальной и несжимаемой жидкости .

В аэродинамике воздух рассматривается как несжимаемая жидкость , то есть, такая среда, плотность которой не меняется с изменением давления. А стационарным считается поток, в котором частицы перемещаются по неизменным во времени траекториям, которые называют линиями тока. В таких потоках не образуются вихри.

Чтобы понять сущность закона Бернулли, познакомимся с уравнением неразрывности струи.

Уравнение неразрывности струи

Из него видно, что чем выше скорость течения жидкости (а в аэродинамике – скорость воздушного потока), тем меньше давление, и наоборот.

Эффект Бернулли можно наблюдать, сидя у камина. Во время сильных порывов ветра скорость воздушного потока возрастает, а давление падает. В комнате давление воздуха выше. И языки пламени устремляются вверх в дымоход.

Закон Бернулли и авиация

С помощью этого закона очень просто объяснить, как возникает подъёмная сила для летательного аппарата тяжелее воздуха.

Во время полёта крыло самолёта как бы разрезает воздушный поток на две части. Одна часть обтекает верхнюю поверхность крыла, а другая нижнюю. Форма крыла такова, что верхний поток должен преодолеть больший путь для того, чтобы соединиться с нижним в одной точке. Значит, он двигается с большей скоростью. А раз скорость больше, то и давление над верхней поверхностью крыла меньше, чем под нижней. За счёт разности этих давлений и возникает подъёмная сила крыла.

Во время набора самолётом высоты возрастает разница давлений, а значит, увеличивается и подъёмная сила, что позволяет самолёту подниматься вверх.

Сразу сделаем уточнение, что вышеописанные законы действуют, если скорость движения воздушного потока не превышает скорость звука (до 340 м/с). Ведь мы рассматривали воздух как несжимаемую жидкость. Но оказывается, что при скоростях выше скорости звука воздушный поток ведёт себя по-другому. Сжимаемостью воздуха пренебрегать уже нельзя. И воздух в этих условиях, как любой газ, старается расшириться и занять больший объём. Появляются значительные перепады давления или ударные волны. А сам воздушный поток не сужается, а, наоборот, расширяется. Решением задач о движении воздушных потоков со скоростями, близкими или превышающими скорость звука, занимается газовая динамика , возникшая как продолжение аэродинамики.

Используя аэродинамические законы, теоретическая аэродинамика позволяет сделать расчёты аэродинамических сил, действующих на летательный аппарат. А правильность этих расчётов проверяют, испытывая построенную модель на специальных экспериментальных установках, которые называются аэродинамическими трубами . Эти установки позволяют измерить величину сил специальными приборами.

Кроме исследования сил, действующих на аэродинамические модели, с помощью аэродинамических измерений изучают распределение значений скорости, плотности и температуры воздуха, обтекающего модель.

Закон Бернулли Закон Бернулли Швейцарский учёный в области математики, механики, физиологии, медицины, академик (1725), иностранный почётный член Петербургской АН (1733). Один из основоположников теоретической гидродинамики. Вывел основное уравнение стационарного движения идеальной несжимаемой жидкости, находящейся под действием только сил тяжести. Разрабатывал кинетические представления о газах. ()




1. Что утверждает закон сохранения полной механической энергии? 2. Что называется полной механической энергией? 3. Какая энергия называется кинетической? По какой формуле рассчитывается? 4. Какая энергия называется потенциальной? Формулы потенциальной энергии.



При переходе жидкости из широкого участка в узкий скорость течения увеличивается, то это значит, что где-то на границе между узким и широким участком трубы жидкость получает ускорение. А по второму закону Ньютона для этого на этой границе должна действовать сила. Этой силой может быть только разность между силами давления в широком и узком участках трубы. В широком участке трубы давление должно быть больше, чем в узком. Этот вывод следует из закона сохранения энергии.


Сила давления жидкости – это и есть сила упругости сжатой жидкости. В широкой части трубы жидкость несколько сильнее сжата, чем в узкой. Правда, мы только что говорили, что жидкость считается несжимаемой. Но это значит, что жидкость не настолько сжата, чтобы сколько-нибудь заметно изменился ее объем. Очень малое сжатие, вызывающее появление силы упругости, неизбежно. Оно и уменьшается в узких частях трубы.


Если в узких местах трубы увеличивается скорость жидкости, то увеличивается и ее кинетическая энергия. А так как мы условились, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. Но это не потенциальная энергия mgh, потому что труба горизонтальная и высота h везде одинакова. Значит, остается только потенциальная энергия, связанная с силой упругости.


Чтобы разобраться в причинах уменьшения давления в узких частях и увеличения в широких, используем закон сохранения энергии и математические навыки. Работа сил давления, совершенная над элементом жидкости при его перемещении, равна: Вывод: Чем больше скорость потока жидкости, тем меньше ее давление.


Зависимость давления от скорости течения называют эффектом, а уравнение – законом Бернулли в честь автора, швейцарского ученого Даниила Бернулли, который работал в Санкт-Петербурге. Закон Бернулли для ламинарных потоков жидкости и газов является следствием закона сохранения энергии. Здесь плотность жидкости,плотность скорость потока,скорость высота, на которой находится рассматриваемый элемент жидкости,высота давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости,давление ускорение свободного падения.ускорение свободного падения


Практические следствия Закон Бернулли объясняет эффект притяжения между телами, находящимися вблизи границ потоков движущихся жидкостей (газов). Иногда это притяжение может создавать угрозу безопасности. Например, при движении скоростного поезда «Сапсан» (скорость движения более 200 км/час) для людей на платформах возникает опасность сброса под поезд.





Встречные поезда. Скоростные поезда при встрече должны замедлить ход, иначе стекла в вагонах разобьются. Почему? В какую сторону при этом выпадают стекла: внутрь вагонов или наружу? Может ли случиться подобное, если поезда движутся в одном направлении? Будет ли вас притягивать к поезду или отталкивать от него, если вы окажетесь слишком близко от быстро идущего поезда? (Впереди быстро идущего поезда создается фронт высокого давления, а за ним - область низкого давления. Когда встречные поезда разъезжаются, стекла в вагонах могут быть выдавлены наружу, поскольку между поездами возникает область пониженного давления).





Осенью 1912 г океанский пароход "Олимпик" плыл в открытом море, а почти параллельно ему, на расстоянии сотни метров, проходил с большой скоростью другой корабль, гораздо меньший, броненосный крейсер "Гаук". Когда оба судна заняли положение, изображенное на рисунке, произошло нечто неожиданное: меньшее судно стремительно свернуло с пути, словно повинуясь неведомой силе, повернулось носом к большому кораблю и, не слушаясь руля, двинулось почти прямо на него. "Гаук" врезался носом в бок "Олимпика".Удар был так силен, что "Гаук" проделал в борту "Олимпика" большую пробоину. Случай столкновения двух кораблей рассматривался в морском суде. Капитана корабля "Олимпик" обвинили в том, что он не дал команду пропустить броненосец. Как вы думаете, что произошло? Почему меньший корабль, не слушаясь руля, пошел наперерез "Олимпику"?


Уравнение Бернулли считается одним из основных законов гидромеханики, он устанавливает связь между давлением в потоке жидкости и скоростью его движения в гидравлических системах: с увеличением скорости движения потока давление в нем должно падать. С его помощью объясняются многие гидродинамические эффекты.


Рассмотрим некоторые хорошо известные из них. Подъем и распыление жидкости в пульверизаторе (рис. 1) происходит благодаря пониженному давлению в струе воздуха, проходящему с большой скоростью над трубочкой, опущенной в сосуд с жидкостью. Подниматься жидкость вверх заставляет атмосферное давление, которое больше давления в струе воздуха.





Если подуть между двумя листами бумаги, касающимися друг друга (рис. 5), то они не разойдутся, как казалось бы, должно произойти, а, наоборот, прижмутся друг к другу. Листки двинутся друг к другу, хотя, казалось бы, вы вдунули между ними «больше» воздуха и они должны были раздвинуться. Но ведь вы выдуваете воздух между листками прочь, создавая здесь давление даже ниже, чем вокруг. Значит, давление воздуха между листками делается меньше, чем снаружи, и возникает сила, сводящая их вместе.


ОПЫТ С ШАРИКОМ К шарику от настольного тенниса прикрепите пластилином нитку длиной 4050 см и, держа шарик за нить, поднесите его к струе воды. Почему шарик притягивается и удерживается в струе? Когда из водопроводного крана течет струя воды, то она увлекает прилегающий слой воздуха. Когда шарик подносят к струе, происходит следующее: вблизи струи воздух движется с некоторой скоростью и давление здесь меньше, чем по другую сторону шарика. В итоге за счет разности давлений на шарик действует сила, прижимающая его к струе.






Ситуация 1. Ветер под зданием. В США был предложен проект жилого дома, в котором этажи, подобно мостам, "подвешиваются" между двумя мощными стенами, а пространство под домом остается открытым. Внешне такое здание выглядит весьма привлекательно, но оно абсолютно не пригодно для ветреных районов. Одно из таких зданий было выстроено на территории Массачусетского технологического института. И вот когда подули весенние ветры, скорость ветра под зданием достигла 160 км/ч. Чем вызвано столь сильное увеличение скорости ветра? (Ветер, попадающий на здание, частично прогоняется через нижний просвет. При этом скорость его возрастает).


В дождливую ветряную погоду, каждый из нас замечал, что раскрытые зонтики иногда "выворачиваются наизнанку" Почему это происходит? Аналогичное действие производит на крыши домов сильный ураган. (Поток воздуха, набегающий на изогнутую поверхность зонта, движется по руслу своеобразной сужающейся трубы с большей скоростью, чем воздух в нижней части, следовательно, давление снизу больше, чем вверху, и зонт выворачивается)


Его действие (закона Бернулли) можно наблюдать в повседневной жизни как только включаешь воду в душе, шторка врывается внутрь кабинки, потому что увеличение скорости воздуха и воды вызывает скачок в давлении. Разница давлений внутри и снаружи кабины приводит к тому, что шторку затягивает внутрь.


Опыт Для опыта изготовим цилиндр из плотной, но не толстой бумаги диаметром 5 см, длиной см. На цилиндр намотаем ленточку, один конец которой прикрепим к линейке. Резким движением вдоль горизонтальной поверхности стола сообщим цилиндру сложное движение (поступательное и вращательное). При большой скорости цилиндр поднимается вверх и описывает небольшую вертикальную петлю. Объясните, почему это происходит. Уравнение Бернулли объясняет такое поведение рулона (и закрученного мячика): вращение нарушает симметричность обтекания за счёт эффекта прилипания. С одной стороны бумажного цилиндра скорость потока больше (над цилиндром вектор скорости воздуха сонаправлен вектору скорости цилиндра), значит, давление там понижается, а под цилиндром вектор скорости воздуха антипараллелен вектору скорости цилиндра. В результате разности давлений возникает подъёмная сила, называемая силой Магнуса. Эта сила поднимает цилиндр вверх, а не по параболе.


Это явление носит название эффекта Магнуса, по имени ученого, открывшего и исследовавшего его экспериментально. Эффект Магнуса проявляется в таких природных явлениях, как образование смерчей над поверхностью океана. В месте встречи двух воздушных масс с разными температурами и скоростями возникает вращающийся вокруг вертикальной оси столб воздуха и несется вперед. В поперечнике такой столб может достигать сотен метров и несется со скоростью около 100 м/с. Из-за быстрого вращения воздух отбрасывается к периферии вихря и давление внутри него понижается. Когда такой столб приближается к воде, то засасывает ее в себя, представляя огромную опасность для судов.


Ситуация 6. В футболе одним из коварных ударов для вратаря считается так называемый "сухой лист". Похожий подрезанный удар - "сплин" применяют в теннисе и других играх с мячом. Предвидеть, куда направится такой крученый мяч, неопытному спортсмену довольно трудно. Объясните, почему так происходит. ("Виновата" во всем сила Магнуса, проявляющаяся при движении закрученного вдоль своей оси симметричного тела - мяча, цилиндра и т.п.).


К сожалению, великий Бернулли не знал о явлении эжекции. Эжектор одновременно с инжектором был изобретен во Франции инженером Анри Жиффаром в 1858 г, спустя столетие после публикации формулы Бернулли. Выходит, что Бернулли сделал своё открытие, опираясь на показания измерительного прибора, который измерял совсем не давление в потоке, а сумму статического давления и интенсивности эжекции. В потоке жидкости или газа нет места, где отсутствует движение среды, просто в одних местах оно является ламинарным, а в других - турбулентным, но эжекция проявляется и в том и в другом случае. Поэтому, такой "манометр" правильнее будет назвать -"эжектомером". Эжекция - - процесс подсасывания жидкости или газа за счет кинетической энергии струи другой жидкости или газа.


Эжектор, работая по закону Ньютона, использует первый поток частиц с высокой кинетической энергией для сноса по потоку частиц окружающей его среды, попадающих в первый поток под давлением этой же окружающей среды, что и создаёт в пространстве, окружающем сечение скоростного потока первой среды, пониженное давление, что в свою очередь, вызывает подсос в это пространство частиц другой среды. А статическое давление в первом потоке практически всегда больше, чем в пространстве окружающей среды.

Течения идеальной несжимаемой жидкости уравнение Бернулли имеет вид

,

В последнем уравнении все члены имеют размерность давления , p - статическое давление ; - динамическое давление ; hρg - весовой давление.

Если такие уравнения записать для двух сечений течения, то получим:

Для горизонтальной течения средние члены в левой и правой части уравнения сокращаются и оно принимает вид:

есть в сложившейся горизонтальной течения идеальной несжимаемой жидкости в каждом ее сечении сумма статического и динамического давлений будет постоянной. Так, в тех местах течения, где скорость жидкости больше (узкие сечения), ее динамическое давление увеличивается, а статическое уменьшается. На этом явлении основано действие струйных насосов, эжекторов, расходомеров Вентури и Пико, пульверизаторов .

Уравнение Бернулли является следствием закона сохранения энергии . Если жидкость не идеальная, то ее механическая энергия рассеивается и давление вдоль трубопровода, по которому течет такая жидкость, падает. Для реальной вязкой жидкости в правой части уравнений, следует добавить величину потерь давления Δр вт на гидравлическое сопротивление движению.

Уравнение Бернулли широко применяют для решения многих гидравлических задач в нефтегазовой делу.


1. В технике и быту

2. Примеры применения закона Бернулли

Трубка Вентури применяется для определения скорости течения в трубах с помощью измерения давления в двух разных точках трубопровода и, таким образом, помогает предотвратить последствия кавитации . Трубка Вентури постепенно сужает диаметр трубопровода. Такой сужающее отверстие ограничивает поток жидкости, что приводит разность давлений в точках измерения (в начале сужения и в узкой части). Базируется данное измерение на эффекте Вентури, формулу для которого можно получить из уравнение непрерывности и закона Бернулли:

где S - площадь взаимодействия жидкости с поверхностью трубки,


2.1. Трубка Пито

Трубка Пито применяется для измерения разности давлений в двух точках, то есть с помощью этой трубки можно найти динамическое давление. Для жидкостей и газов играет роль манометра , один конец которого направлен навстречу потоку, а другой выступает из него и подключен к прибору, который измеряет давление. Имеет вид буквы "L". Если перед отверстием A скорость уменьшается до значения , То

При установке избыточного давления в трубке избыточное давление вычисляется по формуле

где - Коэффициент, - Скорость вихря.


2.2. Формула Торричелли

Закон Торричелли показывает, что при истечении идеальной нестискувальнои жидкости из щели в боковой стенке или на дне сосуда жидкость приобретает скорость тела, падающего с определенной высоты. С помощью этого можно вычислить максимальный уровень утечки жидкости из сосуда. Для подтверждения можно воспользоваться законом Бернулли, выведя из него формулу Торричелли: ρgh + p 0 = (pV 2) / 2 + p 0, где p0 - атмосферное давление, h - высота столба жидкости в сосуде, V - скорость истечения жидкости. Отсюда V = √ 2gh.


2.3. Пульверизатор

В пульверизаторе применяется главный следствие закона Бернулли: с ростом скорости происходит рост динамического давления и падение статического давления. В капилляры пульверизатора вдувается воздух или пар. Вдувание снижает атмосферное давление в капилляре, и жидкость из баллона пульверизатора под действием большего атмосферного давления поднимается капилляром. Там она раздробляется струей воздуха.

2.4. Водоструйный насос

Водоструйный насос - резервуар, в который впаяны две трубки. Под действием давления в первую трубку протекает вода, попадая затем в другую трубку. В суженной части первой трубки возникает уменьшен давление, меньше атмосферного. Поэтому в резервуаре создается напряжение. Трубку подсоединяют к резервуару, который проходит в сосуд, из которого необходимо откачать воздух.

2.5. Карбюратор

Карбюратор - устройство в системе питания карбюраторных двигателей внутреннего сгорания, который применяется для смешивания бензина и воздуха. При движении поршня в такте впуска давление в цилиндре понижается. При этом окружающий воздух всасывается цилиндром через воздушную трубу карбюратора - диффузор . В узкой части диффузора, где давление соответственно наименьший расположен распылитель, из которого вытекает топливо. Топливо измельчается струей воздуха на маленькие капли и образуется горючая смесь.


2.6. Осушение болот

Осушение болот по принципу закона Бернулли проводилось очень давно. До болота подводили каналы от ближайшей реки. Вследствие большой разницы давлений между водой болота и водой из канала вода из канала "впитывала" воду из болота.

2.7. Ракета

В конструировании ракет также применяется закон Бернулли. Для создания тяги в ракете используется топливо, которое сжигают в камере сгорания. Газы образуют реактивную струю, который ускоряется, проходя через специальное сужение - сопло . Именно сужение сопла и является основной причиной ускорения реактивной струи газов и увеличения реактивной тяги.

2.8. Свисток

Свисток представляет собой пример использования закона Бернулли в газоструменевих излучателях звуковых волн. Вихревой свисток представляет собой цилиндрическую камеру, в подается поток воздуха через тангенциально расположенную трубку. Образовавшийся вихревой поток поступает в выходную трубку меньшего диаметра, расположенной на оси. Там интенсивность вихря резко повышается и давление в его центре становится значительно ниже атмосферного. Перепад давления периодически выравнивается за счет прорыва газов из атмосферы в выходную трубку и разрушения вихря.


2.9. Диск Рэлея

Диск Рэлея - прибор для измерения колебательной скорости частиц в звуковой волне и силы звука. Представляет собой тонкую пластинку круглой формы, из слюды или металла, подвешенную на тонкую кварцевую нить. Обычно диск размещают под углом 45 ? к направлению колебаний частиц среды, поскольку такое расположение чутко колебаниям. При распространении звуковых волн диск возвращается перпендикулярно к направлению колебаний. Это происходит из-за того, что при обтекании пластинки давление по закону Бернулли больше в том месте, где скорость меньше. Силы давления уворюють крутящий момент, который уравновешивается за счет упругости нити. При этом диск устанавливается к направлению потока под углом больше, чем 45 ?. по углу поворота диска определяют силу звука. В постоянном потоке угол поворота диска Рэлея пропорциональна квадрату скорости, при звуковых колебаниях - квадрату амплитуды скорости, и этот угол не зависит от частоты.


3. Неправильное применение закона Бернулли

Подъемная сила самолета обусловлено специфическим строением крыла. До недавнего времени для объяснения причины подъемной силы крыла применяли закон Бернулли. Согласно закону Бернулли, объяснения подъемной силы самолета выглядит так: крыло имеет особое строение - снизу оно имеет прямое, а его верхняя часть закругленная. Это позволяет увеличить площадь верхней части крыла. Согласно закону Бернулли, с увеличением скорости давление уменьшается. А поскольку воздух преодолевает путь под крылом и над крылом за одинаковый промежуток времени, под крылом возникает область с увеличенным давлением, что приводит подъем самолета в воздух. Таким образом возникает подъемная сила.

Однако, согласно современным представлениям, подъемная сила крыла возникает не вследствие закона Бернулли. Движение воздушной массы перед крылом можно считать сплошным, он характеризуется одним показателем скорости. Когда воздушная масса контактирует с крылом, она разбивается на две части, которые, вследствие формы крыла, имеют разные скорости и это обуславливает разное давление. Однако это не может быть причиной подъемной силы, поскольку эти две воздушные массы обтекают соответствии верхнюю и нижнюю части крыла не за одинаковое время, поскольку, в отличие от прежних представлений, эти воздушные потоки не соединяются на конце крыла. Итак, большая длина верхней части крыла не означает большей скорости движения воздуха. Итак, хотя закон Бернулли и можно применить для воздушных масс, которые рассекаются крылом (большая скорость обуславливает меньшее давление), однако он один не объясняет подъемную силу крыла. Для полного объяснения следует применять теорему Жуковского.


Другие представители семьи Бернулли и другие значения перечислены на странице Бернулли (семья). Уравнение Бернулли показывает, что давление жидкости (или газа) больше там, где скорость её течения меньше и наоборот. Бернулли, Даниил - Эта статья о физике и математике Данииле Бернулли. Эти силы и создают давление жидкости. Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Движение жидкости по трубам. Закон Бернулли

Слева на большой объем жидкости между двумя поверхностями действует сила, а справа — (минус, потому что влево). Два указанных пути получения уравнения Бернулли не эквивалентны. Уважаемый посетитель, Вы находитесь на странице, где представлен урок Движение жидкости по трубам.

В данном уроке Вы узнаете как движется жидкость по трубам и в чем заключается закон Бернулли.В этом уроке мы применим закон сохранения энергии к движению жидкости или газа по трубам.

В машинах по трубам поступает масло для смазки, топливо в двигатели и т. д. Движение жидкости по трубам нередко встречается и в природе. В какой-то мере течение воды в реках тоже является разновидностью течения жидкости по трубам. Это значит, что вся та жидкость, которая за время t проходит через первое сечение, за такое же время проходит и через третье сечение, хотя оно по площади значительно меньше, чем первое.

Смотреть что такое «ЗАКОН БЕРНУЛЛИ» в других словарях:

При этом мы считаем, что данная масса жидкости всегда имеет один и тот же объем, что она не может сжаться и уменьшить свой объем (о жидкости говорят, что она несжимаема). Отсюда видно, что при переходе жидкости с участка трубы с большей площадью сечения на участок с меньшей площадью сечения скорость течения увеличивается, т. е. жидкость движется с ускорением. Действительно, если в узких местах трубы увеличивается скорость движения жидкости, то увеличивается и ее кинетическая энергия.

Вот это сжатие жидкости и уменьшается в узких частях трубы, компенсируя рост скорости. И опыт хорошо это подтверждает. Это означает, что в этих местах давление меньше. Такой поток жидкости можно использовать для откачки воздуха.

Дополнительные материалы по теме: Гидродинамика. Уравнение Бернулли для идеальной жидкости.

В узких частях труб, где газ движется быстрее, давление его меньше, чем в широких частях, и может стать меньше атмосферного. Встречный поток воздуха набегает на выпуклую верхнюю поверхность крыла летящего самолета, и за счет этого происходит понижение давления. Движение газа подчиняется закону сохранения механической энергии. Закон Торричелли - Не следует путать с Формула Торричелли. Закон Торричелли, также известный как Теорема Торричелли, – это теорема в гидродинамике, связывающая скорость жидкости, вытекающей через отверстие, с высотой жидкости над отверстием.

Гидродинамика — раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями. Швейцарский ученый Даниил Бернулли длительное время жил в России, именно к этому времени относится создание его главного научного труда — теории гидромеханики.

До сих пор вы рассматривали движение твердых тел. Сегодня мы перенесем знания законов сохранения на движение жидкостей и газов. Будем рассматривать закон Бернулли на качественном уровне. Делаем вывод: скорость течения жидкости в трубе переменного сечения обратно пропорциональна площади поперечного сечения.

Сила (второй закон Ньютона)). Даниил Бернулли (29.1.1700- 17.3.1782), сын Иоганна Бернулли (брат — Якоб Бернулли) . Занимался физиологией и медициной, но больше всего математикой и механикой. Он показал, что поперечная сила, вызывающая это отклонение, возникает из-за взаимодействия двух потоков воздуха: набегающего на снаряд и вращающегося вместе со снарядом.

Уравнение Бернулли объясняет такое поведение рулона (и закрученного мячика): вращение нарушает симметричность обтекания за счёт эффекта прилипания. Это явление носит название эффекта Магнуса, по имени ученого, открывшего и исследовавшего его экспериментально.

В поперечнике такой столб может достигать сотен метров и несется со скоростью около 100м/с. Опыт 5. «Демон» Бернулли. Таким оно остается и в струе, пока в нее не будет «затянут» окружающий воздух. Благодаря этому Холлу удалось увеличить сцепление колес с дорогой и тем самым значительно повысить скорость автомобиля. Согласно уравнению Бернулли, увеличение скорости потока сопровождается понижением давления.

Магнус в 1852 г доказал, возникающая поперечная сила, действующая на тело, вращающееся в обтекающем его потоке жидкости или газа, направлена в сторону, где скорость потока и вращение тела совпадают. Этим опытом ученый установил: если на вращаемый цилиндр набегает поток воздуха, то скорости потока и вращения по одну сторону цилиндра складываются, по другую же — вычитаются.

Размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости. Полное давление состоит из весового, статического и динамического давлений. Это является основной причиной эффекта Магнуса. Закон Бернулли можно применить к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда. Отсюда: . Это - формула Торричелли. Иногда это притяжение может создавать угрозу безопасности.

ЗАКОН БЕРНУЛЛИ - один из основных законов гидродинамики, который связывает скорость потока идеальной несжимаемой жидкости и давление при установившемся течении. Бернулли - (Bernoulli) фамилия. Парадоксальность результатов такого поведения тел можно объяснить, используя закон Берннули (уравнение Бернулли). Это неправильное истолкование смысла уравнения Бернулли.


Возьмём трубу, через которую протекает жидкость. Наша труба не одинакова по всей длине, а имеет различный диаметр сечения. Закон Бернулли выражается в том, что несмотря на различный диаметр, через любое сечение в этой трубе за одно и тоже время протекает одинаковый объём жидкости.

Т.е. сколько жидкости проходит через одно сечение трубы за некоторое время, столько же ее должно пройти за такое же время через любое другое сечение. А так как объём жидкости не изменяется, а сама жидкость практически не сжимается, то изменяется что-то другое.

В более узкой части трубы скорость движения жидкости выше, а давление ниже. И наоборот, в широких частях трубы скорость ниже, а давление выше.



Изменяется давление жидкости и её скорость. Если трубу, по которой течет жидкость, снабдить впаянными в нее открытыми трубками-манометрами (рис. 209), то можно будет наблюдать распределение давления вдоль трубы.

Все сказанное о движении жидкости по трубам относится и к движению газа. Если скорость течения газа не слишком велика и газ не сжимается настолько, чтобы изменялся его объем, и если, кроме того, пренебречь трением, то закон Бернулли верен и для газовых потоков. В узких частях труб, где газ движется быстрее, давление его меньше, чем в широких частях.


Применительно аэродинамике закон Бернулли выражается в том, что набегающий на крыло воздушный поток имеет различную скорость и давление под крылом и над крылом, ввиду чего возникает подъёмная сила крыла

Проведём простой эксперимент. Возьмём небольшой листок бумаги и разместим его прямо перед собой таким образом:

А затем подуем над его поверхностью, то листок бумаги, попреки ожиданиям, вместо того, чтобы прогнуться ещё больше по направлению к Земле, наоборот выпрямится. Всё дело в том, что выдувая воздух над поверхностью листка мы уменьшаем его давление, в то время как давление воздуха под листком остаётся прежним. Получается, что над листком область пониженного давления, а под листком повышенного. Воздушные массы пытаются «перебраться» из области высокого давления в область низкого, и это приводит к тому, что листок выпрямляется.

Можно провести и другой опыт. Взяв 2 листка бумаги и разместив их перед собой следующим образом:

А затем подув в область между ними, листки бумаги, вопреки нашим ожиданиям, вместо того, чтобы отодвинуться друг от друга, наоборот приблизятся. Здесь мы наблюдаем тот же самый эффект. Воздушные массы с внешних сторон листком имеют большее давление, нежели ускоренный нами воздух между листками. Это и приводит к тому, что листки бумаги притягиваются к друг другу.



Этот же принцип используют для осуществления своих полётов парапланы, дельтапланы, самолёты, планёры, вертолёты и др. летательные аппараты. Именно это позволяет взлететь вверх многотонному пассажирскому самолёту.