Этапы реализации генетической информации. Биосинтез белка (реализация наследственной информации)

информации

Все морфологические, анатомические и функциональные особенности любой клетки и организма в целом определяются структурой специфических белков, входящих в состав клеток. Способность к синтезу только строго определенных белков является характерным свойством, присущим как для каждого вида, так и для отдельных организмов.

В молекуле ДНК может быть закодирована аминокислотная последовательность для многих белков. Участок молекулы ДНК, несущий информацию о структуре одного белка, называется геном.

Определенная последовательность расположения аминокислот в гюлипептидной цепочке (первичная структура белка) определяет специфичность белковой молекулы, а, следовательно, и специфичность признаков, которые определяются данным белком.

От расположения аминокислот в полипептидной цепочке белковой молекулы зависят биологические свойства белков, их специфичность. Таким

образом, первичная структура белковой молекулы определяется определенной последовательностью нуклеотидов в участке ДНК (гене).

Генетический код - это определенное расположение нуклеотидов в молекуле ДНК, кодирующих аминокислоты в молекуле белка.

Для кодирования 20 аминокислот в молекуле ДНК используются четыре различных азотистых основания (аденин, тимин, цитозин, гуанин). Каждая аминокислота кодируется группой из трёх мононуклеотидов, которая называется триплетом (см.таблицу 1)

Свойства генетического кода :

    триплвтность - одна аминокислота кодируется одним триплетом, в состав которого входит три нуклеотида. Такой триплет называется кодоном. При комбинации четырёх нуклеотидов по три 4 3 вероятные сочетания составят 64 варианта (триплета),что более, чем достаточно для кодирования 20 аминокислот;

    «вырожденность», или избыточность генетического кода, т.е. одну и ту же аминокислоту может кодировать несколько триплетов, так как известно 20 аминокислот и 64 кодона, например, фенил-аланин кодируется двумя триплетами (УУУ, УУЦ), изолейцин - тремя (АУУ,АУЦАУА);

    неперекрываемость, т.е. между триплетами в молекуле ДНК не существует разделительных знаков, они расположены в линейном порядке, следуя один за другимтри рядом расположенных нуклеотида образуют один триплет;

    линейность и отсутствие знаков разделения, т.е. триплеты в молекуле ДНК следуют один за другим в линейном порядке без знаков остановки; если произойдёт выпадение одного нуклеотида, то произойдёт "сдвиг рамки", что приведёт к изменению последовательности нуклеотидов в молекуле РНК, и, следовательно, изменению последовательности аминокислот в молекуле белка;

    универсальность, т.е. для всех организмов, начиная с прокариот и заканчивая человеком, 20 аминокислот кодируются одними и теми же триплетами, что является одним из доказательств единства происхождения всего живого на Земле

    коллинеарность (соответствие) - .линейное расположение нуклеотидов в молекуле ДНК соответствует линейному расположению аминокислот в молекуле белка

Таблица 1 Генетический код

Первое основание

Втораое основание

Третье основание

Этапы реализации генетической информаци и

I. Т ранскрипция - синтез всех видов РНК на матрице ДНК. Транскрипция, или переписывание, происходит не на всей молекуле ДНК, а на участке, отвечающем за определенный белок (ген). Условия, необходимые для транскрипции:

а) разкручивание участка ДНК с помощью расплетающих белков- ферментов

б) наличие строительного материала в виде АТФ. ГТФ. УТФ. 1ДТФ

в) ферменты трансктипции - РНК-полимеразы I, II, III

г) енергия в виде АТФ.

Транскрипция происходит по принципу комплементарности. При этом с помощью специальных белков-ферментов участок двойной спирали ДНК раскручивается, является матрицей для синтеза иРНК. Затем вдоль цепи ДНК

движется фермент РНК-полимераза, соединяя между собой нуклеотиды по принципу комплементарности в растущую цепь РНК. Затем одноцепочечная РНК отделяется от ДНК и через поры в мембране ядра покидает клеточное ядро (рис. 5)

Рис. 5 Схематическое изображение транскрипции.

Различия в транскрипции про- и эукариот.

По химической организации наследственного материала эукариоты и прокариоты принципиально не отличаются. Известно, генетический материал представлен ДНК.

Наследственный материал прокариот содержится в кольцевой ДНК, которая располагается в цитоплазме клетки. Гены прокариот состоят целиком из кодирующих нуклеотидных последовательностей.

Гены эукариот содержат информативные участки -экзоны, которые несут информацию об аминокислотной последовательности белков, и неинформативные участки - интроны, не несущие информации.

Соответственно, транскрипция информационной РНК у эукариот проходит в 2 этапа:

S) переписываются (транскрибируются) все участки (интроны и экзоны) -такая иРНК называется незрелой или про-иР НК.

2). процес синг - созревание матричной РНК. С помощью специальных ферментов вырезаются интронные участки, затем сшиваются экзоны. Явление сшивания екзонов называется сплайсингом. Посттранскрипционное дозревание молекулы РНК происходит в ядре.

II. Трансляция (translation), или биосинтез белка. Суть трансляции -перевод четырехбуквенного шифра азотистых оснований на 20-буквенный «словарь» аминокислот.

Процесс трансляции состоит в переносе закодированной в иРНК генетический информации в аминокислотную последовательность белка. Осуществляется биосинтез белка в цитоплазме на рибосомах и состоит из нескольких этапов:

    Подготовительный этап (активация аминокислот), состоит в ферментативном связывании каждой аминокислоты с своей тРНК и образовании комплекса аминокислота - тРНК.

    Собственно синтез белка, который включает три стадии:

а) инициация - иРНК связывается с малой субъединицей рибосомы, первыми кодонами, инициирующими, являются АУТ или ГУГ. Этим кодонам соответствует комплекс метионил -тРНК. Кроме того, в инициации участвует три белковых: фактора, облегчающие связывание мРНК с большой субчастицей рибосомы, образуется инициаторный комплекс

б) элонгация - удлинение полипептидной цепочки. Процесс осуществляется в 3 шага и заключается в связывании кодона мРНК с антикодоном тРНК по принципу комплементарности в активном центре рибосомы, затем в образовании пептидной связи между двумя остатками аминокислот и перемещении дипептида на шаг вперёд и, соответственно, передвижения рибосомы вдоль иРНК на один ко дон вперед


в) терминация - окончание трансляции, зависит от присутствия в иРНК терминирующих кодонов или "стоп-сигналов" (УАА,УГА,УАГ) и белковых ферментов - факторов терминации (рис. 6).

Рис. 6. Схема трансляции

а)стадия элонгации;

б)поступления синтезированного белка в эндоплазматическую сеть

В клетке для синтеза белка используется не одна, а несколько рибосом. Такой работающий комплекс иРНК с несколькими рибосомами называется полирибосомой . В таком случае синтез белка происходит быстрее, чем при использовании только одной рибосомы.

Уже в ходе трансляции белок начинает укладываться в трёхмерную структуру, а при необходимости в цитоплазме принимает четвертичную организацию.


Рис 7 Роль нуклеиновых кислот в передаче генетической информации

Лексико-грамматические задания:

являться

определяться

кодироваться чем

характеризоваться

называться

Задание №1. Слова и словосочетания, данные в скобках, напишите в правильной форме.

    Все морфологические, анатомические и функциональные особенности любой клетки и организма в целом определяются (структура специфических белков).

    Последовательность расположения аминокислот в полипептидной цепочке определяется (последовательность) нуклеотидов в участке ДНК, котрый называется (ген), а последовательность нуклеотидов в ДНК называется (генетический код).

    Каждая аминокислота кодируется (группа из трёх нуклеотидов), которая называется (триплет).

    Генетический код характеризуется (следующие признаки: триплетность, вырожденность, непрекрываемость, линейность и отсутствие запятых, универсальность).

    20 аминокислот кодируются (одни и те же триплеты).

Задание №2. Вместо точек используйте краткие и полные формы причастия, образованные от глаголов кодироваться - закодироваться.

    Последовательность нуклеотидов в ДНК, ... определённые аминокислоты в молекуле белка, называется генетическим кодом.

    Одна и та же кислота может быть... несколькими триплетами.

    20 аминокислот... одними и теми же триплетами.

    Различают структурные гены, ... структурные и ферментные белки, а так же гены с информацией для синтеза тРНК и рРНК и др.

    Следующим этапом реализации генетической информации, ... в гене, является транскрипция.

принципиально (не) отличаются существенно по какому признаку

значительно

По химической организации материала наследственности эукариоты и прокариоты принципиально не отличаются. Генетический материал у них представлен ДНК.

Задание№3. Прочитайте часть текста «Различие транскрипции у про- и эукариот». Расскажите о этапах реализации наследственной информации.

Задание №4. Закончите предложения, опираясь на информацию текста.

    Наследственный материал прокариот содержится в....

    Гены прокариот состоят целиком из....

    Гены эукариот содержат....

    Транскрипция у эукариот происходит в....

    Трансляция состоит в переносе закодированной в иРНК генетической информации в....

    Трансляция осуществляется в цитоплазме на....

Задание №5. Составьте схему этапов трансляции и расскажите по схеме о поэтапном осуществлении трансляции.

Решение типовых задач

Участки структурных генов у про- и эукариот имеют сходные последовательности нуклеотидов:

ЦАТ-ГТЦ-АЦА-"ПТД-ТГА-ААА-ЦАА-ЦЦГ-АТА-ЦЦЦ-ЦТГ-ЦГГ-ЦТТ-ГГА-АЦА-АТА. Причем, у эукариот последовательность нуклеотидов АЦА-ТТЦ-ТГА-ААА и ГГА-АЦА-АТА кодируют интронные участки про и-РНК. Используя словарь генетического кода, определите:

а) какую последовательность нуклеотидов будет иметь иРНК, транскрибируемая с этого участка ДНК у прокариот;

б) какую последовательность нуклеотидов будет иметь иРНК, транскрибируемая с этого участка ДНК у еукариот;

в) какую последовательность аминокислот будет иметь белок, кодируемый данным участком гена у про- и эукариот.

Этапы реализации генетической информации

I. Транскрипция - синтез всœех видов РНК на матрице ДНК. Транскрипция, или переписывание, происходит не на всœей молекуле ДНК, а на участке, отвечающем за определœенный белок (ген). Условия, необходимые для транскрипции:

а) разкручивание участка ДНК с помощью расплетающих белков- ферментов

б) наличие строительного материала в виде АТФ. ГТФ. УТФ. 1ДТФ

в) ферменты трансктипции - РНК-полимеразы I, II, III

г) енергия в виде АТФ.

Транскрипция происходит по принципу комплементарности. При этом с помощью специальных белков-ферментов участок двойной спирали ДНК раскручивается, является матрицей для синтеза иРНК. Далее вдоль цепи ДНК

движется фермент РНК-полимераза, соединяя между собой нуклеотиды по принципу комплементарности в растущую цепь РНК. Далее одноцепочечная РНК отделяется от ДНК и через поры в мембране ядра покидает клеточное ядро (рис. 5)

Рис. 5 Схематическое изображение транскрипции.

Различия в транскрипции про- и эукариот.

По химической организации наследственного материала эукариоты и прокариоты принципиально не отличаются. Известно, генетический материал представлен ДНК.

Наследственный материал прокариот содержится в кольцевой ДНК, которая располагается в цитоплазме клетки. Гены прокариот состоят целиком из кодирующих нуклеотидных последовательностей.

Гены эукариот содержат информативные участки -экзоны, которые несут информацию об аминокислотной последовательности белков, и неинформативные участки - интроны, не несущие информации.

Соответственно, транскрипция информационной РНК у эукариот проходит в 2 этапа:

S) переписываются (транскрибируются) всœе участки (интроны и экзоны) -такая иРНК принято называть незрелой или про-иР НК.

2). процес синг - созревание матричной РНК. С помощью специальных ферментов вырезаются интронные участки, затем сшиваются экзоны. Явление сшивания екзонов принято называть сплайсингом. Посттранскрипционное дозревание молекулы РНК происходит в ядре.

II. Трансляция (translation), или биосинтез белка. Суть трансляции -перевод четырехбуквенного шифра азотистых оснований на 20-буквенный ʼʼсловарьʼʼ аминокислот.

Процесс трансляции состоит в переносœе закодированной в иРНК генетический информации в аминокислотную последовательность белка. Осуществляется биосинтез белка в цитоплазме на рибосомах и состоит из нескольких этапов:

1. Подготовительный этап (активация аминокислот), состоит в ферментативном связывании каждой аминокислоты с своей тРНК и образовании комплекса аминокислота - тРНК.

2. Собственно синтез белка, который включает три стадии:

а) инициация - иРНК связывается с малой субъединицей рибосомы, первыми кодонами, инициирующими, являются АУТ или ГУГ. Этим кодонам соответствует комплекс метионил -тРНК. Вместе с тем, в инициации участвует три белковых: фактора, облегчающие связывание мРНК с большой субчастицей рибосомы, образуется инициаторный комплекс

б) элонгация - удлинœение полипептидной цепочки. Процесс осуществляется в 3 шага и состоит в связывании кодона мРНК с антикодоном тРНК по принципу комплементарности в активном центре рибосомы, затем в образовании пептидной связи между двумя остатками аминокислот и перемещении дипептида на шаг вперёд и, соответственно, передвижения рибосомы вдоль иРНК на один ко дон вперед

в) терминация - окончание трансляции, зависит от присутствия в иРНК терминирующих кодонов или "стоп-сигналов" (УАА,УГА,УАГ) и белковых ферментов - факторов терминации (рис. 6).

Рис. 6. Схема трансляции

а) стадия элонгации;

б) поступления синтезированного белка в эндоплазматическую сеть

В клетке для синтеза белка используется не одна, а несколько рибосом. Такой работающий комплекс иРНК с несколькими рибосомами принято называть полирибосомой . В таком случае синтез белка происходит быстрее, чем при использовании только одной рибосомы.

Уже в ходе трансляции белок начинает укладываться в трёхмерную структуру, а при крайне важно сти в цитоплазме принимает четвертичную организацию.

Рис 7 Роль нуклеиновых кислот в передаче генетической информации

Лексико-грамматические задания:

являться

определяться

кодироваться чем

характеризоваться

называться

Задание №1. Слова и словосочетания, данные в скобках, напишите в правильной форме.

1. Все морфологические, анатомические и функциональные особенности любой клетки и организма в целом определяются (структура специфических белков).

2. Последовательность расположения аминокислот в полипептидной цепочке определяется (последовательность) нуклеотидов в участке ДНК, котрый принято называть (ген), а последовательность нуклеотидов в ДНК принято называть (генетический код).

3. Каждая аминокислота кодируется (группа из трёх нуклеотидов), которая принято называть (триплет).

4. Генетический код характеризуется (следующие признаки: триплетность, вырожденность, непрекрываемость, линœейность и отсутствие запятых, универсальность).

5. 20 аминокислот кодируются (одни и те же триплеты).

Задание №2. Вместо точек используйте краткие и полные формы причастия, образованные от глаголов кодироваться - закодироваться.

1. Последовательность нуклеотидов в ДНК, ... определённые аминокислоты в молекуле белка, принято называть генетическим кодом.

2. Одна и та же кислота должна быть... несколькими триплетами.

3. 20 аминокислот... одними и теми же триплетами.

4. Различают структурные гены, ... структурные и ферментные белки, а так же гены с информацией для синтеза тРНК и рРНК и др.

5. Следующим этапом реализации генетической информации, ... в гене, является транскрипция.

принципиально (не) отличаются существенно по какому признаку

значительно


По химической организации материала наследственности эукариоты и прокариоты принципиально не отличаются. Генетический материал у них представлен ДНК.

Задание№3. Прочитайте часть текста ʼʼРазличие транскрипции у про- и эукариотʼʼ. Расскажите о этапах реализации наследственной информации.

Задание №4. Закончите предложения, опираясь на информацию текста.

1. Наследственный материал прокариот содержится в....

2. Гены прокариот состоят целиком из....

3. Гены эукариот содержат....

4. Транскрипция у эукариот происходит в....

5. Трансляция состоит в переносœе закодированной в иРНК генетической информации в....

6. Трансляция осуществляется в цитоплазме на....

Задание №5. Составьте схему этапов трансляции и расскажите по схеме о поэтапном осуществлении трансляции.

Решение типовых задач

Участки структурных генов у про- и эукариот имеют сходные последовательности нуклеотидов:

ЦАТ-ГТЦ-АЦА-"ПТД-ТГА-ААА-ЦАА-ЦЦГ-АТА-ЦЦЦ-ЦТГ-ЦГГ-ЦТТ-ГГА-АЦА-АТА. Причем, у эукариот последовательность нуклеотидов АЦА-ТТЦ-ТГА-ААА и ГГА-АЦА-АТА кодируют интронные участки про и-РНК. Используя словарь генетического кода, определите:

а) какую последовательность нуклеотидов будет иметь иРНК, транскрибируемая с этого участка ДНК у прокариот;

б) какую последовательность нуклеотидов будет иметь иРНК, транскрибируемая с этого участка ДНК у еукариот;

в) какую последовательность аминокислот будет иметь белок, кодируемый данным участком гена у про- и эукариот.

Тема 9. Ген, его строение и функции.

Известно, что материальными носителями генетической информации являются гены. Ген - элементарная единица наследственности, определяющая развитие какого-либо признака организма. Гены находятся в хромосомах и

занимают определœенное место - локус. С точки зрения молекулярной биологии ген - это участок молекулы ДНК, в котором закодирована информация о синтезе определённого белка. Этапы реализации генетической информации, закодированной в гене, можно представить в виде схемы:

Молекулярные механизмы реализации генетич неской инф ормации

Основные положения теории гена:

1. Ген занимает определённое место (локус) в хромосоме.

2. Ген (цистрон) - часть молекулы ДНК, которая отличается определённой последовательностью нуклеотидов и представляет собой функциональную единицу наследственной информации. Количество нуклеотидов, входящих в состав различных генов, разное.

3. В пределах одного гена могут наблюдаться рекомбинации (обмен участками. Такие участки цистрона называются реконами.

4. Участки, в которых может изменяться последовательность нуклеотидов, называются мутонами.

5. Существуют функциональные и структурные гены. Структурные гены кодируют синтез белковой молекулы. Различают структурные гены, кодирующие как структурные белки, так и ферментные белки, а также гены с информацией о синтезе тРНК, рРНК и др.

6. Функциональные гены не кодируют белок, а контролируют и направляют деятельность структурных генов.

7. Расположение триплетов нуклеотидов в структурных генах коллинœеарно соответствует расположению аминокислот в молекуле белка.

8. Участки молекулы ДНК, входящие в состав гена, способны к восстановлению, ᴛ.ᴇ. к репарации, в связи с этим, не всœе изменения последовательности нуклеотидов в участке ДНК ведут к мутациям.

9. Генотип состоит из отдельных генов (дискретен), но функционирует как единое целое, т.к. гены способны взаимодействовать, влиять друг на друга. На функцию генов влияют факторы как внутренней, так и внешней среды.

Ген имеет ряд свойств:

Дискретность действия;

Стабильность (постоянство);

Передача наследственной информации в неизменяющемся виде, при отсутствии мутации;

Лабильность (изменение) генов, связана с их способностью к мутациям;

Специфичность - каждый ген обуславливает развитие определённого признака;

Плейотропия - один ген может отвечать за несколько признаков;

Экспрессивность - степень выраженности признака;

Пенентратность - частота проявления гена среди его носителœей.

Геном человека содержит около 30 тысяч различных генов. Одни из них активны, другие - заблокированы. Весь объём генетической информации находится под строгим контролем регуляторных механизмов. Все гены взаимосвязаны между собой, образуя единую систему. Регуляция их активности осуществляется по сложным механизмам.

Сюда включаются процессы регуляции активности генов на этапах транскрипции (до, во время, после неё), трансляции (до, во время, после неё), а также согласованной каскадной групповой регуляции работы генов (их экспрессии), участии в данном процессе гормонов (сигнальных веществ), химической модификации ДНК (рис.8).

Рис. 8. Схема регуляции транскрипции структурных генов у прокариотической клетки по типу индукции.

Экспрессия (проявление активности гена) отдельного гена зависит от того, в каком состоянии данный ген находится. По этой причине существует различная пене нтрантности (процентное количественное фенотипическое проявление

гена) и экспрессивности (степень выраженности гена). Эти понятия были впервые введены в генетику М.В.Тимофеевым-Рессовским. Конкретный генотип человека определяется фенотипической степенью выраженности патологического признака, детерминированным определœенным геном (экспрессивностью), даже вплоть до отсутствия клинической картины патологии при наличии в генотипе мутантных аллелœей.

Лексико-грамматические задания:

Задание №1. Замените придаточные определительные причастным оборотом.

1. Ген - единица наследственности, которая определяет развитие какого-либо одного признака.

2. Гены, которые находятся в хромосомах, занимают определённое место - локус.

3. Реализацию информации, которая закодирована в гене, представляют в виде схемы.

4. Ген - часть молекулы ДНК, которая отличается определённой последовательностью нуклеотидов.

5. Количество нуклеотидов, которые входят в состав различных генов, разное.

Задание №2. Замените пассивные конструкции активными.

1. Синтез белковой молекулы кодируется структурными генами.

2. Деятельность структурных генов контролируется и направляется функциональными генами.

что влияет на что Гены способны влиять друг на друга. на функцию чего влияют факторы внутренней и внешней среды

Задание №3. Напишите предложения, раскрывая скобки.

1. Экзонные участки генов кодируют (первичная структура белка).

2. Интронные участки гена играют (структурная, вспомогательная роль).

3. Ген - часть молекулы ДНК, которая представляет собой (функциональная единица наследственной информации).

Задание №4. прочитайте часть текста об базовых положениях теории генов и напишите определœения: а) локуса, б) реконов, в) мутонов.

Задание №5. Используя данную информацию, закончите фразы.

1. Стабильностью принято называть 1.... передавать наследственную свойство генов... информацию в неизменяющемся

2. Лабильность генов - это... 2.... степень выраженности

признака.

3. Пенентральность генов - это 3.... частота проявления гена

среди его носителœей.

4. Экспрессивность генов - ... 4.... связана с их способностями к

мутациям

Решение типовых задач

1. Участок структурного гена имеет следующую последовательность нуклеотидов:

АТА-ЦИА-А1^-ЦТА-ГГА-ЦГА-ГТА-ЦАА

АГА-ТЦА-ЦГА-ААА-АТГ. Используя словарь генетического кода, определите:

а) какую последовательность нуклеотидов будет иметь про-иРНК, транскрибируемая с этого участка;

б) известно, что кодоны 3,4,5,9,10,11,12 у про-иРНК входит в состав интронов. Какую последовательность будет иметь иРНК;

в) какую последовательность аминокислот будет иметь фрагмент белка, кодируемый указанным участком гена;

г) напишите, какие антикодоны должны быть у тРНК, обеспечивающих синтез данного фрагмента белка.

2. Участки структурных генов у про- и эукариот имеют сходные последовательности нуклеотидов:

ЦАТ-ГТЦ-А1ТА-ТТЦ-ТГА-ААА-ЦАА-Ц1^^ АЦА-АТА. Следует отметить, что последовательности нуклеотидов АЦА-ТТЦ-ТГА-ААА и ГГА-АЦА-АТА кодируют интронные участки у эукариот. Определите:

а) последовательность нуклеотидов в первичном транскрипте у еукариот;

б) как принято называть созревание иРНК? Определите нуклеотидную последовательность в иРНК.

в) какое различие в последовательности аминокислот в белках у прокариот и еукариот. Объясните причину этого различия.

Этапы реализации генетической информации - понятие и виды. Классификация и особенности категории "Этапы реализации генетической информации" 2017, 2018.

Важнейшие функции организма - обмен веществ, рост, развитие, передача наследственности, движение и др. - осуществляются в результате множества химических реакций с участием белков, нуклеиновых кислот и других биологически активных веществ. При этом в клетках непрерывно синтезируются разнообразные соединения: строительные белки, белки-ферменты, гормоны. В ходе обмена эти вещества изнашиваются и разрушаются, а вместо них образуются новые. Поскольку белки создают материальную основу жизни и ускоряют все реакции обмена веществ, жизнедеятельность клетки и организма в целом определяется способностью клеток синтезировать специфические белки. Их первичная структура предопределена генетическим кодом в молекулеДНК.

Молекулы белков состоят из десятков и сотен аминокислот (точнее, из аминокислотных остатков). Например, в молекуле гемоглобина их около 600, и они распределены в четыре полипептидные цепочки; в молекуле рибонуклеазы таких аминокислот 124 и т. д.

Главная роль в определении первичной структуры белка принадлежит молекулам ДНК. Разные ее участки кодируют синтез разных белков, следовательно, одна молекула ДНК участвует в синтезе многих индивидуальных белков. Свойства белков зависят от последовательности аминокислот в полипептидной цепи. В свою очередь чередование аминокислот определяется последовательностью нуклеотидов в ДНК, и каждой аминокислоте соответствует определенный триплет. Экспериментально доказано, что, например, участок ДНК с триплетом ААЦ соответствует аминокислоте лейцину, триплет АЦЦ - триптофану, триплет АЦА-цистеину и т.д. Распределив молекулу ДНК на триплеты, можно представить, какие аминокислоты и в какой последовательности будут располагаться в молекуле белка. Совокупность триплетов составляет материальную основу генов, а каждый ген содержит информацию о структуре специфического белка (ген - это основная биологическая единица наследственности; в химическом отношении ген есть участок ДНК, включающий несколько сотен пар нуклеотидов).

Генетический код - исторически сложившаяся организация молекул ДНК и РНК, при которой последовательность нуклеотидов в них несет информацию о последовательности аминокислот в белковых молекулах. Свойства кода: триплетность (кодон), неперекрываемость (кодоны следуют друг за другом), специфичность (один кодон может определять в полииептидной цепи только одну аминокислоту), универсальность (у всех живых организмов один и тот же кодон обусловливает включение в полипептид одну и ту же аминокислоту), избыточность (для большинства аминокислот существует несколько кодонов). Триплеты, не несущие информации об аминокислотах, являются стоп триплетами, обозначающими место начала синтеза и-РНК. (В.Б. Захаров. Биология. Справочные материалы. М.,1997)

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником служит и РНК, на которую нуклеотидная последовательность переписывается, в точном соответствии с таковой на ДНК - по принципу комплементарности. Этот процесс получил название транскрипции и протекает как реакция матричного синтеза. Он характерен только для живых структур и лежит в основе важнейшего свойства живого - самовоспроизведения. Биосинтезу белка предшествует матричный синтез иРНК на нити ДНК. Возникшая при этом иРНК выходит из ядра клетки в цитоплазму, где на нее нанизываются рибосомы, сюда же с помощью тРЙК доставляются аминокислоты.

Синтез белка - сложный многоступенчатый процесс, в котором участвуют ДНК, иРНК, тРНК, рибосомы, АТФ и разнообразные ферменты. Вначале аминокисдоты в цитоплазме активируются с помощью ферментов и присоединяются к тРНК (к участку, где расположен нуклеотид ЦЦА). На следующем этапе идет соединение аминокислот в таком порядке, в каком чередование нуклеотидов с ДНК передано на иРНК. Этот этап называется трансляцией. На нити иРНК размещается не одна рибосома, а группа их - такой комплекс называется полисома (Н.Е. Ковалев, Л.Д. Шевчук, О.И. Щуренко. Биология для подготовительных отделений медицинских институтов).

Схема Биосинтез белка

Синтез белка состоит из двух этапов - транскрипции и трансляции.

I. Транскрипция (переписывание) - биосинтез молекул РНК, осуществляется в хромосомах на молекулах ДНК по принципу матричного синтеза. При помощи ферментов на соответствующих участках молекулы ДНК (генах) синтезируются все виды РНК (иРНК, рРНК, тРНК). Синтезируется 20 разновидностей тРНК, так как в биосинтезе белка принимают участие 20 аминокислот. Затем иРНК и тРНК выходят в цитоплазму, рРНК встраивается в субъединицы рибосом, которые также выходят в цитоплазму.

II. Трансляция (передача) - синтез полипептидных цепей белков, осуществляется в рибосомах. Она сопровождается следующими событиями:

1. Образование функционального центра рибосомы - ФЦР, состоящего из иРНК и двух субъединиц рибосом. В ФЦР всегда находятся два триплета (шесть нуклеотидов) иРНК, образующих два активных центра: А (аминокислотный) - центр узнавания аминокислоты и П (пептидный) - центр присоединения аминокислоты к пептидной цепочке.

2. Транспортировка аминокислот, присоединенных к тРНК, из цитоплазмы в ФЦР. В активном центре А осуществляется считывание антикодона тРНК с кодоном иРНК, в случае комплементарностн возникает связь, которая служит сигналом для продвижения (скачок) вдоль иРНК рибосомы на один триплет. В результате этого комплекс "кодон рРНК и тРНК с аминокислотой" перемещается в активный центр П, где и происходит присоединение аминокислоты к пептидной цепочке (белковой молекуле). После чего тРНК покидает рибосому.

3. Пептидная цепочка удлиняется до тех пор, пока не закончится трансляция и рибосома не соскочит с иРНК. На одной иРНК может умещаться одновременно несколько рибосом (полисома). Полипептидная цепочка погружается в канал эндоплазматиче-ской сети и там приобретает вторичную, третичную или четвертичную структуру. Скорость сборки одной молекулы белка, состоящего из 200-300 аминокислот, составляет 1-2 мин. Формула биосинтеза белка: ДНК (транскрипция) --> РНК (трансляция) --> белок.

Завершив один цикл, полисомы могут принять участие в синтезе новых молекул белка.

Отделившаяся от рибосомы молекула белка имеет вид нити, которая биологически неактивна. Биологически функциональной она становится после того, как молекула приобретает вторичную, третичную и четвертичную структуру, т. е. определенную пространственно специфическую конфигурацию. Вторичная и последующие структуры белковой молекулы предопределены в информации, заложенной в чередовании аминокислот, т. е. в первичной структуре белка. Иначе говоря, программа образования глобулы, ее уникальная конфигурация определяются первичной структурой молекулы, которая в свою очередь строится под контролем соответствующего гена.

Скорость синтеза белка обусловлена многими факторами: температурой среды, концентрацией водородных ионов, количеством конечного продукта синтеза, присутствием свободных аминокислот, ионов магния, состоянием рибосом и др.

1. Какие процессы относятся к реакциям матричного синтеза?

Брожение, трансляция, транскрипция, фотосинтез, репликация.

К реакциям матричного синтеза относятся трансляция, транскрипция и репликация.

2. Что такое транскрипция? Как протекает этот процесс?

Транскрипция – процесс переписывания генетической информации с ДНК на РНК (биосинтез РНК на соответствующих участках одной из цепей ДНК); одна из реакций матричного синтеза.

Транскрипция осуществляется следующим образом. На определённом участке молекулы ДНК происходит разъединение комплементарных цепей. Синтез РНК будет осуществляться на одной из цепей (её называют транскрибируемой цепью).

Фермент РНК-полимераза распознаёт промотор (особую последовательность нуклеотидов, расположенную в начале гена) и взаимодействует с ним. Затем РНК-полимераза начинает двигаться вдоль транскрибируемой цепи и при этом синтезировать из нуклеотидов молекулу РНК. Транскрибируемая цепь ДНК используется в качестве матрицы, поэтому синтезированная РНК будет комплементарной соответствующему участку транскрибируемой цепи ДНК. РНК-полимераза наращивает цепочку РНК, присоединяя к ней новые нуклеотиды, до тех пор, пока не дойдёт до терминатора (особой последовательности нуклеотидов, расположенной в конце гена), после чего транскрипция прекращается.

3. Какой процесс называется трансляцией? Охарактеризуйте основные этапы трансляции.

Трансляция – процесс биосинтеза белка из аминокислот, происходящий на рибосомах; одна из реакций матричного синтеза.

Основные этапы трансляции:

● Связывание иРНК с малой субъединицей рибосомы, после чего присоединяется большая субъединица.

● Проникновение в рибосому метиониновой тРНК и комплементарное связывание её антикодона (УАЦ) со стартовым кодоном иРНК (АУГ).

● Проникновение в рибосому следующей тРНК, несущей активированную аминокислоту, и комплементарное связывание её антикодона с соответствующим кодоном иРНК.

● Возникновение пептидной связи между двумя аминокислотами, после чего первая (метиониновая) тРНК освобождается от аминокислоты и покидает рибосому, а иРНК сдвигается на один триплет.

● Наращивание полипептидной цепи (по механизму, описанному выше), происходящее до тех пор, пока в рибосому не попадёт один из трёх стоп-кодонов (УАА, УАГ или УГА).

● Прекращение синтеза белка и распад рибосомы на две отдельные субъединицы.

4. Почему при трансляции в состав белка включаются не любые аминокислоты в случайном порядке, а только те, которые закодированы триплетами иРНК, причём в строгом соответствии с последовательностью этих триплетов? Как вы думаете, сколько видов тРНК участвует в синтезе белков в клетке?

Правильное и последовательное включение аминокислот в растущую полипептидную цепь обеспечивается строгим комплементарным взаимодействием антикодонов тРНК с соответствующими кодонами иРНК.

Некоторые учащиеся могут ответить, что в синтезе белков участвует 20 видов тРНК – по одному для каждой аминокислоты. Но на самом деле в синтезе белков участвует 61 вид тРНК – их столько же, сколько существует смысловых кодонов (триплетов, кодирующих аминокислоты). Каждый вид тРНК имеет уникальную первичную структуру (последовательность нуклеотидов) и, как следствие, обладает особым антикодоном для комплементарного связывания с соответствующим кодоном иРНК. Например, аминокислота лейцин (Лей) может кодироваться шестью разными триплетами, поэтому существует шесть типов лейциновых тРНК, и все они имеют разные антикодоны.

Общее количество кодонов составляет 4 3 = 64, однако молекул тРНК к терминирующим кодонам (их три) не существует, т.е. 64 – 3 = 61 вид тРНК.

5. Реакции матричного синтеза следует относить к процессам ассимиляции или диссимиляции? Почему?

Реакции матричного синтеза относятся к процессам ассимиляции потому что:

● сопровождаются синтезом сложных органических соединений из более простых веществ, а именно – биополимеров из соответствующих мономеров (репликация сопровождается синтезом дочерних цепей ДНК из нуклеотидов, транскрипция – синтезом РНК из нуклеотидов, трансляция – синтезом белка из аминокислот);

● требуют затрат энергии (поставщиком энергии для реакций матричного синтеза служит АТФ).

6. Участок транскрибируемой цепи ДНК имеет следующий порядок нуклеотидов:

ТАЦТГГАЦАТАТТАЦААГАЦТ

Установите последовательность аминокислотных остатков пептида, закодированного этим участком.

По принципу комплементарности установим последовательность нуклеотидов соответствующей иРНК, а затем с помощью таблицы генетического кода определим последовательность аминокислотных остатков закодированного пептида.

Ответ: последовательность аминокислотных остатков пептида: Мет–Тре–Цис–Иле–Мет–Фен.

7. Исследования показали, что в молекуле иРНК 34% от общего числа азотистых оснований приходится на гуанин, 18% - на урацил, 28% - на цитозин и 20% - на аденин. Определите процентный состав азотистых оснований двуцепочечного участка ДНК, одна из цепей которого служила матрицей для синтеза данной иРНК.

● По принципу комплементарности определим процентный состав азотистых оснований соответствующей транскрибируемой цепи ДНК. Она содержит 34% цитозина (комплементарен гуанину иРНК), 18% аденина (комплементарен урацилу иРНК), 28% гуанина (комплементарен цитозину иРНК) и 20% тимина (комплементарен аденину иРНК).

● На основании состава транскрибируемой цепи определим процентный состав азотистых оснований комплементарной (нетранскрибируемой) цепи ДНК: 34% гуанина, 18% тимина, 28% цитозина и 20% аденина.

● Процентное содержание каждого типа азотистых оснований в двуцепочечной ДНК рассчитывается как среднее арифметическое процентного содержания этих оснований в обеих цепях:

Ц = Г = (34 % + 28 %) : 2 = 31 %

А = Т = (18 % + 20%) : 2 = 19 %

Ответ: соответствующий двухцепочечный участок ДНК содержит по 31% цитозина и гуанина, по 19% аденина и тимина.

8*. В эритроцитах млекопитающих синтез гемоглобина может происходить ещё в течение нескольких дней после утраты этими клетками ядер. Как вы можете это объяснить?

Потере ядра предшествует интенсивная транскрипция генов, кодирующих полипептидные цепи гемоглобина. В гиалоплазме накапливается большое количество соответствующих иРНК, поэтому синтез гемоглобина продолжается даже после утраты клеточного ядра.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Процесс биосинтеза белка осуществляется на рибосомах, а хранителем генетической информации является ДНК- Для передачи информации с ДНК, нахо -дящейся в ядре, к месту синтеза белка требуется посредник. Его роль выполняет информационная (матричная) РНК, которая синтезируется на одной из цепей молекулы ДНК по принципу комплементарности.

Таким образом, реализация наследственной информации в клетке осуществляется в два этапа: сначала информация о структуре белка копируется с ДНК на иРНК (транскрипция), а затем реализуется на рибосоме в виде конечного продукта — белка (трансляция). Это можно представить в виде схемы:

Транскрипция. Переписывание наследственной информации с ДНК на иРНК называется транскрипцией (от лат. транскрипцио — переписывание). Этот процесс происходит следующим образом.

На определенном участке молекулы ДНК происходит разъединение комплементарных цепей. Вдоль одной из цепей (ее называют транскрибируемой цепью) начинает движение фермент РНК-полимераза.

в) генетический код

РНК-полимераза синтезирует из нуклеотидов молекулу иРНК, при этом транскрибируемая цепь ДНК используется в качестве матрицы (рис. 65). Полученная иРНК комплементарна участку транскрибируемой цепи ДНК, значит, порядок нуклеотидов в иРНК строго определен порядком нуклеотидов в ДНК Например, если участок транскрибируемой цепи ДНК имеет последовательность нуклеотидов А Ц Г Т Г А, то соответствующий участок молекулы иРНК будет иметь вид У Г ЦАЦУ (обратите внимание, что в состав нуклеотидов РНК вместо тимина входит урацил). Таким образом, в результате транскрипции генетическая информация переписывается с ДНК на иРНК

Транскрипция может происходить одновременно на нескольких генах одной хромосомы и на генах, расположенных в разных хромосомах.

Поскольку в одной молекуле ДНК содержится множество генов, очень важно, чтобы РНК-полимераза начинала синтез иРНК со строго определенного участка ДНК- Поэтому в начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором. РНК-полимераза распознает промотор, взаимодействует с ним и начинает синтез цепочки иРНК с нужного места. Фермент синтезирует иРНК, присоединяя к ней новые нуклеотиды, пока не дойдет до особой последовательности нуклеотидов в молекуле ДНК — терминатора. Эта последовательность нуклеотидов указывает на то, что синтез иРНК нужно прекратить.

У прокариот синтезированные молекулы иРНК могут сразу же взаимодействовать с рибосомами и участвовать в синтезе белков. У эукариот иРНК синтезируется в ядре. Там она взаимодействует со специальными ядерными белками и переносится через поры в ядерной мембране в цитоплазму.

На специальных генах синтезируются и два других типа РНК: тРНК и рРНК

Трансляция. Процесс синтеза белка из аминокислот, происходящий на рибосомах, называется трансляцией (от лат. трансляцио — перевод). В ходе трансляции осуществляется перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка. Иными словами, «язык» нуклеотидов переводится на «язык» аминокислот.

В цитоплазме обязательно должен быть полный набор аминокислот, необходимых для синтеза белков. Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей, или синтезируются в самом организме.

Информационная РНК связывается с малой субъединицей рибосомы, после этого присоединяется большая субъединица (рис. 66).

Синтез белка начинается со стартового кодона АУТ. Так как этот триплет кодирует аминокислоту метионин, то все белки (за исключением особых случаев) будут начинаться с остатка метионина. Отщепление этого остатка у большинства белков происходит позднее, в ходе созревания белковой молекулы.

Начиная со стартового кодона, молекула иРНК последовательно, триплет за триплетом, продвигается через рибосому, что сопровождается ростом полипеп-тидной цепочки. Соединение аминокислот в нужную последовательность (в соответствии с кодонами иРНК) осуществляется на рибосомах при участии транспортных р н к

Благодаря специфическому расположению комплементарных нуклеотидов молекула тРНК, как уже отмечалось, имеет форму, напоминающую лист клевера (рис. 67). У каждой тРНК имеется акцепторный конец, к которому присоединяется определенная аминокислота, предварительно активированная энергией АТФ. Для активации одной аминокислоты необходимо расщепить одну молекулу АТФ.

В противоположной части молекулы тРНК находится специфический триплет — ант и кодон, ответственный за прикрепление по принципу комплемен-тарности к соответствующему триплету иРНК (кодону).

Молекула тРНК с присоединенной активированной аминокислотой благодаря антикодону комплементарно связывается с соответствующим кодоном иРНК Таким же образом к следующему кодону иРНК прикрепляется вторая тРНК с активированной аминокислотой. Между двумя аминокислотами возникает пептидная связь, после чего первая тРНК освобождается от аминокислоты и покидает рибосому.


После этого иРНК сдвигается на один триплет, а в рибосому проникает следующая молекула тРНК с аминокислотой. В результате к образованному дипептиду присоединяется третья аминокислота и иРНК сдвигается еще на один триплет. Так происходит наращивание полипептид-ной цепочки.

Процесс трансляции продолжается до тех пор, пока в рибосому не попадет один из трех стоп-кодонов:

УАА, УАГ или УГА, после чего синтез белка прекращается и рибосома распадается на две субъединицы.

Все описанные реакции происходят очень быстро. Подсчитано, что синтез крупной молекулы белка осуществляется приблизительно за 1 —2 мин.

Каждый этап биосинтеза белка катализируется соответствующими ферментами и снабжается энергией за счет расщепления АТФ.

Молекула иРНК может связываться одновременно с несколькими рибосомами. Комплекс из иРНК и рибосом (от 5—6 до нескольких десятков) называется пол и сомой. Образование полисом повышает эффективность функционирования иРНК, так как позволяет одновременно осуществлять синтез нескольких одинаковых молекул белка.

Если синтез белка происходил на рибосомах, связанных с шероховатой ЭПС, то образовавшаяся полипептидная цепь сначала оказывается внутри полости эндоплазматической сети, а затем транспортируется в комплекс Гольджи. В этих органоидах происходит созревание белка — формирование вторичной, третичной и четвертичной структуры, присоединение к белковой молекуле небелковых компонентов и др. Если синтез белка осуществлялся на свободных рибосомах, расположенных в гиалоплазме, то синтезированная белковая молекула транспортируется в нужную часть клетки, где и приобретает соответствующую структуру.

Таким образом, генетическая информация, которая содержится в ДНК, в результате процессов транскрипции и трансляции реализуется в клетке в виде молекул белков. Синтез белка обеспечивается взаимодействием всех типов РНК: рРНК является главным структурным компонентом рибосом, иРНК — носителем информации о первичной структуре белка, тРНК доставляют на рибосому аминокислоты, а также обеспечивают их правильное включение в полипептид-ную цепь.

Биосинтез РНК (транскрипция) и биосинтез белка (трансляция) осуществляются с использованием матриц — ДНК и иРНК соответственно. Поэтому, так же как и репликация, процессы транскрипции и трансляции являются реакциями матричного синтеза.

1. Какие процессы относятся к реакциям матричного синтеза?

Брожение, трансляция, транскрипция, фотосинтез, репликация.

2. Что такое транскрипция? Как протекает этот процесс?

3. Какой процесс называется трансляцией? Охарактеризуйте основные этапы трансляции.

4. Почему при трансляции в состав белка включаются не любые аминокислоты в случайном порядке, а только те, которые закодированы триплетами иРНК, причем в строгом соответствии с последовательностью этих триплетов? Как вы думаете, сколько видов тРНК участвует в синтезе белков в клетке?

5. Реакции матричного синтеза следует относить к процессам ассимиляции или диссимиляции? Почему?

6. Участок транскрибируемой цепи ДНК имеет следующий порядок нуклеотидов: ТАЦТГГАЦАТАТТАЦААГАЦТ. Установите последовательность аминокислотных остатков пептида, закодированного этим участком.

7. Исследования показали, что в молекуле иРНК 34% от общего числа азотистых оснований приходится на гуанин, 18 % — на урацил, 28 % — на цитозин и 20 % — на аденин. Определите процентный состав азотистых оснований двуцепочечного участка ДНК, одна из цепей которого служила матрицей для синтеза данной иРНК.

8. В эритроцитах млекопитающих синтез гемоглобина может происходить еще в течение нескольких дней после утраты этими клетками ядер. Как вы можете это объяснить?

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

  • § 24. Общая характеристика обмена веществ и преобразование энергии
  • Глава 4. Структурная организация и регуляция функций в живых организмах