Физические фазы. Начальная фаза

Еще одной характеристикой гармонических колебаний является фаза колебаний.

Как нам уже известно, при заданной амплитуде колебаний, в любой момент времени мы можем определить координату тела. Она будет однозначно задаваться аргументом тригонометрической функции φ = ω0*t. Величина φ, которая стоит под знаком тригонометрической функции, называется фазой колебаний.

Для фазы единицами измерения являются радианы. Фаза однозначно определяет не только координату теда в любой момент времени, но так же скорость или ускорение. Поэтому считается, что фаза колебаний определяет состояние колебательной системы в любой момент времени.

Конечно же при условии что задана амплитуда колебаний. Два колебания, у которых одинаковые частота и период колебаний могут отличаться друг от друга фазами.

  • φ = ω0*t = 2*pi*t/T.

Если выразить время t в количестве периодов, которые пройдены от начала колебаний, то любому значению времени t, соответствует значение фазы, выраженной в радианах. Например, если взять время t = Т/4, то этому значению будет соответствовать значение фазы pi/2.

Таким образом, мы можем изобразить график зависимости координаты не от времени, а от фазы, и получим точно такую же зависимость. На следующем рисунке представлен такой график.

Начальная фаза колебаний

При описании координаты колебательного движения мы использовали функции синуса и косинуса. Для косинуса мы записывали следующую формулу:

  • x = Xm*cos(ω0*t).

Но мы можем описать эту же траекторию движения и с помощью синуса. При этом нам необходимо сдвинуть аргумент на pi/2, то есть отличие синуса от косинуса - pi/2 или четверть периода.

  • x=Xm*sin(ω0*t+pi/2).

Значение pi/2 называется начальной фазой колебания. Начальная фаза колебания - положение тела в начальный момент времени t = 0. Для того, чтобы заставить маятник колебаться, мы должны вывести его из положения равновесия. Мы можем это сделать двумя путями:

  • Отвести его в сторону и отпустить.
  • Ударить по нему.

В первом случае, мы сразу же изменяем координату тела, то есть, в начальный момент времени координата будет равна значению амплитуды. Для описания такого колебания удобнее использовать функцию косинуса и форму

  • x = Xm*cos(ω0*t),

либо же формулу

  • x = Xm*sin(ω0*t+&phi),

где φ- начальная фаза колебания.

Если мы ударим по телу, то в начальный момент времени его координата равняется нулю, и в таком случае удобнее использовать форму:

  • x = Xm*sin(ω0*t).

Два колебания, которые различаются только начальной фазой, называются сдвинутыми по фазе.

Например, для колебаний описанных следующими формулами:

  • x = Xm*sin(ω0*t),
  • x = Xm*sin(ω0*t+pi/2),

сдвиг фаз равен pi/2.

Сдвиг фаз еще иногда называют разностью фаз.

>> Фаза колебаний

§ 23 ФАЗА КОЛЕБАНИЙ

Введем еще одну величину, характеризующую гармонические колебания , - фазу колебаний.

При заданной амплитуде колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса :

Величину , стоящую под знаком функции косинуса или синуса, называют фазой колебаний, описываемой этой функцией. Выражается фаза в угловых единицах радианах.

Фаза определяет не только значение координаты, но и значение других физических величин, например скорости и ускорения, изменяющихся также по гармоническому закону. Поэтому можно сказать, что фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени. В этом состоит значение понятия фазы.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами.

Отношение указывает, сколько периодов прошло от момента начала колебаний. Любому значению времени t, выраженному в числе периодов Т, соответствует значение фазы , выраженное в радианах. Так, по прошествии времени t = (четверти периода) , по прошествии половины периода = , по прошествии целого периода = 2 и т. д.

Можно изобразить на графике зависимость координаты колеблющейся точки не от времени, а от фазы. На рисунке 3.7 показана та же косинусоида, что и на рисунке 3.6, но на горизонтальной оси отложены вместо времени различные значения фазы .

Представление гармонических колебаний с помощью косинуса и синуса. Вы уже знаете, что при гармонических колебаниях координата тела изменяется со временем по закону косинуса или синуса. После введения понятия фазы остановимся на этом подробнее.

Синус отличается от косинуса сдвигом аргумента на , что соответствует, как видно из уравнения (3.21), промежутку времени, равному четверти периода:

Но при этом начальная фаза, т. е. значение фазы в момент времени t = 0, равна не нулю, а .

Обычно колебания тела, прикрепленного к пружине, или колебания маятника мы возбуждаем, выводя тело маятника из положения равновесия и затем отпуская его. Смещение от гихпожения равновесия максимально в начальной момент. Поэтому для описания колебаний удобнее пользоваться формулой (3.14) с применением косинуса, чем формулой (3.23) с применением синуса.

Но если бы мы возбудили колебания покоящегося тела кратковременным толчком, то координата тела в начальный момент была бы равна нулю, и изменения координаты со временем было бы удобнее описывать с помощью синуса, т. е. формулой

x = x m sin t (3.24)

так как при этом начальная фаза равна нулю.

Если в начальный момент времени (при t = 0) фаза колебаний равна , то уравнение колебаний можно записать в виде

x = x m sin(t + )

Сдвиг фаз. Колебания, описываемые формулами (3.23) и (3.24), отличаются друг от друга только фазами. Разность фаз, или, как часто говорят, сдвиг фаз, этих колебаний составляет . На рисунке 3.8 показаны графики зависимости координат от времени колебаний, сдвинутых по фазе на . График 1 соответствует колебаниям, совершающимся по синусоидальному закону: x = x m sin t а график 2 - колебаниям, совершающимся по закону косинуса:

Для определения разности фаз двух колебаний надо в обоих случаях колеблющуюся величину выразить через одну и ту же тригонометрическую функцию - косинус или синус.

1. Какие колебания называют гармоническими!
2. Как связаны ускорение и координата при гармонических колебаниях!

3. Как связаны циклическая частота колебаний и период колебаний!
4. Почему частота колебаний тела, прикрепленного к пружине, зависит от его массы, а частота колебаний математического маятника от массы не зависит!
5. Каковы амплитуды и периоды трех различных гармонических колебаний, графики которых представлены на рисунках 3.8, 3.9!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Колебательные процессы - важный элемент современной науки и техники, поэтому их изучению всегда уделялось внимание, как одной из “вечных” проблем. Задача любого знания - не простое любопытство, а использование его в повседневной жизни. А для этого существуют и ежедневно появляются новые технические системы и механизмы. Они находятся в движении, проявляют свою сущность, выполняя какую-нибудь работу, либо, будучи неподвижными, сохраняют потенциальную возможность при определенных условиях перейти в состояние движения. А что есть движение? Не углубляясь в дебри, примем простейшее толкование: изменение положения материального тела относительно любой системы координат, которую условно считают неподвижной.

Среди огромного количества возможных вариантов движения особый интерес представляет колебательное, которое отличается тем, что система повторяет изменение своих координат (или физических величин) через определенные промежутки времени - циклы. Такие колебания называются периодическими или циклическими. Среди них выделяют отдельным классом у которых характерные признаки (скорость, ускорение, положение в пространстве и т.д.) изменяются во времени по гармоническому закону, т.е. имеющему синусоидальный вид. Замечательным свойством гармонических колебаний является то, что их комбинация представляет любые другие варианты, в т.ч. и негармонические. Очень важным понятием в физике является “фаза колебаний”, которое означает фиксацию положения колеблющегося тела в некоторый момент времени. Измеряется фаза в угловых единицах - радианах, достаточно условно, просто как удобный прием для объяснения периодических процессов. Другими словами, фаза определяет значение текущего состояния колебательной системы. Иначе и быть не может - ведь фаза колебаний является аргументом функции, которая описывает эти колебания. Истинное значение фазы для движения колебательного характера может означать координаты, скорость и другие физические параметры, изменяющиеся по гармоническому закону, но общим для них является временная зависимость.

Продемонстрировать, колебаний, совсем не сложно - для этого понадобится простейшая механическая система - нить, длиной r, и подвешенная на ней “материальная точка” - грузик. Закрепим нить в центре прямоугольной системы координат и заставим наш “маятник” крутиться. Допустим, что он охотно это делает с угловой скоростью w. Тогда за время t угол поворота груза составит φ = wt. Дополнительно в этом выражении должна быть учтена начальная фаза колебаний в виде угла φ0 - положение системы перед началом движения. Итак, полный угол поворота, фаза, вычисляется из соотношения φ = wt+ φ0. Тогда выражение для гармонической функции, а это проекция координаты груза на ось Х, можно записать:

x = А * cos(wt + φ0), где А - амплитуда колебания, в нашем случае равная r - радиусу нити.

Аналогично такая же проекция на ось Y запишется следующим образом:

у = А * sin(wt + φ0).

Следует понимать, что фаза колебаний означает в данном случае не меру поворота “угол”, а угловую меру времени, которая выражает время в единицах угла. За это время груз совершает поворот на некоторый угол, который можно однозначно определить, исходя из того, что для циклического колебания w = 2 * π /Т, где Т - период колебания. Следовательно, если одному периоду соответствует поворот на 2π радиан, то часть периода, время, можно пропорционально выразить углом как долей от полного поворота 2π.

Колебания не существуют сами по себе - звуки, свет, вибрация всегда являются суперпозицией, наложением, большого количества колебаний от разных источников. Безусловно, на результат наложения двух и более колебаний оказывают влияние их параметры, в т.ч. и фаза колебаний. Формула суммарного колебания, как правило, негармонического, при этом может иметь очень сложный вид, но от этого становится только интереснее. Как сказано выше, любое негармоническое колебание можно представить в виде большого числа гармонических с разной амплитудой, частотой и фазой. В математике такая операция называется “разложение функции в ряд” и широко используется при проведении расчетов, например, прочности конструкций и сооружений. Основой таких расчетов являются исследования гармонических колебаний с учетом всех параметров, в том числе и фазы.

Фа́за колеба́ний полная - аргумент периодической функции, описывающей колебательный или волновой процесс.

Фаза колебаний начальная - значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x , y , z ) = 0 (для волнового процесса).

Фаза колебания (в электротехнике) - аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению.

Фаза колебания - гармоническое колебание ( φ ) .

Величину φ, стоящую под знаком функции косинуса или синуса, называют фазой колебаний , описываемой этой функцией.

φ = ω៰ t

Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений:

A cos ⁡ (ω t + φ 0) {\displaystyle A\cos(\omega t+\varphi _{0})} , A sin ⁡ (ω t + φ 0) {\displaystyle A\sin(\omega t+\varphi _{0})} , A e i (ω t + φ 0) {\displaystyle Ae^{i(\omega t+\varphi _{0})}} .

Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида:

A cos ⁡ (k x − ω t + φ 0) {\displaystyle A\cos(kx-\omega t+\varphi _{0})} , A sin ⁡ (k x − ω t + φ 0) {\displaystyle A\sin(kx-\omega t+\varphi _{0})} , A e i (k x − ω t + φ 0) {\displaystyle Ae^{i(kx-\omega t+\varphi _{0})}} ,

для волны в пространстве любой размерности (например, в трехмерном пространстве):

A cos ⁡ (k ⋅ r − ω t + φ 0) {\displaystyle A\cos(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})} , A sin ⁡ (k ⋅ r − ω t + φ 0) {\displaystyle A\sin(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})} , A e i (k ⋅ r − ω t + φ 0) {\displaystyle Ae^{i(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})}} .

Фаза колебаний (полная) в этих выражениях - аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная - величина φ 0 , являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полная часто опускают.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами. Так как ω៰ = 2π/Т , то φ = ω៰t = 2π t/Т.

Отношение t/Т указывает, сколько периодов прошло от момента начала колебаний. Любому значению времени t , выраженному в числе периодов Т , соответствует значение фазы φ , выраженное в радианах. Так, по прошествии времени t = Т/4 (четверти периода) φ=π/2 , по прошествии половины периода φ = π/2 , по прошествии целого периода φ=2 π и т.д.

Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвиге аргумента (то есть фазы) на π / 2 , {\displaystyle \pi /2,} то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса , а не синуса .

То есть, для колебательного процесса (см. выше) фаза (полная)

φ = ω t + φ 0 {\displaystyle \varphi =\omega t+\varphi _{0}} ,

для волны в одномерном пространстве

φ = k x − ω t + φ 0 {\displaystyle \varphi =kx-\omega t+\varphi _{0}} ,

для волны в трехмерном пространстве или пространстве любой другой размерности:

φ = k r − ω t + φ 0 {\displaystyle \varphi =\mathbf {k} \mathbf {r} -\omega t+\varphi _{0}} ,

где ω {\displaystyle \omega } - угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t - время ; φ 0 {\displaystyle \varphi _{0}} - начальная фаза (то есть фаза при t = 0); k - волновое число ; x - координата точки наблюдения волнового процесса в одномерном пространстве; k - волновой вектор ; r - радиус-вектор точки в пространстве (набор координат, например, декартовых).

В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы , градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах , то есть долях периода повторяющегося процесса:

1 цикл = 2 π {\displaystyle \pi } радиан = 360 градусов.

В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.

Иногда (в квазиклассическом приближении , где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям , где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координат r , в принципе - произвольная функция .

Но т.к. витки сдвинуты в пространстве, то наводимая в них ЭДС будет достигать амплитудных и нулевых значений не одновременно.

В начальный момент времени ЭДС витка будет:

В этих выражениях углы и называются фазными , или фазой . Углы и называются начальной фазой . Фазный угол определяет значение ЭДС в любой момент времени, а начальная фаза определяет значение ЭДС в начальный момент времени.

Разность начальных фаз двух синусоидальных величин одинаковой частоты и амплитуды называется углом сдвига фаз

Разделив угол сдвига фаз на угловую частоту, получим время, прошедшее с начала периода:

Графическое изображение синусоидальных величин

U = (U 2 a + (U L - U c) 2)

Таким образом, из-за наличия угла сдвига фаз напряжение U всегда меньше алгебраической суммы U a + U L + U C . Разность U L - U C = U p называется реактивной составляющей напряжения .

Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

Полное сопротивление и угол сдвига фаз. Если подставить в формулу (71) значения U a = IR; U L = lL и U C =I/(C), то будем иметь: U = ((IR) 2 + 2), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

I = U / ((R 2 + 2)) = U / Z (72)

где Z = (R 2 + 2) = (R 2 + (X L - X c) 2)

Величину Z называют полным сопротивлением цепи , оно измеряется в омах. Разность L — l/(C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

Z = (R 2 + X 2)

Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

Угол сдвига фаз определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

sin ? = X / Z; cos? = R / Z; tg? = X / R

Например, если активное сопротивление R значительно больше реактивного сопротивления X, угол сравнительно небольшой. Если в цепи имеется большое индуктивное или большое емкостное сопротивление, то угол сдвига фаз возрастает и приближается к 90°. При этом, если индуктивное сопротивление больше емкостного, напряжение и опережает ток i на угол; если же емкостное сопротивление больше индуктивного, то напряжение и отстает от тока i на угол.

Идеальная катушка индуктивности, реальная катушка и конденсатор в цепи переменного тока.

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля .

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р , а изменение энергии в магнитном поле — реактивной мощностью Q .

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.