Фоновое излучение. Микроволновое фоновое излучение

Данная статья была написана Владимиром Горунович для данного сайта и сайта "Викизнание".

Реликтовое излучение (ист.) или более правильно фоновое космическое микроволновое излучение (англ. cosmic microwave background radiation) - космическое электромагнитное излучение приходящее не из звезд Вселенной, со спектром, характерным для абсолютно чёрного тела с температурой 2,725 К и с высокой степенью изотропности. Максимум излучения приходится на частоту 160,4 ГГц, что соответствует длине волны 1,9 мм.

Существование фонового космического (реликтового) излучения было предсказано теоретически в рамках гипотезы Большого взрыва. В рамках данной гипотезы предполагается, что реликтовое излучение сохранилось с начальных этапов существования Вселенной и равномерно её заполняет. Наряду с космологическим красным смещением, фоновое космическое (реликтовое) излучение рассматривается частью физиков как одно из подтверждений гипотезы Большого взрыва.

В настоящее время физика утверждает о наличии у фонового космического (реликтового) излучения других источников, отличных от Большого взрыва. Поэтому историческое название данного излучения неправильно отражает его природу и вводит в заблуждение. Об этом говорит также тот факт, что само существование "Большого взрыва" в истории Вселенной теперь физикой отвергается, как не соответствующее природе и ее законам.

Экспериментально существование фонового космического (реликтового) излучения было подтверждено в 1965 году.

  • 1 Фоновое космическое излучение и гипотеза Большого взрыва
  • 2 Фоновое космическое излучение и полевая теория
  • 3 Фоновое космическое излучение и классическая электродинамика
  • 4 Фоновое космическое излучение и закон сохранения энергии
  • 5 Природные источники фонового космического излучения
  • 6 Природный механизм образования основной компоненты фонового космического излучения
  • 7 Реликтовое излучение: Итог

1. Фоновое космическое излучение и гипотеза Большого взрыва

Согласно гипотезе Большого Взрыва, ранняя Вселенная представляла собой горячую плазму, состоящую из протонов, нейтронов, электронов и фотонов (т.е. из барионов, одного из лептонов и фотонов). Утверждается, что благодаря эффекту Комптона фотоны постоянно взаимодействовали с остальными частицами плазмы (протонами, нейтронами и электронами), испытывая с ними упругие столкновения и обмениваясь энергией. Таким образом, излучение должно было находиться в состоянии теплового равновесия с веществом, а его спектр соответствовать спектру абсолютно чёрного тела.

По мере предполагаемого гипотезой Большого взрыва расширения Вселенной, космологическое красное смещение (как предполагается) должно было вызывать остывание плазмы, и на определённом этапе для электронов должно было стать энергетически предпочтительней, соединиться с протонами (ядрами водорода) и альфа-частицами (ядрами гелия), и сформировать атомы. Этот процесс называется рекомбинацией. Это могло случиться при температуре плазмы около 3000 К и предполагаемом примерном возрасте Вселенной 400 000 лет. С этого момента фотоны, как предполагается, перестали рассеиваться теперь уже нейтральными атомами и смогли свободно перемещаться в пространстве, практически не взаимодействуя с веществом. Наблюдаемая сфера, соответствующая данному моменту, в гипотезе Большого взрыва называется поверхностью последнего рассеяния. Предполагается, что это - самый удалённый объект, который можно наблюдать в электромагнитном спектре. В результате дальнейшего предполагаемого расширения Вселенной температура излучения снизилась и сейчас составляет 2,725 К. (Данные взяты из Википедии и немного доработаны).

А теперь немного критики с точки зрения физики.

Нейтроны (скрываемые за формулировкой "барионы") являются нестабильными элементарными частицами и по истечении времени (порядка 1000 секунд), каждый нейтрон распадется на протон, электрон и электронное антинейтрино. Таким образом, этот "коктейль" должен состоять из протонов, электронов, фотонов и электронных антинейтрино. В процессе распада нейтрона электронное антинейтрино, как элементарная частица, обладающая наименьшей массой покоя, заберет значительную часть энергии распада. Потом в результате столкновений в межгалактическом пространстве с другим антинейтрино обе частицы перейдут в возбужденные состояния с последующем излучением низко энергетических фотонов - фонового космического излучения. Так незнание гипотезой Большого взрыва законов природы не освобождает данную гипотезу от их действия.

А из протонов и электронов получается - только водород. В итоге должна получиться водородная Вселенная, в "реликтовом" излучении которой должны присутствовать спектральные линии водорода. Атомам гелия создаться не из чего, если не прибегать к звездам и их термоядерным реакциям. Но тогда 400 000 лет отведенных гипотезой для образования звездами гелия окажется явно недостаточно.

Расширение Вселенной никто не доказал - это всего лишь предположение, основанное на одностороннем толковании красного смещения в пользу эффекта Доплера и игнорировании взаимодействий элементарных частиц. Также является сказкой утверждение о том, что через 400 000 лет фотоны смогли свободно перемещаться в пространстве, практически не взаимодействуя с веществом. Тут забыли об антинейтрино, получившихся в результате распада нейтронов, и о фотон-нейтринных взаимодействиях, игнорируемых стандартной моделью. Также забыли о взаимодействиях самих антинейтрино. И, наконец, физика не нашла доказательств того, что в истории Вселенной был Большой взрыв.

Теперь почему так получилось, или точнее, почему вместо теории Большого взрыва получилась ошибочная гипотеза.

В физике необходимо быть предельно осторожным в выборе фундамента разрабатываемой теории. Заложив в фундамент разрабатываемой теории ошибочную стандартную модель, авторы пошли по неверному пути и создали ошибочную гипотезу. И в этом не их вина, что поверили сладкоголосым речам сторонников стандартной модели - а их беда. Надо было сначала задаться вопросом: а не слишком ли много у стандартной модели произвольных параметров великолепно используемых для подгонки под новые экспериментальные данные. А если еще обратить внимание на манипулирование законами природы - то все станет ясным. Но Новой физики тогда еще не было и пришлось брать то, что было - стандартную модель.

Так ошибка в выборе фундамента закономерно привела к ошибочному результату. Для физики все это очевидно, но возможно для космологии это в новинку. И если так - то космологии предстоит пройти курс обучения уважению законов природы со строгим учителем под названием "Природа", как это в свое время было с физикой. Правда надо отметить, что небольшая часть физики (физика элементарных частиц) с упорством, достойным лучшего применения, пытается управлять законом сохранения энергии вопреки природе. А что из этой шалости получилось - теперь хорошо видно: сказочные "теории".

Таким образом, фоновое космическое излучение, называемое по ошибке "реликтовым", не было создано Большим взрывом и у него должны быть в природе иные источники .

2. Фоновое космическое излучение и полевая теория

Полевая теория элементарных частиц в качестве одного из источников фонового космического излучения предлагает взаимодействия нейтрино (антинейтрино), в гигантских количествах испускаемых звездами. Поскольку нейтрино благодаря ее чрезвычайной легкости (не более 0,052эВ) уносится существенная часть энергии термоядерного синтеза, то они движутся с релятивистскими скоростями и с легкостью покидают не только систему звезды, но и галактику. Сталкиваясь в межгалактическом пространстве с нейтрино от других звезд, элементарные частицы переходят в возбужденные состояния. Затем по истечении определенного времени возбужденные нейтрино переходят в состояния с меньшей энергией с испусканием низко энергетических фотонов. При этом излучение фотонов происходит в межгалактическом пространстве. Таким образом, создается иллюзия появления электромагнитного излучения из ничего (кажущееся нарушение закона сохранения энергии) или из далекого прошлого (Большой взрыв).

Следующим источником фонового космического излучения является взаимодействие фотона с нейтрино. Фотоны светового, ультрафиолетового или инфракрасного диапазона, столкнувшись с нейтрино, отдают ему малую, но отличную от нуля часть своей энергии. Вследствие этого с одной стороны нейтрино переходит в возбужденное состояние с последующим испусканием кванта микроволнового излучения, а с другой стороны падает энергия сталкивающегося фотона - т.е. создается красное смещение. Следовательно, механизм образования красного смещения является одним из источников фонового космического излучения.

Еще одним источником фонового космического излучения являются реакции аннигиляции пар элементарных частиц - это аннигиляция пары "нейтрино-антинейтрино", сюда можно также добавить пару "электрон-позитрон".

Таким образом, фоновое космическое (реликтовое) излучение должно включать в себя электромагнитное излучение возбужденных нейтрино (антинейтрино) , при их переходах в состояния с меньшей энергией. Сегодня физика не в состоянии измерить ни массу покоя электронного и мюонного нейтрино, ни энергии их возбужденных состояний. Поэтому физика сегодня не может однозначно сказать является ли фоновое космическое (реликтовое) излучение в основном результатом столкновений нейтрино, или у него есть еще иные существенные компоненты.

3. Фоновое космическое излучение и классическая электродинамика

Классическая электродинамика утверждает, что любое электромагнитное излучение, в том числе и фоновое космическое излучение, может быть создано только при условии обязательного выполнения законов электромагнетизма, а также других законов природы. Это излучение может быть создано только электромагнитными полями элементарных частиц, или их соединений (атомами, молекулами, ионами и др.). При этом созданное излучение будет взаимодействовать с электромагнитными полями других элементарных частиц всегда и независимо от "стадии создания Вселенной". - Если есть Вселенная то, следовательно, существуют и законы Вселенной, в том числе и законы электромагнетизма, как неотъемлемая часть Вселенной.

Остывание плазмы, находящейся в тепловом равновесии, возможно лишь в том случае если кинетическая энергия будет расходоваться, например, на образование новых пар "частица-античастица". Но тогда вместе с веществом будет создаваться и антивещество со всеми вытекающими отсюда последствиями и будущими вселенскими катаклизмами. А расширение Вселенной необходимо не постулировать, а доказать.

В статье Большой взрыв были показаны противоречия классической электродинамики и гипотезы Большого взрыва. Следовательно, фоновое космическое (реликтовое) излучение должно иметь природные источники, отличные от Большого взрыва .

4. Фоновое космическое излучение и закон сохранения энергии

Согласно закону сохранения энергии (продолжающему действовать в природе) электромагнитное излучение (к которым относится и фоновое космическое излучение) не может быть создано из не существующих в природе форм энергии в результате гипотетического Большого взрыва, а также в результате гипотетических квантовых флуктуаций в вакууме. У фонового космического излучения должны быть природные источники , например: взаимодействия, реакции и превращения элементарных частиц (излучаемых звездами).

5. Природные источники фонового космического излучения

Поскольку физикой отвергается возможность Большого взрыва, то фоновое космическое излучение не может быть реликтовым излучением. Следовательно, у фонового космического излучения должны быть природные источники.

К числу возможных природных источников фонового космического излучения физика предлагает следующие источники:

  • излучения возбужденных нейтрино (как электронных, так и мюонных),
  • реакция аннигиляции пары электронных нейтрино-антинейтрино,
  • реакции распада мюонного нейтрино в электронное с испусканием фотонов (нейтринные осцилляции),
  • излучения отдельных атомов или молекул,
  • излучения молекул нейтринного газа (связанных состояний из нескольких электронных нейтрино).

При этом нейтрино будет переходить в возбужденные состояния как от столкновения с другим нейтрино, так и от прохождение через нейтрино фотонов видимого, ультрафиолетового, инфракрасного и других диапазонов, для которых энергия фотона превосходит величину энергии возбуждения нейтрино. Тем самым источником возбуждения нейтрино является и свет, идущий от удаленных галактик, т.е. красное смещение.

6. Природный механизм образования основной компоненты фонового космического микроволнового излучения (статья в разработке)

Сегодня физика установила природный механизм образования основной компоненты фонового космического микроволнового излучения и, следовательно, один из его основных природных источников.

Для того, чтобы понять это, посмотрим на карту фонового космического излучения (подлинную, без подгонки под "реликтовое излучение"), помещенную в начале статьи (в верху). Как видим, ее рассекает пополам красная горизонтальная полоса, отражающая тот факт, что наибольшее регистрируемое излучение исходит из нашей галактики. Следовательно, в нашей галактике идут природные процессы, создающие фоновое космическое излучение. Аналогичные процессы идут и в других галактиках, а также (более слабо) в межгалактическом пространстве.

А теперь зададимся вопросом: в результате чего в межзвездном, или межгалактическом пространстве, может возникнуть данное излучение. Для этого обратим внимание на, плохо изученную физикой "неуловимую" элементарную частицу и ее молекулярные соединения.

Согласно полевой теории элементарных частиц электронное нейтрино должно взаимодействовать с другими электронными нейтрино своими электромагнитными полями. Пример потенциальной энергии взаимодействия пары электронных нейтрино лежащих в одной плоскости с антипараллельными спинами приведен на рисунке.

Из рисунка видно наличие потенциальной ямы глубиной 1,54×10 -3 ev с минимумом на расстоянии 8,5×10 -5 см. Как видим, пара электронных нейтрино должна обладать связанным состоянием с нулевым спином с энергией порядка 0,72×10 -3 ev (более точную величину можно определить с помощью квантовой механики).

Это связанное состояние будет напоминать молекулу водорода с той разницей, что в данной «молекуле» (ν e2) нейтрино взаимодействуют своими электромагнитными полями. В результате крайне малой величины энергии связи молекула ν e2 будет устойчивой в условиях близких к абсолютному холоду и при отсутствии столкновений с другими электронными нейтрино и не только.

Электронные нейтрино могут образовывать и более сложные связанные состояния, с большей величиной энергии связи, например ν e4 (и др.). В результате во Вселенной должна существовать нейтринная форма материи в виде нейтринного газа, состоящего в основном из молекул ν e2 , значительно реже ν e4 .

И этот нейтринный газ будет взаимодействовать как со светом (создавая красное смещение), так и с электронными нейтрино, излучаемыми в огромных количествах звездами. В результате такого взаимодействия молекулярные соединения электронных нейтрино разбиваются на части. А при обратном процессе - слиянии пары электронных нейтрино в молекулярное соединение, происходит выделение энергии в виде микроволнового электромагнитного излучения с длиной волны, соответствующей основной компоненте фонового космического микроволнового излучения (996). Кроме того, при слиянии пары молекул ν e2 в молекулу ν e4 происходит выделение еще больше энергии, что соответствует участку спектра 34 на рисунке.

Таким образом, фоновое космическое микроволновое излучение (по ошибке называемое "реликтовым излучением") потеряло свое божественное происхождение и обрело природные источники .

7. Реликтовое излучение: Итог

У фонового космического микроволнового излучения, исторически (по ошибке) называемого реликтовым должны быть природные источники . К одному из таких источников относятся взаимодействия нейтрино.

В целом необходимо подробно исследовать весь спектр фонового космического излучения (во всем диапазоне частот, не ограничиваясь микроволновыми частотами) и определить его составляющие, а также их возможные источники, а не заниматься сочинительством новых библейских сказок теперь уже о сотворении Вселенной. Для всяких "научных" сказок есть прекрасное место в детской литературе, если конечно последняя не захочет дать им пинка под зад как это сделала недавно, и будет продолжать делать физика.

Владимир Горунович

Как, вероятно, уже заметил читатель, история радиоастрономии сложилась так, что важнейшие открытия в этой области науки производились случайно. Само начало радиоастрономии было положено случайным открытием Янским дискретных источников излучения, приходящего на Землю из космоса. При исследовании
явления мерцания радиоволн как случайный, побочный, но гораздо более важный результат, были обнаружены пульсары.

Еще одно крупное открытие наших дней было сде­лано совершенно неожиданно для тех, кто обнаружил новое явление. В 1965 г. Пензиас и Вилсон, два специалиста по радиоаппаратуре, исполняя поручение фирмы Белл, исследовали одно из весьма чувствительных уст­ройств приема радиоизлучения и вносили в него усовершенствования для устранения влияния всех возможных помех. Когда после длительной работы они пришли к выводу, что в этом направлении ими все сделано и влия­ние земных источников радиоизлучения должно быть полностью уничтожено, обнаружилось, что в приемное устройство направленное на небо, продолжает поступать хотя и очень слабое, но уверенно регистрируемое радио­излучение. Особенность его состояла в том, что интен­сивность излучения показывала почти строгое постоян­ство для всех направлений, за исключением, разумеется, тех, в которых расположены дискретные космические Шорники радиоизлучения.

Значение сделанного открытия стало ясным тогда, когда дальнейшие исследования показали, что распре­деление приходящего излучения по длинам волн соответ­ствует излучению «абсолютно черного тела». Оно такое, какое вызывалось бы телом, имеющим чрезвычайно низкую температуру: 3 кельвина (ЗК).В соответствии с законом Вина (λ m · T = 0,2897) максимум энергии излучения при этой температуре приходится на длину волны около 1 мм.

Из почти полной независимости интенсивности обна­руженного радиоизлучения от направления (его изотроп­ности) следует, что Вселенная пронизана этим излуче­нием, оно заполняет все пространство между звездами и галактиками. Распределение энергии в спектре соглас­но закону для абсолютно черного тела с температурой 3 К показывает, что это излучение - не трансформиро­ванное излучение звезд, туманностей и галактик, а явля­ется независимой субстанцией, заполняющей пространство Вселенной. Поэтому оно получило название фонового излучения.

ФОНОВОЕ излучение в астрофизике - диффузное и практически изотропное электромагнитное излучение Вселенной. Спектр фонового излучения простирается от длинных радиоволн до гамма-лучей. Вклад в фоновное излучение могут давать неразличимые в отдельности далекие источники и диффузное вещество (газ, пыль), заполняющее космическое пространство. Важнейший компонент фонового излучения - реликтовое излучение.

ФОНОВОЕ ИЗЛУЧЕНИЕ - , радиация, которая присутствует в окружающей среде в нормальных условиях. Ее следует принимать в расчет при измерении радиации, исходящей от какого-либо конкретного источника.

Реликтовое излучение

Релимктовое излучемние (или космическое микроволновое фоновое излучение от _en. cosmic microwave background radiation). Термин "реликтовое излучение ", который обычно используется в русскоязычной литературе, ввёл в употребление советский астрофизик И.С. Шкловский - космическое электромагнитное излучение с высокой степенью изотропности и со спектром, характерным для абсолютно чёрного тела с температурой 2,725 К.

Существование реликтового излучения было предсказано теоретически в рамках теории Большого взрыва. Хотя в настоящее время многие аспекты первоначальной теории Большого взрыва пересмотрены, основы, позволившие предсказать температуру реликтового излучения, остались неизменны. Считается, что реликтовое излучение сохранилось с начальных этапов существования Вселенной и равномерно её заполняет. Экспериментально его существование было подтверждено в 1965 году. Наряду с космологическим красным смещением, реликтовое излучение рассматривается как одно из главных подтверждений теории Большого взрыва.

Природа излучения

Согласно теории Большого Взрыва, ранняя Вселенная представляла собой горячую плазму, состоящую из фотонов, электронов и барионов. Благодаря эффекту Комптона, фотоны постоянно взаимодействовали с остальными частицами плазмы, испытывая с ними упругие столкновения и обмениваясь энергией. Таким образом, излучение находилось в состоянии теплового равновесия с веществом, а его спектр соответствовал спектру абсолютно чёрного тела.

По мере расширения Вселенной, космологическое красное смещение вызывало остывание плазмы и, на определённом этапе, для электронов стало энергетически предпочтительней, соединившись с протонами - ядрами водорода и альфа-частицами - ядрами гелия, сформировать атомы. Этот процесс называется рекомбинацией. Это случилось при температуре плазмы около 3000 К и примерном возрасте Вселенной 400 000 лет. С этого момента фотоны перестали рассеиваться теперь уже нейтральными атомами и смогли свободно перемещаться в пространстве, практически не взаимодействуя с веществом. Наблюдаемая сфера, соответствующая данному моменту, называется поверхностью последнего рассеяния. Это - самый удалённый объект, который можно наблюдать в электромагнитном спектре.

Вселенной, не искажённое ближайшими источниками (атмосферой Земли, излучением Галактикой т. п.). Именно Ф. к. и. должны были бы воспринимать приборы с широким полем зрения, вынесенные в пространство между галактиками. К сожалению, такой эксперимент невозможен. Астрономы изучают Ф. к. и., используя наземные и внеатмосферные приборы. В связи с этим отделение фонового компонента от диффузного (рассеянного) излучения локальной и галактич. природы является трудной задачей.

Часто фоном наз. все помехи, затрудняющие выделение сигнала от дискретного объекта: собств. шумы прибора, отчёты рентг. счётчиков, вызванные наличием космич. лучей, диффузное излучение, попадающее в поле зрения прибора (в частности, это может быть и Ф. к. и. при наблюдении источников с малыми угл. размерами), и т. п. Следует подчеркнуть отличие Ф. к. и. от понятия фона в гаком смысле.

Исследование Ф. к. и. представляет самостоят. интерес, т. к. оно несёт информацию об излучении, заполняющем всю Вселенную, т. е. информацию о Вселенной в целом. Кроме того, Ф. к. и. может содержать излучение большого числа неразличимых в отдельности дискретных источников и измерение Ф. к. и. даёт нек-рые оценки их свойств.

Исторически первой проблемой, связанной с Ф. к. и., была проблема яркости ночного неба в видимом диапазоне. В связи с ней был сформулирован простейший кос-мологич. тест, вошедший в историю науки под назв. "парадокс Ольберса", или фотометрический парадокс : в бесконечной однородной стационарной Вселенной на любом луче зрения мы должны видеть поверхность звезды, т. е. всё небо должно иметь яркость, сравнимую с яркостью диска Солнца. Очевидно, что такая модель Вселенной находится в противоречии с нашим повседневным опытом- яркость ночного неба в видимом диапазоне весьма низка. Парадокс Ольберса разрешён в совр. эволюционных моделях Вселенной. Галактики родились ок. 10 млрд. лет назад, числа звёзд во Вселенной столь мала, что на космологич. горизонте (ct ~10 28 см) доля неба, покрываемая звёздами, ничтожно мала. Кроме того, излучение звёзд на больших расстояниях из-за красного смещения сдвигается в ИК-диапазон и не даёт вклада в наблюдаемую яркость неба в видимом диапазоне.

Точное знание яркости ночного неба (а точнее, оптич. Ф. к. и., интенсивность к-рого, как минимум, ещё в сто раз меньше яркости ночного неба, гл. вклад в к-рую дают свечение атмосферы, зодиакальный свет и свет звёзд Галактики) накладывает жёсткие ограничения на конкретные модели эволюции галактик, на продолжительность яркой фазы их эволюции на стадии "молодой галактики" и т. д.

Астрономов интересуют не только значение яркости неба в том или ином диапазоне длин волн эл--магн. спектра, но и угл. флуктуации интенсивности фонового излучения. В изотропно расширяющейся Вселенной фоновое излучение должно быть изотропным: его интенсивность не должна зависеть от направления. Изотропия истинного фона облегчает его отделение от локальных источников диффузного излучения. В то же время если осн. источником фона является излучение дискретных источников, то на очень малых угл. размерах, когда в поле зрения приборa попадает в ср. порядка одного источника, интенсивность фона должна сильно флуктуировать при переходе от одной площади наблюдения на небе к другой. По этим флуктуациям можно судить о пространств. распределении источников, а также об их распределении по потоку.

Анализ природы Ф. к. и. показывает, что в большинстве диапазонов спектра его интенсивность определяется мно-гочисл. далёкими дискретными источниками излучения. В ряде диапазонов Ф. к. и. не связано с дискретными источниками. Его существование является либо свойством Вселенной как целого (т. н. реликтовое излучение), либо следствием присутствия в межгалактич. пространстве излучающего вещества (горячий межгалактический газ, космические лучи) .

На рис. 1 и в табл. приводятся данные об измерениях и оценках интенсивности Ф. к. и.

Рис. 1. Спектр электромагнитного фонового излучения Вселенной. Сплошная линия-результаты наблюдений, штриховая-теоретические оценки; I v в эрг (см 2. с. Гц. ср) -1 .

Плотность энергии и числа фотонов фонового излучения в различных диапазонах


Лишь в оптическом и радиодиапазонах наблюдения Ф. к. и. можно производить с поверхности Земли. Исследования в УФ-, рентг. и g-диапазонах спектра стали возможны только благодаря успехам внеатмосферной астрономии.

Выделение Ф. к. и. на фоне излучения Галактики оказалось сложной задачей. На рис. 2 показано соотношение между диффузным излучением Галактики и Ф. к. и.

Радиодиапазон . Д л и н н о в о л н о в о е р а д и о и з л у ч ен и е (v <600 МГц; l>50 см). Радиотелескопы принимают как Ф. к. и., так и синхротронное излучение релятивистских электронов в межзвёздной среде Галактики, что затрудняет выделение Ф. к. и. Синхротронное излучение Галактики крайне неравномерно распределено по небу. Интерес представляет область на небе с мин. яркостной температурой Т b , равной 80 К на частоте 178 МГц. Ясно, что это верх. предел на яркостную темп-ру Ф. к. и. на этой частоте. Выделить внегалактич. компонент можно лишь в том случае, если спектр излучения Галактики отличается от спектра Ф. к. и. К сожалению, они достаточно близки. Тщательный анализ показывает, что яркостная темп-ра фона на частоте 178 МГц близка к 30 К, а спектральный индекс совпадает со ср. спектральным индексом излучения радиогалактик a= 0,75. Это позволяет найти яркостную темп-ру и интенсивность Ф. к. и. на любой длине волны в метровом диапазоне Т b 30 (l/1,7м) 2,75 К, I v = 3 . 10 -19. (l/1,7м) 0,75 эрг ( см 2. с. Гц. ср) -1 . Совпадение спектральных индексов Ф. к. и. и радиогалактик привело к предположению, что длинноволновое Ф. к. и. представляет собой совокупное излучение далёких мощных дискретных источников радиоизлучения: радиогалактик и квазаров . Однако наблюдаемая в окрестности нашей Галактики пространств. плотность радиогалактик и их радиосветимость (см. Светимость )оказались недостаточными для объяснения интенсивности Ф. к. и. В решении этого вопроса удалось продвинуться лишь после тщательных подсчётов слабых (и, следовательно, далёких) радиоисточников. Зависимость числа источников от потока оказалась существенно более крутой, чем ожидалось. Это говорит о том, что раньше, когда Вселенная была существенно моложе, мощных радиоисточников было намного больше, чем сейчас (точнее, было больше радиоисточников на данное число галактик). Имела место космологич. эволюция радиоисточников. Далёкие мощные радиогалактики и квазары наблюдаются сегодня как слабые радиоисточники. Оказалось, что именно эти многочисл. источники определяют Ф. к. и. в области длинных радиоволн.



Рис. 2. Соотношение плотностей энергии фонового излучения Вселенной и диффузного излучения га лактического происхождения; r в эВ/см 3 .

Инфракрасный диапазон (10 12 Гц< v <3 10 14 Гц; 1 мкмПрозрачность земной атмосферы ). Наземные наблюдения в окнах прозрачности атмосферы возможны лишь при l<25 мкм. Наблюдение же космич. объектов в интервале 25 мкм < l < 200 мкм осуществляется с ракет, баллонов и высотных самолётов. Со спутника "ИРАС" (США, Великобритания, Нидерланды) обнаружено ок. 2,5 10 5 ИК-источников. Готовится к запуску ряд др. ИК-обсерваторий на ИСЗ. Развитие техники наблюдений привело к обнаружению ИК-избытка в спектрах мн. дискретных источников. Значит. число галактич. объектов, включая нек-рые типы звёзд, а также ряд планетарных и "инфракрасных" туманностей, оказались аномально яркими в ближнем (l>25 мкм) ИК-диапазоне. В большинстве своём это холодные звёзды (конденсирующиеся протозвёз-ды и звёзды-гиганты) с темп-рой <2000 К или пылевые комплексы, переизлучающие УФ- и оптич. излучение расположенных в них горячих звёзд. Но светимость всех этих объектов не слишком велика, и суммарное излучение источников такого типа в др. галактиках не может определять гл. вклад в Ф. к. и. Наблюдения внегалактич. источников привели к неожиданным результатам: ядра мн. активных галактик (см. Ядра галактик )и квазары излучают в ИК-диапазоне больше энергии, чем во всех других. Расчёты показали, что излучение именно этих объектов должно определять яркость неба в ИК-лучах. Ряд совр. моделей образования галактик предсказывает яркую фазу на стадии активного звездообразования в "молодой галактике". Если эта фаза была на достаточно ранней стадии эволюции Вселенной (при красных смещениях z= 5-10), то излучение этих объектов также должно давать вклад в Ф. к. и. в ИК-лучах.

Чувствительность совр. приборов недостаточна для не-посредств. наблюдения инфракрасного Ф. к. и. На рис. 1, 2 и в таблице приведены результаты теоретич. оценок суммарного излучения квазаров и ядер галактик, основанные на данных наблюдений ИК-излучения индивидуальных источников и данных об их плотности во Вселенной. Видимый диапазон < 1 мкм). Для выделения видимого Ф. к. и. из наблюдаемого диффузного излучения необходимо вычесть излучение относительно близких источников: эмиссию атмосферы, зодиакальный свет (свет Солнца, рассеянный на межпланетной пыли), интегральный свет звёзд Галактики. Эмиссия атмосферы становится несущественной при наблюдениях за пределами земной атмосферы. При наземных наблюдениях для её исключения вводят поправку, основанную на исследованиях пропускания атмосферы под разными углами к зениту. Вклад зодиакального света можно в принципе учесть, запуская космич. аппараты перпендикулярно плоскости эклиптики на расстояние ~ 1 а. е., т. е. в область, где практически нет межпланетной пыли. Другой, более доступный ныне путь состоит в использовании моделей свечения зодиакальной пыли, а также в наблюдениях видимого Ф. к. и. во фраунгоферовых линиях, где слабо излучение Солнца и поэтому ослаблен зодиакальный свет. Проводятся интенсивные исследования свойств зодиакального света с ракет и спутников с целью выделения видимого Ф. к. и. Третий фактор можно оценить по ф-ции светимости и пространств. распределению звёзд в Галактике. Этот фактор вносит гл. неопределённость при исследовании внегалактич. компонента оптич. свечения неба.

При наблюдениях с Земли не было найдено никаких следов изотропного видимого компонента Ф. к. и. Верх. предел оказался примерно в 100 раз меньше, чем полная наблюдаемая яркость неба в видимом диапазоне. Зная спектр излучения отд. галактик, их плотность в пространстве и расстояния до галактик, можно рассчитать их интегральное излучение. При этом оказывается, что гл. вклад в видимое Ф. к. и. дают норм. галактики (точнее, излучение входящих в них звёзд).

Следует также учесть, что если межгалактич. пространство заполнено звёздами, скоплениями звёзд или карликовыми галактиками, то их практически невозможно обнаружить при совр. уровне техники наблюдений. В связи с этим вклад этих "светящихся" объектов в ср. плотность вещества во Вселенной неизвестен. Здесь оказываются полезными оценки верх. предела интенсивности Ф. к. и. в видимом диапазоне. Если у этих невидимых объектов отношение масса - светимость такое же, как и для галактик в среднем, то, используя эксперим. данные, можно показать, что масса светящихся тел во Вселенной мала для того, чтобы Вселенная была замкнутой (см. Космология ).

Ультрафиолетовый диапазон . Эту область спектра условно можно разделить на две части: первая доступна для наблюдений со спутников и ракет, вторая-принципиально недоступна для прямых наблюдений из Солнечной системы.

Д и а п а з о н, д о с т у п н ы й д л я н а б л ю д е н и й . Яркость неба в УФ-области спектра определяется излучением горячих звёзд нашей Галактики. Очевидно, что чем выше темп-ра Т поверхности звезды, тем больше испускает она фотонов в УФ-диапазоне. Число же звёзд, имеющих данную темп-ру, быстро падает с ростом Т . Поэтому и суммарное излучение звёзд Галактики быстро падает с уменьшением длины волны. Так, согласно измерениям на космич. станциях "Венера", интегральная светимость нашей Галактики (без учёта неизвестного вклада её ядра) в полосе 1225- 1340 оценивается в 10 40 -10 41 эрг/с, что составляет лишь 10 -3 -10 -4 её светимости в видимом диапазоне. Поэтому ожидалось, что выделить внегалактич. компонент в УФ-диапазоне будет легче, чем в видимом, и что он будет нести информацию в осн. о незвёздных источниках- ядрах галактик, квазарах, межгалактич. газе. Правда, в доступный для наблюдений УФ-диапазон попадает также мощное излучение, обусловленное переизлучением межпланетным водородом линии L a солнечного происхождения. Однако это излучение можно исключить фильтрами. Несмотря на все попытки, выделить метагалактич. УФ-излучение пока не удалось. Экспериментально установлены лишь верх. пределы его интенсивности (по минимуму наблюдаемой яркости неба и с точностью до вклада космич. лучей в отсчёты приборов).

По аналогии с нашей Галактикой естественно было бы предположить, что все норм. галактики мало излучают в УФ-лучах и что интенсивность этого компонента Ф. к. и. мала. Однако неожиданно большой поток УФ-излучения был обнаружен из области ядра галактики МЗ1 (Туманность Андромеды) и от ряда др. галактик. Важными источниками Ф. к. и. в УФ-диапазоне спектра, согласно наблюдениям со специализир. спутников, должны являться квазары.

Изучение ультрафиолетового Ф. к. и. важно для определения кол-ва и свойств горячего межгалактич. газа, к-рый, возможно, определяет плотность вешества во Вселенной. В частности, в полосу выделенную существующими фильтрами, попадает сдвинутая красным космологич. смещением линия излучения L a самого распространённого во Вселенной элемента-водорода, если он находится на расстоянии, не превышающем 600 Мпк (при Хаббла постоянной Отсутствие в спектрах далёких квазаров полосы поглощения, соответствующей L a , говорит о ничтожной плотности нейтрального межгалактич. водорода, т. е. о высокой степени ионизации межгалактич. газа , где n H и n P -число атомов водорода и протонов в 1 см 3 межгалактич. пространства.

Д и а п а з о н, н е д о с т у п н ы й д л я п р я м ы х н а б л юд е н и й . Эта область спектра принципиально недоступна для прямых наблюдений из пределов Солнечной системы из-за поглощения фотонов УФ-излучения нейтральным межзвёздным водородом. Существует лишь косвенный метод оценки интенсивности ионизующего Ф. к. и. Фоновое УФ-излучение должно создавать зоны ионизации водорода вокруг галактик, подобные зонам НII , существующим вокруг горячих звёзд. Очевидно, если бы уровень фона был очень высок, то фотоны УФ-диапазона могли бы ионизовать весь межзвёздный газ. В действительности радионаблюдения в радиолинии водорода 21 см привели к обнаружению нейтрального газа далеко за оптич. границами галактик. Плотность водорода там крайне мала, и тот факт, что он не ионизован, говорит о малой интенсивности ультрафиолетового Ф. к. и., его верх. предел в 100 раз ниже, чем в соседнем наблюдаемом диапазоне. Водород на периферии галактик оказался в 100 раз более чувствительным детектором, чем счётчики на спутниках и ракетах. Полученный предел не так уж низок: он соответствует 10000 ионизующих фотонов, падающих на 1 см 2 поверхности галактик в 1 с.

Рентгеновский диапазон Наблюдения с ракет, спутников и баллонов показали, что излучение в клас-сич. рентг. области в высокой степени изотропно, т. е. имеет внегалактич. природу. Лишь в области мягких рентг. лучей (для фотонов с энергией e<250 эВ) обнаруживается сильная зависимость интенсивности диффузного излучения от галактич. координат. Спектр рентг. Ф. к. и. оказался степенным. Исследования практически всего неба при помощи приборов на спутниках позволили оценить амплитуду (<3%) мелкомасштабных угл. флуктуации рентг. Ф. к. и. Эти наблюдения важны для космологии: в принципе, наблюдения дипольной анизотропии рентг. фона позволят уточнить скорость движения Солнечной системы относительно системы координат, в к-рой изотропно фоновое излучение, создаваемое далёкими источниками. Наблюдения изотропии рентг. фона могут дать ценную информацию об однородности и изотропии Вселенной.

Главные источники рентг. Ф. к. и. до сих пор неизвестны. По-видимому, это ядра галактик, горячий межгалактич. газ в скоплениях галактик и квазары (обычные галактики дают не более 1 % наблюдаемого рентг. фона). При глубоких обзорах ряда площадок неба с Эйнштейновской рентг. обсерватории (со спутника ХЕАО-Б, США, 1978) на каждом квадратном градусе было обнаружено до десяти рентг. источников. Их детальный анализ в оптич. диапазоне показал, что 20-30% из них - это квазары, 20- 30%-далёкие галактики, 20-30%-звёзды нашей Галактики. Однако излучение этих объектов может обеспечить не более 50% интенсивности Ф. к. и. в рентг. диапазоне. Часть слабых рентг. источников не удаётся отождествить ни с оптическими, ни с радиообъектами. Планируются запуски рентг. спутников, к-рые должны будут снять карту всего неба в диапазоне от 0,5 до 1,5 кэВ и нанести на неё неск. сотен тыс. рентг. источников.

Происхождение рентг. Ф. к. и. может быть связано с рассеянием низкочастотных фотонов на релятивистских электронах космич. лучей (обратный Комптона эффект ).При таком рассеянии энергия фотонов увеличивается во много раз и они попадают в рентг. диапазон. В ядрах галактик, по-видимому, эффективно многократное комп-тоновское рассеяние на тепловых электронах, приводящее к формированию жёсткого рентг. излучения в горячей нерелятивистской максвелловской плазме. Другим важнейшим механизмом излучения рентг. фотонов является тормозное излучение горячего газа.

Гамма-диапазон Как и рентг. излучение, g-излучение может возникать при обратном эффекте Комптона и как тормозное излучение релятивистских электронов при их взаимодействии с газом. Помимо этого, g-фотоны могут рождаться и в других процессах. К ним относятся прежде всего столкновения протонов космич. лучей с ядрами атомов межзвёздной среды, приводящие к рождению p 0 -мезонов; аннигиляция протонов и антипротонов, сопровождающаяся рождением и последующим распадом p 0 -мезонов на два g-фотона; кроме того, возбуждение нетепловыми частицами и последующее излучение ядер, аннигиляция электронов и позитронов. Т. к. сечения и вероятности всех этих процессов достаточно хорошо известны, теоретики заранее рассчитали ожидаемые потоки от дискретных источников g-излучения, поток у-излучения от плоскости нашей Галактики и оценили интенсивность фона g-излучения.

Вселенная прозрачна для жёсткого g-излучения вплоть до значений красного смещения z~100. Поэтому по наблюдаемой интенсивности Ф. к. и. можно сделать важный вывод о кол-ве антивещества во Вселенной: маловероятно, чтобы антивещества во Вселенной было бы столько же, сколько вещества (см. Барионная асимметрия Вселенной ). Действительно, за время, соответствующее изменению z от 0 до 100 (за это время реликтовое излучение охлаждается примерно в 100 раз - от 300 К до 2,7 К), проан-нигилировало не более одной миллионной доли вещества Вселенной. Иначе интенсивность фонового g-излучения намного превысила бы наблюдаемую. Можно ожидать, что высокая проникающая способность g-излучения сделает g-астрономию мощным орудием исследования эволюции Вселенной.

Лит.: Лонгейр М. С., Сюняев Р. А., Электромагнитное излучение во Вселенной, "УФН", 1971, т. 105, с. 41. Р. А. Сюняев .

Реликтовое излучение

Внегалактическое микроволновое фоновое излучение приходится на диапазон частот от 500 МГц до 500 ГГц, что соответствует длинам волн от 60 см до 0,6 мм. Это фоновое излучение несет информацию о процессах, происходивших во Вселенной до образования галактик, квазаров и др. объектов. Это излучение, названное реликтовым, было обнаружено в 1965 году, хотя оно было предсказано еще в 40-х годах Георгием Гамовым и исследовалось астрономами в течение десятилетий.

В расширяющейся Вселенной средняя плотность вещества зависит от времени – в прошлом она была больше. Однако при расширении изменяется не только плотность, но и тепловая энергия вещества, значит на ранней стадии расширения Вселенная была не только плотной, но и горячей. Как следствие, в наше время должно наблюдаться остаточное излучение, спектр которого такой же, как спектр абсолютно твердого тела, и это излучение должно быть в высшей степени изотропно. В 1964 году А.А.Пензиас и Р.Вилсон, испытывая чувствительную радиоантенну, обнаружили очень слабое фоновое микроволновое излучение, от которого никаким образом не могли избавиться. Его температура оказалась равной 2,73 К, что близко к предсказанной величине. Из экспериментов по исследованию изотропии было показано, что источник микроволнового фонового излучения не может находиться внутри Галактики, так как тогда должна была бы наблюдаться концентрация излучения к центру Галактики. Источник излучения не мог находиться и внутри Солнечной системы, т.к. наблюдалась бы суточная вариация интенсивности излучения. В силу этого был сделан вывод о внегалактической природе этого фонового излучения. Тем самым гипотеза горячей Вселенной получила наблюдательное основание.

Для понимания природы реликтового излучения необходимо обратиться к процессам, имевшим место на ранних стадиях расширения Вселенной. Рассмотрим, как менялись физические условия во Вселенной в процессе расширения.

Сейчас каждый кубический сантиметр пространства содержит около 500 реликтовых фотонов, а вещества на этот объем приходится гораздо меньше. Поскольку отношение числа фотонов к числу барионов в процессе расширения сохраняется, но энергия фотонов в ходе расширения Вселенной со временем уменьшается из-за красного смещения, можно сделать вывод, что когда-то в прошлом плотность энергии излучения была больше плотности энергии частиц вещества. Это время называется радиационной стадией в эволюции Вселенной. Радиационная стадия характеризовалась равенством температуры вещества и излучения. В те времена излучение полностью определяло характер расширения Вселенной. Примерно через миллион лет после начала расширения Вселенной температура понизилась до нескольких тысяч градусов и произошла рекомбинация электронов, бывших до этого свободными частицами, с протонами и ядрами гелия, т.е. образование атомов. Вселенная стала прозрачной для излучения, и именно это излучение мы сейчас улавливаем и называем реликтовым. Правда, с того времени из-за расширения Вселенной фотоны уменьшили свою энергию примерно в 100 раз. Образно говоря, кванты реликтового излучения «запечатлели» эпоху рекомбинации и несут прямую информацию о далеком прошлом.

После рекомбинации вещество впервые начало эволюционировать самостоятельно, независимо от излучения, и в нем начали появляться уплотнения – зародыши будущих галактик и их скоплений. Вот почему так важны для ученых эксперименты по изучению свойств реликтового излучения – его спектра и пространственных флуктуаций. Их усилия не пропали даром: в начале 90-х гг. российский космический эксперимент «Реликт-2» и американский «Кобе» обнаружили различия температуры реликтового излучения соседних участков неба, причем величина отклонения от средней температуры составляет всего около тысячной доли процента. Эти вариации температуры несут информацию об отклонении плотности вещества от среднего значения в эпоху рекомбинации. После рекомбинации вещество во Вселенной было распределено почти равномерно, а там, где плотность была хоть немного выше средней, сильнее было притяжение. Именно вариации плотности впоследствии привели к образованию наблюдаемых во Вселенной крупномасштабных структур, скоплений галактик и отдельных галактик. По современным представлениям, первые галактики должны были образоваться в эпоху, которая соответствует красным смещениям от 4 до 8.

А есть ли шанс заглянуть еще дальше в эпоху, предшествующую рекомбинации? До момента рекомбинации именно давление электромагнитного излучения в основном создавало гравитационное поле, тормозившее расширение Вселенной. На этой стадии температура менялась обратно пропорционально квадратному корню из времени, прошедшего с начала расширения. Рассмотрим последовательно различные стадии расширения ранней Вселенной.

При температуре примерно 1013 Кельвинов во Вселенной рождались и аннигилировали пары различных частиц и античастиц: протоны, нейтроны, мезоны, электроны, нейтрино и др. При понижении температуры до 5*1012 К почти все протоны и нейтроны аннигилировали, превратившись в кванты излучения; остались только те, для которых «не хватило» античастиц. Именно из этих «избыточных» протонов и нейтронов в основном состоит вещество современной наблюдаемой Вселенной.

При Т= 2*1010 К с веществом перестали взаимодействовать всепроникающие нейтрино – от того момента должен был остаться «реликтовый фон нейтрино», обнаружить который, возможно, удастся в ходе будущих нейтринных экспериментов.

Все, о чем сейчас говорилось, происходило при сверхвысоких температурах в первую секунду после начала расширения Вселенной. Спустя несколько секунд после момента «рождения» Вселенной началась эпоха первичного нуклеосинтеза, когда образовывались ядра дейтерия, гелия, лития и бериллия. Она продолжалась приблизительно три минуты, а ее основным результатом стало образование ядер гелия (25% от массы всего вещества Вселенной). Остальные элементы, более тяжелые, чем гелий, составили ничтожно малую часть вещества – около 0,01%.

После эпохи нуклеосинтеза и до эпохи рекомбинации (примерно 106 лет) происходило спокойное расширение и остывание Вселенной, а затем – спустя сотни миллионов лет после начала – появились первые галактики и звезды.

В последние десятилетия развитие космологии и физики элементарных частиц позволило теоретически рассмотреть и самый начальный, «сверхплотный» период расширения Вселенной. Оказывается, в самом начале расширения, когда температура была невероятно высока (больше 1028 К), Вселенная могла находиться в особом состоянии, при котором она расширялась с ускорением, а энергия в единице объема оставалась постоянной. Такую стадию расширения назвали инфляционной. Подобное состояние материи возможно при одном условии – отрицательном давлении. Стадия сверхбыстрого инфляционного расширения охватывала крошечный промежуток времени: она завершилась к моменту примерно 10–36 с. Считается, что настоящее «рождение» элементарных частиц материи в том виде, в каком мы их знаем сейчас, произошло как раз по окончании инфляционной стадии и было вызвано распадом гипотетического поля. После этого расширение Вселенной продолжалось уже по инерции.

Гипотеза инфляционной Вселенной отвечает на целый ряд важных вопросов космологии, которые до недавнего времени считались необъяснимыми парадоксами, в частности на вопрос о причине расширения Вселенной. Если в своей истории Вселенная действительно прошла через эпоху, когда существовало большое отрицательное давление, то гравитация неизбежно должна была вызвать не притяжение, а взаимное отталкивание материальных частиц. И значит, Вселенная начала быстро, взрывоподобно расширяться. Конечно, модель инфляционной Вселенной лишь гипотеза: даже косвенная проверка ее положений требует таких приборов, которые в настоящее время просто еще не созданы. Однако идея ускоренного расширения Вселенной на самой ранней стадии ее эволюции прочно вошла в современную космологию.

Говоря о ранней Вселенной, мы от самых больших космических масштабов вдруг переносимся в область микромира, которая описывается законами квантовой механики. Физика элементарных частиц и сверхвысоких энергий тесно переплетается в космологии с физикой гигантских астрономических систем. Самое большое и самое малое смыкаются здесь друг с другом. В этом и состоит удивительная красота нашего мира, полного неожиданных взаимосвязей и глубокого единства.

Проявления жизни на Земле чрезвычайно многообразны. Жизнь на Земле представлена ядерными и доядерными, одно- и многоклеточными существами; многоклеточные, в свою очередь, представлены грибами, растениями и животными. Любое из этих царств объединяет разнообразные типы, классы, отряды, семейства, роды, виды, популяции и индивидуумы.

Во всем, казалось бы, бесконечном многообразии живого можно выделить несколько разных уровней организации живого: молекулярный, клеточный, тканевый, органный, онтогенетический, популяционный, видовой, биогеоценотический, биосферный. Перечисленные уровни выделены по удобству изучения. Если же попытаться выделить основные уровни, отражающие не столько уровни изучения, сколько уровни организации жизни на Земле, то основными критериями такого выделения должны быть признаны наличие специфических элементарных, дискретных структур и элементарных явлений. При этом подходе оказывается необходимым и достаточным выделять молекулярно-генетический, онтогенетический, популяционно-видовой и биогеоценотический уровни (Н.В. Тимофеев-Ресовский и др.).

Молекулярно-генетический уровень. При изучении этого уровня достигнута, видимо, наибольшая ясность в определении основных понятий, а также в выявлении элементарных структур и явлений. Развитие хромосомной теории наследственности, анализ мутационного процесса, изучение строения хромосом, фагов и вирусов вскрыли основные черты организации элементарных генетических структур и связанных с ними явлений. Известно, что основные структуры на этом уровне (коды наследственной информации, передаваемой от поколения к поколению) представляют собой ДНК, дифференцированную по длине на элементы кода – триплеты азотистых оснований, образующих гены.

Гены на этом уровне организации жизни представляют элементарные единицы. Основными элементарными явлениями, связанными с генами, можно считать их локальные структурные изменения (мутации) и передачу хранящейся в них информации внутриклеточным управляющим системам.

Конвариантная редупликация происходит по матричному принципу путем разрыва водородных связей двойной спирали ДНК с участием фермента ДНК-полимеразы. Затем каждая из нитей строит себе соответствующую нить, после чего новые нити комплементарно соединяются между собой.Пиримидиновые и пуриновые основания комплементарных нитей скрепляются водородными связями между собой ДНК-полимеразой. Этот процесс осуществляется очень быстро. Так, на самосборку ДНК кишечной палочки (Escherichia coli), состоящей примерно из 40 тыс. пар нуклеотидов, требуется всего 100 с. Генетическая информация переносится из ядра молекулами иРНК в цитоплазму к рибосомам и там участвует в синтезе белка. Белок, содержащий тысячи аминокислот, в живой клетке синтезируется за 5–6 мин, а у бактерий быстрее.

Основные управляющие системы как при конвариантной редупликации, так и при внутриклеточной передаче информации используют «матричный принцип», т.е. являются матрицами, рядом с которыми строятся соответствующие специфические макромолекулы. В настоящее время успешно дешифруется заложенный в структуре нуклеиновых кислот код, служащий матрицей при синтезе специфических белковых структур в клетках. Редупликация, основанная на матричном копировании, сохраняет не только генетическую норму, но и отклонения от нее, т.е. мутации (основа процесса эволюции). Достаточно точное знание молекулярно-генетического уровня – необходимая предпосылка для ясного понимания жизненных явлений, происходящих на всех остальных уровнях организации жизни.