Физические и математические модели. Что такое математическое и физическое моделирование

Научные исследования, связанные с созданием новых машин

Основными направлениями научных иссле­дований, связанных с повышением качества, надежности и безопасности машин и обо­рудования, являются:

фундаментальные исследования в области новых рабочих процессов, ресурсосберегаю­щих технологий и новых конструкционных материалов;

создание, освоение и внедрение современ­ных методов конструирования машин, обосно­вания их оптимальных рабочих параметров, конструктивных форм;

получение новых материалов, разработка деталей, узлов и агрегатов с соблюдением требований по технологическим параметрам;

разработка новых метрологических мето­дов, систем и средств;

проведение ускоренных и обычных испыта­ний на надежность и ресурс моделей и на­турных изделий;

организация эксплуатации машин с за­данной степенью надежности, безопасности, экономичности при соблюдении требований эргономики и экологии.

Первостепенное значение в современном машиностроении приобретают проблемы на­дежности и безопасности техники с учетом роли человеческого фактора.

Научной базой применения концептуаль­ных, конструкторских, технологических и материаловедческих решений для всех этапов создания машин и конструкций должны стать принципы и методы физического и ма­тематического моделирования.

Физическое и математическое моделиро­вание в машиностроении бази­руется на общих подходах, развиваемых на основе фундаментальных наук, прежде всего математики, физики, химии и др.

Математическое моделирование и вычис­лительный эксперимент становятся новым ме­тодом анализа сложных машин, рабочих про­цессов и системы машина - человек - сре­да. Физическое и математическое моделиро­вание проводится в несколько стадий.

Начинается моделирование с постановки и уточнения задачи, рассмотрения физи­ческих аспектов, определения степени влия­ния на моделируемые процессы различных факторов в программируемых условиях функ­ционирования моделируемых систем или про­цесса. На этой основе строится физическая модель.

Затем на ее базе строится математиче­ская модель, включающая в себя матема­тическое описание моделируемого процесса или механической системы в соответствии с закономерностями кинематики и динамики, поведения материалов под действием нагру­зок и температур и т. д. Модель исследуется по таким направлениям, как соответствие поставленной задаче, существование решения и т. п.

На третьей стадии выбирается вычислитель­ный алгоритм решения задачи моделирова­ния. Современные численные методы позво­ляют снять ограничения на степень сложно­сти математических моделей.

Далее используя современные математические пакеты программ, такие как MathCad, Matlab, которые обладают большим набором возможностей и функций и позволяют решать задачи как аналитическими, так и численными методами, проводят вычислительные эксперименты.


При проведении вычислений и получении результатов необходимо особое внимание уделять грамотности и правильности представления решений.

Завершающая стадия предусматривает анализ полученных результатов, сопостав­ление их с данными физических экспери­ментов на натурных образцах изделий. В слу­чае необходимости ставится задача уточне­ния выбранной математической модели с по­следующим повторением указанных выше стадий.

После завершения работ по физическому и математическому моделированию форми­руются общее заключение и выводы по конструкторским, технологическим и эксплуа­тационным мероприятиям, связанным с созда­нием новых материалов и технологий, обес­печением условий надежной и безопасной работы машин, удовлетворением требований эргономики и экологии.

В последнее время чисто математическое моделирование крайне редко встречается при проектировании и конструировании механизмов и деталей. Традиционное математическое моделирование при проектировании современных механизмов и деталей, заменяется на компьютерное моделирование. Основным методом применяемым современными программными продуктами является метод конечных элементов. Подобное моделирование помимо точности вычисления и наглядного представления о поведении объекта исследования в заданных условиях ускоряет процесс проектирования и уменьшает затраты на проведение исследований с физическими моделями.

Создание новых машин и конструкций с повышенным уровнем рабочих параметров, экологических и эргономических требований представляет собой сложную комплексную проблему, эффективное решение которой ба­зируется на физическом и математическом моделировании.

Разработка эскизного проекта предусмат­ривает построение физических моделей на основании опыта создания прототипов. Ма­тематические модели включают новые зна­ния об анализе и синтезе структурных и ки­нематических схем, о динамических характе­ристиках взаимодействия между основными элементами с учетом рабочих сред и про­цессов. На этом же этапе формируются и решаются в общем виде вопросы экологии и эргономики.

При разработке технического проекта дол­жен осуществляться переход к физическим моделям основных узлов, испытываемым в лабораторных условиях. К математиче­скому обеспечению технического проекта от­носятся системы автоматизированного про­ектирования.

Создание принципиально новых машин (машин будущего) требует совершенствова­ния методов математического моделирова­ния и построения новых моделей. Это в зна­чительной мере относится к уникальным объ­ектам новой техники (атомная и термо­ядерная энергетика, ракетная, авиационная и криогенная техника), а также к новым технологическим, транспортным аппаратам и устройствам (лазерные и импульсные техно­логические установки, системы на магнит­ной подвеске, глубоководные аппараты, адиа­батные двигатели внутреннего сгорания и др.).

На этапе рабочего проектирования физи­ческое моделирование предполагает созда­ние макетов и испытательных стендов для проверки конструкторских решений. Мате­матическая сторона этого этапа связана с разработкой автоматизированных систем под­готовки технической документации. Матема­тические модели уточняют по мере детали­зации и уточнения граничных условий за­дач конструирования.

Одновременно с проектированием решают­ся конструкторско-технологические задачи вы­бора материалов, назначения технологий изготовления и контроля. В области конструк­ционного материаловедения используют экспе­риментальное определение физико-механи­ческих свойств на лабораторных образцах как при стандартных испытаниях, так и при испытаниях в условиях, имитирующих экс­плуатационные. При изготовлении высокоот­ветственных деталей и узлов из новых ма­териалов (высокопрочные коррозионно- и радиационно стойкие, плакированные, компо­зиционные и др.) необходимо проводить спе­циализированные испытания по определению предельных состояний и критериев повреж­дения. Математическое моделирование исполь­зуют для построения имитационных моделей механического поведения материалов в раз­личных условиях нагружения с учетом технологии получения материалов и формообразования деталей машин. Имитационные модели используют при выполнении слож­ного математического анализа тепловых, диффузионных, электромагнитных и других явлений, сопутствующих новым технологиям.

На основе физических и имитационных мо­делей получают сложный комплекс физико-механических свойств, характеристики ко­торых должны использоваться при создании на базе компьютеров банков данных о современных и перспективных материалах.

На этапе разработки технологии изготов­ления деталей, узлов и машин в целом физическое моделирование используют при ла­бораторной и опытно-промышленной отработ­ке технологических процессов как традици­онных (механообработка, литье и др.), так и новых (лазерная обработка, плазменная, взрывная, магнитно-импульсная и др.).

Параллельно с технологическими процес­сами разрабатываются физические модели, а также "принципы контроля и дефектоско­пии материалов и готовых изделий. Мате­матические модели технологических процес­сов позволяют решать сложные задачи теплопроводности, термоупругости, сверх пластичности, волновых и других явлений с целью рационального выбора для данных деталей эффективных методов и параметров обработки.

На этапе создания машин и конструкций, когда осуществляется доводка и испытания головных образцов и опытных партий, фи­зическое моделирование предусматривает про­ведение стендовых и натурных испытаний. Стендовые испытания обеспечивают высокую информативность и сокращают сроки довод­ки опытных образцов изделий массового и крупносерийного производства. Натурные ис­пытания необходимы для оценки работоспо­собности и надежности уникальных изделий на предельных режимах. При этом задачами математического моделирования становятся алгоритмы и программы управления испыта­ниями. Анализ получаемой эксперименталь­ной информации следует проводить на компьютере в реальном масштабе времени.

При эксплуатации машин физическое мо­делирование используют для диагностики со­стояния и обоснования продления ресурса безопасной работы. Математическое(компьютерное) модели­рование на этом этапе имеет целью построе­ние моделей эксплуатационных повреждений по комплексу принятых при проектировании критериев: Проработка таких моделей вы­полняется в настоящее время для объектов атомного и теплового энергетического маши­ностроения, ракетной и авиационной техники и других объектов.

Поэты знают – все похоже на все. На этом положении базируется творчество метафор:

В саду горит костер рябины красной,

Но никого не может он согреть.

На этом же положении базируется моделирование. Моделирование – это построение и исследование моделей. В свою очередь моделью называется некоторая система, исследуя которую получают информацию о другой системе.

С первого взгляда это кажется нонсенсом. Можно ли, разглядывая один предмет, получить представление о другом предмете. Где то море, а где та дача?

Между тем, чтобы посмотреть на себя со стороны, мы пользуемся зеркалом. При этом свое отражение в зеркальном стекле мы отождествляем с собой. Хотя наше отражение кое в чем и отличается от оригинала. Например, правое и левое в зеркале меняется местами. Но мы почти автоматически делаем поправку на это не существенное в данном случае различие, и пользуемся зеркалом к своей пользе и вящему удобству. Все мальчики отходят от зеркала чистыми и причесанными. А девочки вообще красавицы!

Модель, метафорически выражаясь, и есть такое зеркало, приставленное к изучаемому предмету.

Создавая модель, мы решаем, какие свойства изучаемой системы для нас важны, а какие – второстепенны. Например, при исследовании крыльев летательных аппаратов в аэродинамической трубе, нам важна их форма и материал, из которого они изготовлены. Цвет же крыльев в данном случае несущественен. Хотя при расчете видимости самолета цвет его плоскостей будет, пожалуй, самой важной информацией.

Определившись с главными и не главными свойствами моделируемой системы или объекта, мы устанавливаем определенные соотношения между свойствами системы и ее модели. Например, если размер модели дома вдвое меньше размера реального дома, объем, а следовательно, вес модели будет в восемь раз меньше реального.

Затем мы начинаем исследование модели и определяем различные интересующие нас соотношения между параметрами. Например, при какой скорости воздушного потока начнутся вибрации крыла. Это – формулировка проблемы флаттера, колебаний летательного аппарата, неожиданно возникающих при определенных значениях скорости воздушного потока, обтекающего крыло. Без решения этой проблемы самолеты не смогли бы летать с высокими скоростями. Чтобы решить ее пришлось наблюдать в аэродинамической трубе разрушение большого количества моделей крыльев. Здесь мы сразу видим в чем достоинства моделирования. Мы испытываем на прочность не дорогой самолет, а дешевую модель, пересчитывая свойства модели в свойства моделируемого реального самолета. Экономия средств, а главное, летчики-испытатели не должны рисковать жизнью.

Другая область применения моделей – сопротивление материалов и строительная механика. Насколько прочной должна быть сталь для моста? Какой толщины делать несущие колонны, чтобы здание не обрушилось? Можно ли построить небоскреб из кирпича? Здесь моделью реального материала является образец, подвергаемый испытаниям на специальных испытательных стендах. Прочностные характеристики, полученные по результатам испытаний, пересчитываются в прочностные характеристики реальных деталей машин или зданий.

А при «заселении» нового здания тоже не обойтись без моделирования. Для того, чтобы оптимально расставить мебель в комнатах, никто не таскает туда-сюда тяжелые столы и громоздкие холодильники. Все предметы моделируются небольшими бумажными прямоугольничками, которые перемещаются по поверхности бумажного листа с изображенным на нем планом помещения.

Да и в медицине мы не обходимся без моделирования. Ни один человек в точности на другого не похож. Вместе с тем, у всех человеческих организмов есть достаточно сходства, как в «деталях», так и в «функциях». Медик изучает анатомию по одному скелету, а иногда даже по модели скелета, и понимает, как устроены все люди. Психолог изучает, как конкретный человек реагирует на определенные раздражители, а потом делает общие выводы касательно поведения всех людей.

Моделирование бывает двух видов – математическое и физическое. При математическом моделировании исследуются системы соотношений, описывающих процессы, протекающие в моделируемом объекте. Соотношения могут описываться уравнениями, зачастую достаточно сложными, которые выводятся на основе теоретической модели исследуемого процесса или исследуемой системы. Но математические модели могут быть также и вероятностными. В таких моделях изменения входных параметров определяют поведение выходных параметров не жестко, а с некоторой долей вероятности.

Математическая модель – это всегда компромисс между реальной сложностью исследуемой системы и простотой, требуемой для его описания. Не всегда имеются «качественные» теории, позволяющие точно рассчитать, что происходит, например, при падении напряжения в больших электросетях. Да даже поведение потока воды, спускаемой в унитазе в зависимоти от его формы – серьезная теоретическая проблема.

При физическом моделировании изучаются свойства моделей, которые по физическим свойствам сходны с оригиналами. Например, при краш-тестах автомобилей множество разбиваемых автомобилей моделирует поведение любого автомобиля, который, в конце концов, будет выпущен на дорогу.

Исследования физических моделей производится на реальных установках или испытательных стендах. Результаты испытаний переводятся в реальные результаты с помощью расчетов, основанных на специальном математическом аппарате, который называется теорией подобия. Примером испытания физических моделей являются уже описанные испытания авиационных моделей в аэродинамической трубе. Или расчет плотины гидроэлектростанции. Недостатком физического моделирования является относительная трудоемкость создания и испытания моделей и меньшая универсальность метода физического моделирования.

Но в любом случае, физическое и математическое моделирование, дополняя друг друга, позволяют изменять наш мир в желаемом направлении.

Cтраница 3


Из сказанного ясно, что физическое и математическое моделирование (или, что то же самое, физическое и математическое исследование) физико-химических процессов нельзя осуществить независимо друг от друга. Математическое описание и математическая модель появляются в результате физического исследования (моделирования) процессов. Поскольку математическое моделирование не является самоцелью, а служит средством для оптимального осуществления процесса, то результаты его используются для создания оптимального физического объекта. Исследования на этом объекте (новое физическое моделирование) позволяют проверить результаты математического моделирования и улучшить математическую модель для решения новых задач.  

В книге рассмотрено применение методов физического и математического моделирования для решения ряда технических проблем, возникающих в инженерной практике при разработке, масштабировании и управлении химическими процессами нефтепереработки.  

Относительная роль и взаимосвязь методов физического и математического моделирования при исследованиях - в определенной мере вопрос конъюнктурный, зависящий от уровня развития вычислительной техники, прикладной математики и техники экспериментальных исследований. Еще сравнительно недавно (до появления и внедрения в практику ЭВМ) физическое моделирование было основным методом перехода от пробирки к заводу.  

Следует остановиться и на трудностях физического и математического моделирования колонных аппаратов, так как в данном елучае имеется двухфазная система с тяжеломоделируемыми и рассчитываемыми моментами межфазных переходов. Струйное впрыскивание и барботаж газа создают сложную гидродинамическую картину в колонных аппаратах. Даже самая упрощенная (квазигомогенная) модель колонных аппаратов приводит к нелинейным системам уравнений в частных производных, анализ которых в настоящее время даже с использованием средств электронно-вычислительной техники представляет определенные трудности.  

Приводится краткий обнор работ по физическому и математическому моделированию процессов филътрагдаи в газовых и газо-конденсатках месторождению. Определяются основные направления предстоящих исследований по каждому из видев моделирования.  

Из существующих методов наиболее широко применяется физическое и математическое моделирование. Это деление является условным, так как оба метода моделируют физические величины посредством самих физических величин. Различие заключается в том, что в первом случае моделирование осуществляется с помощью физических величин той же природы, во втором - физический процесс одной природы заменяется физическим процессом другой природы, но так, что оба физические явления подчиняются одинаковым законам. Они признаются аналогичными и математически описываются уравнениями одинаковой структуры. Так, электрическая система с индуктивностью, емкостью и сопротивлением может быть математической моделью колеблющегося на пружине груза. Здесь зарядка конденсатора, а затем его разрядка вследствие замыкания через сопротивление и емкость аналогичны отклонению груза от положения равновесия и последующего затухающего колебания.  

В современной экспериментальной практике широко применяют физическое и математическое моделирование, которое незаменимо в тех случаях, когда нельзя определить параметры машин расчетными методами, а построение их опытных образцов для экспериментального исследования требует больших материальных затрат и времени.  

При проектировании разработки газоконденсатных месторождений проводят комплексное физическое и математическое моделирование процесса дифференциальной конденсации пластовых смесей. В результате этих исследований получают величину давления начала конденсации, прогнозные данные о динамике выпадения и последующего испарения жидкой фазы при уменьшении давления, составе и свойствах добываемой смеси, коэффициентах конденсато - и компонентоотдачи.  

Во многих случаях целесообразно комбинировать установки физического и математического моделирования в единую систему, позволяющую совместить преимущества обоих методов.  

Эта теория, основанная на сочетании физического и математического моделирования, исходит из того, что указанный выше масштабный эффект обусловлен преимущественно ухудшением структуры потоков с увеличением размеров аппарата, и прежде всего - возрастанием неравномерности распределения скоростей по поперечному сечению аппарата.  

Формирование физико-геологической модели базируется на результатах физического и математического моделирования. Так, при физическом моделировании создаются искусственные модели с близкими к горным породам физическими свойствами и с соблюдением условий подобия, при математическом моделировании рассчитываются физические поля для заданных физических свойств с использованием соответствующих уравнений теории потенциальных полей или дифференциальных волновых уравнений.  

В чем состоит принципиальное различие между физическим и математическим моделированием.  

Этот вывод подтверждается многочисленными опытами, физическим и математическим моделированием контура.  

При разработке новых процессов и аппаратов применяют физическое и математическое моделирование.  

Необходимо иметь в виду, что нельзя противопоставлять физическое и математическое моделирование.  

Физическое и математическое моделирование

Так как понятие «моделирование» является достаточно общим и универсальным, к числу способов моделирования относятся столь различные подходы как, например, метод мембранной аналогии (физическое моделирование) и методы линейного программирования (оптимизационное математическое моделирование). Для того чтобы упорядочить употребление термина «моделирование» вводят классификацию различных способов моделирования. В наиболее общей форме выделяются две группы различных подходов к моделированию, определяемых понятиями «физическое моделирование» и «идеальное моделирование».

Физическое моделирование осуществляется путем воспроизведения исследуемого процесса на модели, имеющей в общем случае отличную от оригинала природу, но одинаковое математическое описание процесса функционирования.

Совокупность подходов к исследованию сложных систем, определяемая термином «математическое моделирование », является одной из разновидностей идеального моделирования. Математическое моделирование основано на использовании для исследования системы совокупности математических соотношений (формул, уравнений, операторов и т.д.), определяющих структуру исследуемой системы и ее поведение.

Математическая модель - это совокупность математических объектов (чисел, символов, множеств и т.д.), отражающих важнейшие для исследователя свойства технического объекта, процесса или системы.

Математическое моделирование - это процесс создания математической модели и оперирования ею с целью получения новой информации об объекте исследования.

Построение математической модели реальной системы, процесса или явления предполагает решение двух классов задач, связанных с построением «внешнего» и «внутреннего» описания системы. Этап, связанный с построением внешнего описания системы называется макроподходом. Этап, связанный с построением внутреннего описания системы называется микроподходом.

Макроподход - способ, посредством которого производится внешнее описание системы. На этапе построения внешнего описания делается упор на совместное поведение всех элементов системы, точно указывается, как система откликается на каждое из возможных внешних (входных) воздействий . Система рассматривается как «черный ящик», внутреннее строение которого неизвестно. В процессе построения внешнего описания исследователь имеет возможность, воздействуя различным образом на вход системы, анализировать ее реакцию на соответствующие входные воздействия. При этом степень разнообразия входных воздействий принципиальным образом связана с разнообразием состояний выходов системы. Если на каждую новую комбинацию входных воздействий система реагирует непредсказуемым образом, испытание необходимо продолжать. Если на основании полученной информации может быть построена система, в точности повторяющая поведение исследуемой, задачу макроподхода можно считать решенной.

Итак, метод «черного ящика» состоит в том, чтобы выявить, насколько это возможно, структуру системы и принципы ее функционирования, наблюдая только входы и выходы. Подобный способ описания системы некоторым образом аналогичен табличному заданию функции.

При микроподходе структура системы предполагается известной, то есть предполагается известным внутренний механизм преобразования входных сигналов в выходные. Исследование сводится к рассмотрению отдельных элементов системы. Выбор этих элементов неоднозначен и определяется задачами исследования и характером исследуемой системы. При использовании микроподхода изучается структура каждого из выделенных элементов, их функции, совокупность и диапазон возможных изменений параметров.

Микроподход - способ, посредством которого производится внутреннее описание системы, то есть описание системы в функциональной форме.

Результатом этого этапа исследования должен явиться вывод зависимостей, определяющих связь между множествами входных параметров, параметров состояния и выходных параметров системы. Переход от внешнего описания системы к ее внутреннему описанию называют задачей реализации.

Так как понятие «моделирование» является достаточно общим и универсальным, к числу способов моделирования относятся столь различные подходы как, например, метод мембранной аналогии (физическое моделирование) и методы линейного программирования (оптимизационное математическое моделирование). Для того чтобы упорядочить употребление термина «моделирование» вводят классификацию различных способов моделирования. В наиболее общей форме выделяются две группы различных подходов к моделированию, определяемых понятиями «физическое моделирование» и «идеальное моделирование».

Физическое моделирование осуществляется путем воспроизведения исследуемого процесса на модели, имеющей в общем случае отличную от оригинала природу, но одинаковое математическое описание процесса функционирования.

Совокупность подходов к исследованию сложных систем, определяемая термином «математическое моделирование », является одной из разновидностей идеального моделирования. Математическое моделирование основано на использовании для исследования системы совокупности математических соотношений (формул, уравнений, операторов и т.д.), определяющих структуру исследуемой системы и ее поведение.

Математическая модель - это совокупность математических объектов (чисел, символов, множеств и т.д.), отражающих важнейшие для исследователя свойства технического объекта, процесса или системы.

Математическое моделирование - это процесс создания математической модели и оперирования ею с целью получения новой информации об объекте исследования.

Построение математической модели реальной системы, процесса или явления предполагает решение двух классов задач, связанных с построением «внешнего» и «внутреннего» описания системы. Этап, связанный с построением внешнего описания системы называется макроподходом. Этап, связанный с построением внутреннего описания системы называется микроподходом.

Макроподход - способ, посредством которого производится внешнее описание системы. На этапе построения внешнего описания делается упор на совместное поведение всех элементов системы, точно указывается, как система откликается на каждое из возможных внешних (входных) воздействий . Система рассматривается как «черный ящик», внутреннее строение которого неизвестно. В процессе построения внешнего описания исследователь имеет возможность, воздействуя различным образом на вход системы, анализировать ее реакцию на соответствующие входные воздействия. При этом степень разнообразия входных воздействий принципиальным образом связана с разнообразием состояний выходов системы. Если на каждую новую комбинацию входных воздействий система реагирует непредсказуемым образом, испытание необходимо продолжать. Если на основании полученной информации может быть построена система, в точности повторяющая поведение исследуемой, задачу макроподхода можно считать решенной.



Итак, метод «черного ящика» состоит в том, чтобы выявить, насколько это возможно, структуру системы и принципы ее функционирования, наблюдая только входы и выходы. Подобный способ описания системы некоторым образом аналогичен табличному заданию функции.

При микроподходе структура системы предполагается известной, то есть предполагается известным внутренний механизм преобразования входных сигналов в выходные. Исследование сводится к рассмотрению отдельных элементов системы. Выбор этих элементов неоднозначен и определяется задачами исследования и характером исследуемой системы. При использовании микроподхода изучается структура каждого из выделенных элементов, их функции, совокупность и диапазон возможных изменений параметров.

Микроподход - способ, посредством которого производится внутреннее описание системы, то есть описание системы в функциональной форме.

Результатом этого этапа исследования должен явиться вывод зависимостей, определяющих связь между множествами входных параметров, параметров состояния и выходных параметров системы. Переход от внешнего описания системы к ее внутреннему описанию называют задачей реализации.

Задача реализации заключается в переходе от внешнего описания системы к ее внутреннему описанию. Задача реализации представляет собой одну из важнейших задач в исследовании систем и, по существу, отражает абстрактную формулировку научного подхода к построению математической модели. В такой постановке задача моделирования заключается в построении множества состояний и вход-выходного отображения исследуемой системы на основе экспериментальных данных. В настоящее время задача реализации решена в общем виде для систем, у которых отображение вход-выход линейно. Для нелинейных систем общего решения задачи реализации пока не найдено.