Функция. Способы задания функций

>>Математика: Способы задания функции

Способы задания функции

Приводя в предыдущем параграфе различные примеры функций, мы несколько обеднили само понятие функции .

Ведь задать функцию - это значит указать правило, которое позволяет по произвольно выбранному значению х из Б(0 вычислить соответствующее значение у. Чаще всего это правило связано с формулой или с несколькими формулами - такой способ задания функции обычно называют аналитическим. Все функции, рассмотренные в § 7, были заданы аналитически. Между тем есть другие способы задания функции, о них и пойдет речь в настоящем параграфе.

Если функция была задана аналитически и нам удалось построить график функции, то мы фактически перешли от аналитического способа задания функции к графическому. Обратный же переход удается осуществить далеко не всегда. Как правило, это довольно трудная, но интересная задача.

Не всякая линия на координатной плоскости может рассматриваться как график некоторой функции. Например, окружность , заданная уравнением х 2 + у 2 - 9 (рис. 51), не является графиком функции, поскольку любая прямая х = а, где | а | <3, пересекает эту линию в д в у х точках (а для задания функции таких точек должно быть не более одной, т.е. прямая х = а должна пересекать линию F только в одной точке либо вообще не должна ее пересекать).

В то же время если эту окружность разрезать на две части - верхнюю полуокружность (рис. 52) и нижнюю полуокружность (рис. 53), - то каждую из полуокружностей можно считать графиком некоторой функции, причем в обоих случаях несложно от графического способа задания функции перейти к аналитическому.

Из уравнения х 2 + у 2 = 9 находим у 2 = 9 - х 2 и далее Графиком функции является верхняя полуокружность окружности х 2 + у 2 =9 (рис. 52), а графиком функции является нижняя полуокружность окружности х 2 + у 2 = 9 (рис. 53).


Этот пример позволяет обратить внимание на одно существенное обстоятельство. Посмотрите на график функции (рис. 52). Сразу ясно, что D(f) = [-3, 3]. А если бы речь шла об отыскании области определения аналитически заданной функции Тогда пришлось бы, как мы это делали в § 7, тратить время и силы на решение неравенства Потому-то обычно и стараются работать одновременно и с аналитическим, и с графическим способами задания функций. Впрочем, за два года изучения курса алгебры в школе вы к этому уже привыкли.

Кроме аналитического и графического, на практике применяют табличный способ задания функции. При этом способе приводится таблица, в которой указаны значения функции (иногда точные, иногда приближенные) для конечного множества значений аргумента. Примерами табличного задания функции могут служить таблицы квадратов чисел, кубов чисел, квадратных корней и т.д.

Во многих случаях табличное задание функции является удобным. Оно позволяет найти значение функции для имеющихся в таблице значений аргумента без всяких вычислений.

Аналитический, графический, табличный - наитабличный, более простые, а потому наиболее популярные словесный задания функции, для наших нужд этих способов вполне достаточно. На самом деле в математике имеется довольно много различных способов задания функции, но мы познакомим вас еще только с одним способом, который используется в весьма своеобразных ситуациях. Речь идет о словесном способе, когда правило задания функции описывается словами. Приведем примеры.

Пример 1.

Функция у = f(х) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х > 0 ставится в соответствие первый знак после запятой в десятичной записи числа х. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой - цифра 5); если х = 13,002, то f(х) = 0; если то, записав в виде бесконечной десятичной дроби 0,6666..., находим f(х) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000... , и мы видим, что первый десятичный знак после запятой есть 0 (вообще-то верно и равенство 15 = 14,999... , но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).

Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное значение первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. У этой функции
Пример 2.

Функция у = f(х) задана на множестве всех действительных чисел с помощью следующего правила: каждому числу х ставится в соответствие наибольшее из всех целых чисел, которые не превосходят х. Иными словами, функция у = f(х) определяется следующими условиями:

а) f(х) - целое число;
б) f(х) < х (поскольку f(х) не превосходит х);
в) f(х) + 1 > х (поскольку f(х) - наибольшее целое число, не превосходящее х, значит, f(х) + 1 уже больше, чем г). Если, скажем, х = 2,534, то f(х) = 2, поскольку, во-первых, 2 - целое число, во-вторых, 2 < 2,534 и, в-третьих, следующее целое число 3 уже больше, чем 2,534. Если х = 47, то /(х) = 47, поскольку, во-первых, 47 - целое число, во-вторых, 47< 47 (точнее, 47 = 47) и, в-третьих, следующее за числом 47 целое число 48 уже больше, чем 47. А чему равно значение f(-0,(23))? Оно равно -1. Проверяйте: -1 - наибольшее из всех целых чисел, которые не превосходят числа -0,232323....

У этой функции (множество целых чисел).

Функцию, о которой шла речь в примере 2, называют целой частью числа; для целой части числа х используют обозначение [х]. Например, = 2, = 47, [-0,(23)] = -1. Очень своеобразно выглядит график функции у = [х] (рис. 54).


Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Задать функцию означает установить правило (закон) с помощью которого по данным значениям независимой переменной находим соответствующие им значения функции. Рассмотрим различные способы задания функции.

Эта запись определяет температуру Т как функцию от времени t:T=f(t). Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения функции сразу, без дополнительных изменений или вычислений. Недостатки: определяет функцию не полностью, а лишь для некоторых значений аргумента; не дает наглядного изображения характера изменения функции с изменением аргумента.

2. Графический способ. Графиком функцииy=f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению. Это может быть некоторая кривая, в частности прямая, множество точек на плоскости.

Преимущество – наглядность, недостаток – нет возможности точно определить значения аргумента. В технике и физике часто он является единственно доступным способом задания функции, например, при пользовании самопишущими приборами, которые автоматически записывают изменение одной величины относительно другой (барограф, термограф и др.).

3. Аналитический способ. По этому способу функция задается аналитически, с помощью формулы. Такой способ дает возможность по каждому численному значению аргумента х найти соответствующее ему численное значение функции у точно или с некоторой точностью.

При аналитическом способе функция может быть задана и несколькими разными формулами. Например, функция

задана в области определения [-, 15] с помощью трех формул.

Если зависимость между х и у задана формулой, разрешенной относительно у, т.е. имеет вид у = f(x) , то говорят, что функция от х задана в явном виде, например,. Если же значения х и у связаны некоторым уравнением видаF(x,y) = 0, т.е. формула не разрешена относительно у, то говорят, что функция задана неявно. Например,. Заметим, что не всякую неявную функцию можно представить в виде у =f(x), наоборот, любую явную функцию всегда можно представить в виде неявной:
. Еще одна разновидность аналитического задания функции – параметрическое, когда аргумент х и функция у являются функциями третьей величины – параметраt:
, где
, Т – некоторый промежуток. Такой способ широко применяется в механике, в геометрии.

Аналитический способ является самым распространенным способом задания функции. Компактность, возможность применения к данной функции аппарата математического анализа, возможность вычисления значений функции при любых значениях аргумента – его основные преимущества.

4. Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами. Например, функция Е(х) – целая часть числа х, функция Дирихле, функция Римана,n!,r(n) – число делителей натурального числаn.

5. Полуграфический способ. Здесь значения функции представляются в виде отрезков, а значения аргумента – в виде чисел, проставленных на концах отрезков, указывающих значения функции. Так, например, в термометре есть шкала с равными делениями, у которых проставлены числа. Эти числа являются значениями аргумента (температуры). Они стоят на том месте, которое определяет графическое удлинение столбца ртути (значения функции) в связи с ее объемным расширением в результате температурных изменений.

Приводятся основные способы задания функций: явный аналитический; интервальный; параметрический; неявный; задание функции с помощью ряда; табличный; графический. Примеры применения этих способов

Существуют следующие способы задания функции y = f(x) :

  1. Явный аналитический способ по формуле вида y = f(x) .
  2. Интервальный.
  3. Параметрический: x = x(t) , y = y(t) .
  4. Неявный, как решение уравнения F(x, y) = 0 .
  5. В виде ряда, составленного из известных функций.
  6. Табличный.
  7. Графический.

Явный способ задания функции

При явном способе , значение функции определяется по формуле, представляющем собой уравнение y = f(x) . В левой части этого уравнения стоит зависимая переменная y , а в правой - выражение, составленное из независимой переменной x , постоянных, известных функций и операций сложения, вычитания, умножения и деления. Известными функциями являются элементарные функции и специальные функции, значения которых можно вычислить, используя средства вычислительной техники.

Вот несколько примеров явного задания функции с независимой переменной x и зависимой переменной y :
;
;
.

Интервальный способ задания функции

При интервальном способе задания функции , область определения разбивается на несколько интервалов, и функция задается отдельно для каждого интервала.

Вот несколько примеров интервального способа задания функции:


Параметрический способ задания функции

При параметрическом способе , вводится новая переменная, которую называют параметром. Далее задают значения x и y как функции от параметра, используя явный способ задания:
(1)

Вот примеры параметрического способа задания функции, используя параметр t :


Преимущество параметрического способа заключается в том, что одну и ту же функцию можно задать бесконечным числом способов. Например, функцию можно задать так:

А можно и так:

Такая свобода выбора, в некоторых случаях, позволяет применять этот способ для решения уравнений (см. «Дифференциальные уравнения, не содержащие одну из переменных »). Суть применения заключается в том, что мы подставляем в уравнение вместо переменных x и y две функции и . Затем задаем одну из них по собственному усмотрению, чтобы из получившегося уравнения можно было определить другую.

Также этот способ применяется для упрощения расчетов. Например, зависимость координат точек эллипса с полуосями a и b можно представить так:
.
В параметрическом виде этой зависимости можно придать более простую форму:
.

Уравнения (1) - это не единственный способ параметрического задания функции. Можно вводить не один, а несколько параметров, связав их дополнительными уравнениями. Например можно ввести два параметра и . Тогда задание функции будет выглядеть так:

Здесь появляется дополнительное уравнение , связывающее параметры. Если число параметров равно n , то должно быть n - 1 дополнительных уравнений.

Пример применения нескольких параметров изложен на странице «Дифференциальное уравнение Якоби ». Там решение ищется в следующем виде:
(2) .
В результате получается система уравнений. Чтобы ее решить, вводят четвертый параметр t . После решения системы получается три уравнения, связывающие четыре параметра и .

Неявный способ задания функции

При неявном способе , значения функции определяется из решения уравнения .

Например, уравнение эллипса имеет вид:
(3) .
Это простое уравнение. Если мы рассматриваем только верхнюю часть эллипса, , то можно выразить переменную y как функцию от x явным способом:
(4) .
Но даже если можно свести (3) к явному способу задания функции (4), последней формулой не всегда удобно пользоваться. Например, чтобы найти производную , удобно дифференцировать уравнение (3), а не (4):
;
.

Задание функции рядом

Исключительно важным способом задания функции является ее представление в виде ряда , составленного из известных функций. Этот способ позволяет исследовать функцию математическими методами и вычислять ее значения для прикладных задач.

Самым распространенным представлением является задание функции с помощью степенного ряда. При этом используется ряд степенных функций:
.
Также применяется ряд и с отрицательными степенями:
.
Например, функция синус имеет следующее разложение:
(5) .
Подобные разложения широко применяются в вычислительной технике для вычисления значений функций, поскольку они позволяют свести вычисления к арифметическим операциям.

В качестве иллюстрации, вычислим значение синуса от 30°, используя разложение (5).
Переводим градусы в радианы:
.
Подставляем в (5):



.

В математике, на ряду со степенными рядами, широко применяются разложения в тригонометрические ряды по функциям и , а также по другим специальным функциям. С помощью рядов можно производить приближенные вычисления интегралов, уравнений (дифференциальных, интегральных, в частных производных) и исследовать их решения.

Табличный способ задания функции

При табличном способе задания функции мы имеем таблицу, которая содержит значения независимой переменной x и соответствующие им значения зависимой переменной y . Независимая и зависимая переменные могут иметь разные обозначения, но мы здесь используем x и y . Чтобы определить значение функции при заданном значении x , мы по таблице, находим значение x , наиболее близкое к нашему значению. После этого определяем соответствующее значение зависимой переменной y .

Для более точного определения значения функции, мы считаем, что функция между двумя соседними значениями x линейна, то есть имеет следующий вид:
.
Здесь - значения функции, найденные из таблицы, при соответствующих им значениях аргументов .
Рассмотрим пример. Пусть нам нужно найти значение функции при . Из таблицы находим:
.
Тогда

.
Точное значение:
.
Из этого примера видно, что применение линейной аппроксимации привело к повышению точности в определении значения функции.

Табличный способ применяется в прикладных науках. До развития вычислительной техники, он широко применялся в инженерных и других расчетах. Сейчас табличный способ применяется в статистике и экспериментальных науках для сбора и анализа экспериментальных данных.

Графический способ задания функции

При графическом способе , значение функции определяется из графика, по оси абсцисс которого откладываются значения независимой переменной, а по оси ординат - зависимой.

Графический способ дает наглядное представление о поведении функции. Результаты исследования функции часто иллюстрируют ее графиком. Из графика можно определить приближенное значение функции. Это позволяет использовать графический способ в прикладных и инженерных науках.

Сделаем ряд разъяснительных замечаний по поводу задания функции аналитическим выражением или формулой, которые играют в математическом анализе исключительно важную роль.

1° Прежде всего, какие аналитические операции или действия могут входить в эти формулы? На первом месте здесь разумеются все изученные в элементарной алгебре и тригонометрии операции: арифметические действия, возвышение в степень (и извлечение корня), логарифмирование, переход от углов к их тригонометрическим величинам и обратно [см. ниже 48 - 51]. Однако, и это важно подчеркнуть, к их числу по мере развития наших сведений по анализу будут присоединяться и другие операции, в первую голову - предельный переход, с которым читатель уже знаком из главы I.

Таким образом, полное содержание термина «аналитическое выражение» или «формула» будет раскрываться лишь постепенно.

2° Второе замечание относится к области определения функции аналитическим выражением или формулой.

Каждое аналитическое выражение, содержащее аргумент х, имеет, так сказать, естественную область применения: это множество всех тех значений х, для которых оно сохраняет смысл, т. е. имеет вполне определенное, конечное, вещественное значение. Разъясним это на простейших примерах.

Так, для выражения такой областью будет все множество вещественных чисел. Для выражения эта область сведется к замкнутому промежутку за пределами которого значение его перестает быть вещественным. Напротив, выражению придется в качестве естественной области применения отнести открытый промежуток ибо на концах его знаменатель обращается в 0. Иногда область значений, для которых выражение сохраняет смысл, состоит из разрозненных промежутков: для это будут промежутки для - промежутки и т. д.

В качестве последнего примера рассмотрим сумму бесконечной геометрической прогрессии

Если то, как мы знаем , этот предел существует и имеет значение . При предел либо равен либо вовсе не существует. Таким образом, для приведенного аналитического выражения естественной областью применения будет открытый промежуток

В последующем изложении нам придется рассматривать как более сложные, так и более общие аналитические выражения, и мы не раз будем заниматься исследованием свойств функций, задаваемых подобным выражением во всей области, где оно сохраняет смысл, т. е. изучением самого аналитического аппарата.

Однако возможно и другое положение вещей, на что мы считаем нужным заранее обратить внимание читателя. Представим себе, что какой-либо конкретный вопрос, в котором переменная х по существу дела ограничена областью изменения X, привел к рассмотрению функции допускающей аналитическое выражение. Хотя может случиться, что это выражение имеет смысл и вне области X, выходить за ее пределы, разумеется, все же нельзя. Здесь аналитическое выражение играет подчиненную, вспомогательную роль.

Например, если, исследуя свободное падение тяжелой точки с высоты над поверхностью земли, мы прибегнем к формуле

То нелепо было бы рассматривать отрицательные значения t или значения большие, чем ибо, как легко видеть, при точка уже упадет на землю. И это несмотря на то, что само выражение - сохраняет смысл для всех вещественных .

3° Может случиться, что функция определяется не одной и той же формулой для всех значений аргумента, но для одних - одной формулой, а для других - другой. Примером такой функции в промежутке может служить функция, определяемая следующими тремя формулами:

и, наконец, если .

Упомянем еще о функции Дирихле (P. G. Lejeune-Dinchlet), которая определяется так:

Наконец, вместе с Кронекером (L. Kroneckcf) рассмотрим функцию, которую он назвал «сигнум и обозначил через

Функции могут быть заданы самыми различными способами. Однако, наиболее часто встречаются следующие три способа задания функций: аналитический, табличный и графический.

Аналитический способ задания функции. При аналитическом способе задания функция определяется с помощью аналитического выражения, т. е. с помощью формулы, указывающей, какие действия надо совершить над значением аргумента, чтобы получить соответствующее значение функции.

В п. 2 и 3 мы уже встречались с функциями, заданными с помощью формул, т. е. аналитически. При этом в п. 2 для функции область определения ) была установлена, исходя из геометрических соображений, а для функции область задания была указана в условии. В п. 3 для функции область определения также задавалась по условию. Однако очень часто функция задается только с помощью аналитического выражения (формулы), без каких-либо дополнительных условий. В таких случаях под областью определения функции мы будем понимать совокупность всех тех значений аргумента, для которых это выражение имеет смысл и приводит к действительным значениям функции.

Пример 1. Найти область определения функции

Решение. Функция задана только формулой, ее область определения не указана и никаких дополнительных условий нет. Поэтому под областью определения этой функции мы должны понимать совокупность всех тех значений аргумента для которых выражение имеет действительные значения. Для этого должно быть . Решая это неравенство, приходим к заключению, что областью определения данной функции является сегмент [-1.1].

Пример 2. Найти область определения функции .

Решение. Область определения, очевидно, состоит из двух бесконечных интервалов , так как выражение не и имеет смысла при а при всех остальных значениях определено.

Читатель теперь сам легко увидит, что для функции областью определения будет вся числовая ось, а для функции - бесконечный интервал

Следует обратить внимание на то, что нельзя отождествлять функцию и формулу, с помощью которой задается эта функция. Посредством одной и той же формулы можно задать различные функции. В самом деле, в п. 2 мы рассматривали функцию с областью определения в п. 3 строился график для функции с областью определения . И, наконец, только что мы рассмотрели функцию, заданную только формулой без каких-либо дополнительных условий. Областью определения этой функции является вся числовая ось. Эти три функции различны между собой, так как они имеют разные области определения. Но задаются они с помощью одной и той же формулы.

Возможен и обратный случай, когда одна функция на различных участках ее области определения задается различными формулами. Например, рассмотрим функцию у, определенную для всех неотрицательных значений следующим образом: при при т. е.

Эта функция определена двумя аналитическими выражениями, действующими на различных участках ее области определения. График данной функции изображен на рис. 18.

Табличный способ задания функции. При табличном задании функции составляется таблица, в которой указывается ряд значений аргумента и соответствующих значений функции. Широко известны логарифмические таблицы, таблицы значений тригонометрических функций и многие другие. Довольно часто приходится пользоваться таблицами значений функций, полученных непосредственно из опыта. В нижеследующей таблице приведены полученные из опыта удельные сопротивления меди (в см - сантиметрах) при различных температурах t (в градусах):

Графический способ задания функции. При графическом задании дается график функции, и ее значения, соответствующие тем или иным значениям аргумента, непосредственно находятся из этого графика. Во многих случаях такие графики чертятся с помощью самопишущих приборов.