Формулой бернулли называется формула. Числовые характеристики случайной величины, распределенной по биноминальному закону

Повторные независимые испытания называются испытаниями Бернулли, если каждое испытание имеет только два возможных исхода и вероятности исходов остаются неизменными для всех испытаний.

Обычно эти два исхода называются “успехом” (У) или “неудачей” (Н) и соответствующие вероятности обозначают p и q . Ясно, что p  0, q ³ 0 и p +q =1.

Пространство элементарных событий каждого испытания состоит из двух событий У и Н.

Пространство элементарных событий n испытаний Бернулли содержит 2 n элементарных событий, представляющих собой последовательности (цепочки) из n символов У и Н. Каждое элементарное событие является одним из возможных исходов последовательности n испытаний Бернулли. Поскольку испытания независимы, то, по теореме умножения, вероятности перемножаются, то есть вероятность любой конкретной последовательности - есть произведение, полученное при замене символов У и Н на p и q соответственно, то есть, например: Р ()={У У Н У Н... Н У }=p p q p q ... q q p .

Отметим, исход испытания Бернулли часто обозначают 1 и 0, и тогда элементарное событие в последовательности n испытаний Бернулли - есть цепочка, состоящая из нолей и единиц. Например:  =(1, 0, 0, ... , 1, 1, 0).

Испытания Бернулли представляют собой важнейшую схему, рассматриваемую в теории вероятностей. Эта схема названа в честь швейцарского математика Я. Бернулли (1654-1705), в своих работах глубоко исследовавших эту модель.

Основная задача, которая нас будет здесь интересовать: какова вероятность того события, что в n испытаниях Бернулли произошло m успехов?

При выполнении указанных условий вероятность того, что при проведении независимых испытаний событиебудет наблюдаться ровноm раз (неважно, в каких именно опытах), определяется по формуле Бернулли :

(21.1)

где - вероятность появленияв каждом испытании, а
- вероятность того, что в данном опыте событиене произошло.

Если рассматривать P n (m) как функцию m , то она задает распределение вероятностей, которое называется биномиальным. Исследуем эту зависимость P n (m) от m , 0£m £n .

События B m (m = 0, 1, ..., n ), состоящие в различном числе появлений события А в n испытаниях, несовместны и образуют полную группу. Следовательно,
.

Рассмотрим соотношение:

=
=
=
.

Отсюда следует, что P n (m+1 )>P n (m), если (n - m)p > (m+1)q , т.е. функция P n (m ) возрастает, если m < np - q . Аналогично, P n (m+1) < P n (m), если (n - m)p < (m+1)q , т.е. P n (m) убывает, если m > np - q .

Таким образом, существует число m 0 ,при котором P n (m) достигает наибольшего значения. Найдем m 0 .

По смыслу числа m 0 имеем P n (m 0)³P n (m 0 -1) и P n (m 0) ³P n (m 0 +1), отсюда

, (21.2)

. (21.3)

Решая неравенства (21.2) и (21.3) относительно m 0 , получаем:

p / m 0 ³ q /(n - m 0 +1) Þ m 0 £ np + p ,

q /(n - m 0 ) ³ p /(m 0 +1) Þ m 0 ³ np - q .

Итак, искомое число m 0 удовлетворяет неравенствам

np - q £ m 0 £np+p. (21.4)

Так как p +q =1, то длина интервала, определяемого неравенством (21.4), равна единице и имеется, по крайней мере, одно целое число m 0 , удовлетворяющее неравенствам (21.4):

1) если np - q - целое число, то существуют два значения m 0 , а именно: m 0 = np - q и m 0 = np - q + 1 = np + p ;

2) если np - q - дробное, то существует одно число m 0 , а именно единственное целое, заключенное между дробными числами, полученными из неравенства (21.4);

3) если np - целое число, то существует одно число m 0 , а именно m 0 = np .

Число m 0 называется наиболее вероятным или наивероятнейшим значением (числом) появления события A в серии из n независимых испытаний.

На этом уроке будем находить вероятность наступления события в независимых испытаниях при повторении испытаний. Испытания называются независимыми, если вероятность того или иного исхода каждого испытания не зависит от того, какие исходы имели другие испытания . Независимые испытания могут проводиться как в одинаковых условиях, так и в различных. В первом случае вероятность появления некоторого события во всех испытаниях одна и та же, во втором случае она меняется от испытания к испытанию.

Примеры независимых повторных испытаний :

  • выйдет из строя один из узлов прибора или два, три узла, причём выход из строя каждого узла не зависит от другого узла, а вероятность выхода из строя одного узла постоянна во всех испытаниях;
  • произведённая в некоторых постоянных технологических условиях деталь, или три, четыре, пять деталей, окажутся нестандартными, причём одна деталь может оказаться нестандартной независимо от любой другой детали и вероятность того, что деталь окажется нестандатной, постоянна во всех испытаниях;
  • из нескольких выстрелов по мишени один, три или четыре выстрела попадают в цель независимо от исходов других выстрелов и вероятность попадания в цель постоянна во всех испытаниях;
  • при опускании монеты автомат сработает правильно один, два или другое число раз независимо от того, какой результат имели другие опускания монеты, и вероятность того, что автомат сработает правильно, постоянна во всех испытаниях.

Эти события можно описать одной схемой. Каждое событие наступает в каждом испытании с одной и той же вероятностью, которая не изменяется, если становятся известными результаты предыдущих испытаний. Такие испытания называются независимыми, а схема называется схемой Бернулли . Предполагается, что такие испытания могут быть повторены как угодно большое количество раз.

Если вероятность p наступления события A в каждом испытании постоянна, то вероятность того, что в n независимых испытаниях событие A наступит m раз, находится по формуле Бернулли :

(где q = 1 – p - вероятность того, что событие не наступит)

Поставим задачу – найти вероятность того, что событие такого типа в n независимых испытаниях наступит m раз.

Формула Бернулли: примеры решения задач

Пример 1. Найти вероятность того, что среди взятых случайно пяти деталей две стандартные, если вероятность того, что каждая деталь окажется стандартной, равна 0,9.

Решение. Вероятность события А , состоящего в том, что взятая случайно деталь стандартна, есть p =0,9 , а вероятность того, что она нестандартна, есть q =1–p =0,1 . Обозначенное в условии задачи событие (обозначим его через В ) наступит, если, например, первые две детали окажутся стандартными, а следующие три – нестандартными. Но событие В также наступит, если первая и третья детали окажутся стандартными, а остальные – нестандартными, или если вторая и пятая детали будут стандартными, а остальные – нестандартными. Имеются и другие возможности наступления события В . Любая из них характеризуется тем, что из пяти взятых деталей две, занимающие любые места из пяти, окажутся стандартными. Следовательно, общее число различных возможностей наступления события В равно числу возможностей размещения на пяти местах двух стандартных деталей, т.е. равно числу сочетаний из пяти элементов по два, а .

Вероятность каждой возможности по теореме умножения вероятностей равна произведению пяти множителей, из которых два, соответствующие появлению стандартных деталей, равны 0,9, а остальные три, соответствующие появлению нестандартных деталей, равны 0,1, т.е. эта вероятность составляет . Так как указанные десять возможностей являются несовместимыми событиями, по теореме сложения вероятность события В , которую обозначим

Пример 2. Вероятность того, что станок в течение часа потребует внимания рабочего, равна 0,6. Предполагая, что неполадки на станках независимы, найти вероятность того, что в течение часа внимания рабочего потребует какой-либо один станок из четырёх обслуживаемых им.

Решение. Используя формулу Бернулли при n =4 , m =1 , p =0,6 и q =1–p =0,4 , получим

Пример 3. Для нормальной работы автобазы на линии должно быть не менее восьми автомашин, а их имеется десять. Вероятность невыхода каждой автомашины на линию равна 0,1. Найти вероятность нормальной работы автобазы в ближайший день.

Решение. Автобаза будет работать нормально (событие F ), если на линию выйдут или восемь (событие А ), или девять (событие В ), или все десять автомашин событие (событие C ). По теореме сложения вероятностей,

Каждое слагаемое находим по формуле Бернулли . Здесь n =10 , m =8; 9; 10 , а p =1-0,1=0,9 , так как p должно означать вероятность выхода автомашины на линию; тогда q =0,1 . В результате получим

Пример 4. Пусть вероятность того, что покупателю необходима мужская обувь 41-го размера, равна 0,25. Найти вероятность того, что из шести покупателей по крайней мере двум необходима обувь 41-го размера.

Схема испытаний Бернулли. Формула Бернулли

Пусть производится несколько испытаний. Причем, вероятность появления события $A$ в каждом испытании не зависит от исходов других испытаний. Такие испытания называются независимыми относительно события А. В разных независимых испытаниях событие А, может иметь либо различные вероятности, либо одну и туже. Мы будем рассматривать лишь такие независимые испытания, в которых событие $A$ имеет одну и ту же вероятность.

Под сложным событием будем понимать совмещение простых событий. Пусть производится n-испытаний. В каждом испытании событие $A$ может появиться или не появиться. Будем считать, что в каждом испытании вероятность появления события $A$ одна и та же и равна $p$. Тогда вероятность $\overline A $ { или не наступления А } равна $P({ \overline A })=q=1-p$.

Пусть требуется вычислить вероятность того, что в n -испытаниях событие $A$ наступит k - раз и $n-k$ раз - не наступит. Такую вероятность будем обозначать $P_n (k)$. Причем, последовательность наступления события $A$ не важна. Например: $({ AAA\overline A , AA\overline A A, A\overline A AA, \overline A AAA })$

$P_5 (3)-$ в пяти испытаниях событие $A$ появилось 3 раза и 2 - не появилось. Такую вероятность можно найти по формуле Бернулли.

Вывод формулы Бернулли

По теореме умножения вероятностей независимых событий, вероятность того, что событие $A$ наступит $k$ раз и $n-k$ раз не наступит, будет равна $p^k\cdot q^ { n-k } $. И таких сложных событий может быть столько, сколько можно составить $C_n^k $. Так как, сложные события несовместны, то по теореме о сумме вероятностей несовместных событий, нам надо сложить вероятности всех сложных событий, а их ровно $C_n^k $. Тогда вероятность появления события $A$ ровно k раз в n испытаниях, есть $P_n ({ A,\,k })=P_n (k)=C_n^k \cdot p^k\cdot q^ { n-k } $ формула Бернулли .

Пример. Игральная кость подбрасывается 4 раза. Найти вероятность того, что единица появится в половине случаев.

Решение. $A=$ { появление единицы }

$ P(A)=p=\frac { 1 } { 6 } \, \,P({ \overline A })=q=1-\frac { 1 } { 6 } =\frac { 5 } { 6 } $ $ P_4 (2)=C_4^2 \cdot p^2\cdot q^ { 4-2 } =\frac { 4! } { 2!\cdot 2! } \cdot 6^2\cdot ({ \frac { 5 } { 6 } })^2=0,115 $

Легко видеть, что при больших значениях n достаточно трудно подсчитать вероятность из-за громадных чисел. Оказывается эту вероятность можно посчитать не только с помощью формулы Бернулли.

Краткая теория

Теория вероятностей имеет дело с такими экспериментами, которые можно повторять (по крайней мере теоретически) неограниченное число раз. Пусть некоторый эксперимент повторяется раз, причем результаты каждого повторения не зависят от исходов предыдущих повторений. Такие серии повторений называют независимыми испытаниями. Частным случаем таких испытаний являются независимые испытания Бернулли , которые характеризуются двумя условиями:

1) результатом каждого испытания является один из двух возможных исходов, называемых соответственно «успехом» или «неудачей».

2) вероятность «успеха», в каждом последующем испытании не зависит от результатов предыдущих испытаний и остается постоянной.

Теорема Бернулли

Если производится серия из независимых испытаний Бернулли, в каждом из которых «успех» появляется с вероятностью , то вероятность того, что «успех» в испытаниях появится ровно раз, выражается формулой:

где – вероятность «неудачи».

– число сочетаний элементов по (см. основные формулы комбинаторики)

Эта формула называется формулой Бернулли .

Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний.

Схему испытаний Бернулли называют также биномиальной схемой , а соответствующие вероятности – биномиальными, что связано с использованием биномиальных коэффициентов .

Распределение по схеме Бернулли позволяет, в частности, найти наивероятнейшее число наступления события .

Если число испытаний n велико, то пользуются:

Пример решения задачи

Условие задачи

Всхожесть семян некоторого растения составляет 70%. Какова вероятность того, что из 10 посеянных семян взойдут: 8, по крайней мере 8; не менее 8?

Решение задачи

Воспользуемся формулой Бернулли:

В нашем случае

Пусть событие – из 10 семян взойдут 8:

Пусть событие – взойдет по крайней мере 8 (это значит 8, 9 или 10)

Пусть событие – взойдет не менее 8 (это значит 8,9 или 10)

Ответ

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Пусть относительно события А проводится n испытаний. Введем события: Аk -- событие А осуществилось при k-том испытании, $ k=1,2,\dots , n$. Тогда $\bar{A}_{k} $ - противоположное событие (событие А не осуществилось при k-том испытании, $k=1,2,\dots , n$).

Что такое однотипные и независимые испытания

Определение

Испытания называются однотипными по отношению к событию А, если вероятности событий $А1, А2, \dots , Аn$ совпадают: $Р(А1)=Р(А2)= \dots =Р(Аn)$ (т.е. вероятность появления события А в одном испытании постоянна во всех испытаниях).

Очевидно, что в этом случае вероятности противоположных событий также совпадают: $P(\bar{A}_{1})=P(\bar{A}_{2})=...=P(\bar{A}_{n})$.

Определение

Испытания называются независимыми по отношению к событию А, если события $А1, А2, \dots , Аn$ независимы.

В этом случае

При этом равенство сохраняется при замене любого события Аk на $\bar{A}_{k} $.

Пусть по отношению к событию А проводится серия из n однотипных независимых испытаний. Ведем обозначения: р -- вероятность осуществления события А в однoм испытании; q -- вероятность противоположного события. Таким образом, Р(Ак)=р, $P(\bar{A}_{k})=q$ для любого k и p+q=1.

Вероятность того, что в серии из n испытаний событие А осуществится ровно k раз (0 ≤ k ≤ n), вычисляется по формуле:

$P_{n} (k)=C_{n}^{k} p^{k} q^{n-k} $ (1)

Равенство (1) называется формулой Бернулли.

Вероятность того, что в серии из n однoтипных независимых испытаний событие А осуществится не менее k1 раз и не более k2 раз, вычисляется по формуле:

$P_{n} (k_{1} \le k\le k_{2})=\sum \limits _{k=k_{1} }^{k_{2} }C_{n}^{k} p^{k} q^{n-k} $ (2)

Применение формулы Бернулли при больших значениях n приводит к громоздким вычислениям, поэтому в этих случаях лучше использовать другие формулы -- асимптотические.

Обобщение схемы Бернулли

Рассмотрим обобщение схемы Бeрнулли. Если в серии из n независимых испытаний, каждое из которых имеет m попарно несовместимых и возможных результатов Аk с соответствующими вероятностями Рk= рk(Аk). То справедлива формула полиномиального расспредиления:

Пример 1

Вероятность заболевания гриппом во время эпидемии равна 0,4. Найти вероятность того, что из 6 сoтрудников фирмы заболеют

  1. ровно 4 сотрудника;
  2. не более 4-х сотрудников.

Решение. 1) Очевидно, что для решения данной задачи применима формула Бернулли, где n=6; k=4; р=0,4; q=1-р=0,6. Применяя формулу (1), получим: $P_{6} (4)=C_{6}^{4} \cdot 0,4^{4} \cdot 0,6^{2} \approx 0,138$.

Для решения этой задачи применима формула (2), где k1=0 и k2=4. Имеем:

\[\begin{array}{l} {P_{6} (0\le k\le 4)=\sum \limits _{k=0}^{4}C_{6}^{k} p^{k} q^{6-k} =C_{6}^{0} \cdot 0,4^{0} \cdot 0,6^{6} +C_{6}^{1} \cdot 0,4^{1} \cdot 0,6^{5} +C_{6}^{2} \cdot 0,4^{2} \cdot 0,6^{4} +} \\ {+C_{6}^{3} \cdot 0,4^{3} \cdot 0,6^{3} +C_{6}^{4} \cdot 0,4^{4} \cdot 0,6^{2} \approx 0,959.} \end{array}\]

Следует заметить, что эту задачу проще решать, используя противоположное событие -- заболело более 4-х сотрудников. Тогда с учетом формулы (7) о вероятностях противоположных событий получим:

Ответ:$\ 0,959$.

Пример 2

В урнe 20 белых и 10 черных шаров. Вынули 4 шара , причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых рисунок 1.

Рисунок 1.

Решение. Пусть событие А состоит в том, что -- достали белый шар. Тогда вероятности $D (A)=\frac{2}{3} ,\, \, D (\overline{A})=1-\frac{2}{3} =\frac{1}{3} $.

По формуле Бернулли требуемая вероятность равна $D_{4} (2)=N_{4}^{2} \left(\frac{2}{3} \right)^{2} \left(\frac{1}{3} \right)^{2} =\frac{8}{27} $.

Ответ: $\frac{8}{27} $.

Пример 3

Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки $\partial =\frac{1}{2} ,\, q=\frac{1}{2} $-вероятность рождения мальчика. В семье не больше трех девочек означает, что девочек родилась либо одна, либо две, либо три, либо в семье все мальчики.

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки: $D_{5} (0)=q^{5} =\frac{1}{32} $,

\ \ \

Следовательно, искомая вероятность $D =D_{5} (0)+D_{5} (1)+D_{5} (2)+D_{5} (3)=\frac{13}{16} $.

Ответ: $\frac{13}{16} $.

Пример 4

Первый стрeлок при одном выстриле может попасть в десятку с вероятностью 0,6 в девятку с вероятностью 0,3, а в восьмерку с вероятностью 0,1. Какая вероятность того, что при 10 выстрелах он попадет в десятку шесть раз, в девятку три раза и в восьмерку 1 раз?