Эталон массы 1 кг изготовлен из сплава. Эталоны массы

Определение единицы массы - килограмма - было дано IIIГенеральной конференцией по мерам и весам 1901 г. в следующем виде:

"Килограмм - единица массы - представлен массой международного прототипа килограмма".

При установлении метрической системы мер в качестве единицы массы была принята масса 1 кг, равная массе 1 дм 3 чистой воды при температуре ее наибольшей плотности (4 o С).

В этот период были проведены точные измерения массы известного объема воды путем последовательного взвешивания в воздухе и воде пустого бронзового цилиндра, размеры которого были тщательно определены.

Изготовленный на основе этих взвешиваний первый прототип килограмма представлял собой платиновую цилиндрическую гирю высотой 39 мм, равной его диаметру. Он был передан на хранение в Национальный Архив Франции.

В XIX в. было произведено повторное тщательное измерение массы 1 дм 3 воды, при этом было установлено, что эта масса немного (приблизительно на 0,28 г) меньше массы прототипа Архива.

Для того, чтобы при дальнейших, более точных взвешиваниях, не менять значения единицы массы, Международной комиссией по эталонам метрической системы в 1872 г. было решено за единицу массы принять массу прототипа килограмма Архива.

В 1883 г. были изготовлены 42 прототипа килограмма из платино-иридиевого сплава (90% платины и 10% иридия) фирмой Джонсон, Маттей и К° и копии №12 и №26 получены по жребию Россией в 1889 г. согласно Метрической конвенции. Эталон хранится на кварцевой подставке под двумя стеклянными колпаками в стальном шкафу особого сейфа, находящегося в термостатированном помещении ГП “ВНИИМ им. Д.И.Менделеева”, г. С.-Петербург.

В состав государственного первичного эталона единицы массы кроме гири входят эталонные весы номер 1 (Рупрехта) и номер 2 (ВНИИМ) на 1кг с дистанционным управлением, служащие для передачи размера единицы массы от прототипа номер 12 эталонам-копиям и от эталонов-копий рабочим эталонам (2 эталонам 1 раз в 10 лет).

Погрешность воспроизведения массы эталоном килограмма не превышает 2·10 -9 . Таким образом, эталон килограмма позволяет записывать результат измерения массы в лучшем случае числом из девяти цифр. Несмотря на все предосторожности, как показывают результаты международных сличений, за 90 лет масса эталонной гири увеличилась на 0,02 мг. Объясняется это адсорбцией молекул из окружающей среды, оседанием пыли на поверхность гири и образованием тонкой коррозионной пленки.

В связи с развитием работ по созданию новых эталонов единиц ФВ, основанных на атомных постоянных, предлагается использование в качестве эталона массы нейтрона. Другое предложение основано на воспроизведении единицы массы через счетное число атомов какого-нибудь химического элемента, например изотопа кремния-28. Для этого необходимо повысить точность определения числа Авогадро, на что сейчас направлены усилия многих лабораторий мира.

1.3.3 Эталон единиц времени и частоты

Еще в древности счет времени основывался на периоде обращения Земли вокруг своей оси. До недавнего времени секунду определяли как 1/86400 часть средних солнечных суток (т. к. продолжительность суток в течение года изменяется). Позднее было обнаружено, что вращение Земли вокруг своей оси происходит неравномерно. Относительная погрешность определения единицы времени в соответствии с этим определением составляла около 10 -7 , что было недостаточно для метрологического обеспечения измерителей времени и частоты. Поэтому в основу определения единицы времени положили период вращения Земли вокруг Солнца - тропический год (т.е. интервал между двумя весенними равноденствиями). Размер секунды был определен как 1/31556925,9744 часть тропического года. Поскольку тропический год также изменяется (около 5 с за 1000 лет), то за основу был взят тропический год, отнесенный к 12 ч эфемеридного времени (равномерно текущее время, определяемое астрономическим путем) 0 января 1900 года, что соответствует 12 ч 31 декабря 1899 г. Это определение секунды было зафиксировано в Международной системе единиц 1960 г. Данное определение позволило на 3 порядка (в 1000 раз) снизить погрешность определения единицы времени.

Успехи квантовой физики позволили использовать частоту излучения или поглощения при энергетических переходах в атомах цезия и водорода для определения размера единицы времени. XIIIГенеральная конференция по мерам и весам в 1967 г, приняла новое определение единицы времени - секунды:“Секунда – это время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133”.

Выбор количества колебаний произведен таким образом, чтобы привязать “цезиевую”секунду к“тропической”.

В соответствии с определением единицы времени воспроизведение ее осуществляется цезиевым репером (рис. 1.4). Основой эталона является атомно-лучевая трубка. Атомы цезия-133 испускаются нагретым до температуры 100-150 0 С источником 1. Пучок этих атомов попадает в область неоднородного магнитного поля, создаваемого магнитом 2. Угол отклонения атомов в таком магнитном поле определяется их магнитным моментом. Поэтому неоднородное магнитное поле позволяет выделить из пучка атомы, находящиеся на определенном энергетическом уровне. Эти атомы направляются в объемный резонатор 3, пролетая через который взаимодействуют с переменным электромагнитным полем СВЧ. Частота электромагнитных колебаний может регулироваться в небольших пределах.

1 - источник атомов цезия-133; 2, 4 - магниты; 3 - резонатор; 5 – детектор

Рисунок 1.4 - Структурная схема цезиевого репера

При совпадении ее с частотой, соответствующей энергии квантовых переходов, происходит поглощение энергии СВЧ-поля и атомы переходят в основное состояние. Отклоняющей магнитной системой 4 они направляются в детектор 5. Ток детектора при настройке резонатора на частоту квантовых переходов оказывается максимальным. Это служит основой стабилизации частоты в цезиевом репере, в котором электромагнитные колебания кварцевого генератора умножаются до частоты спектральной линии цезия, принятой за рабочую. В резонаторе атомно-лучевой трубки энергия высокочастотных колебаний поглощается атомами цезия.

При отклонении частоты кварцевого генератора (собственная нестабильность частоты равна 10 -8 от номинального значения) интенсивность переходов атомов и, следовательно, плотность атомного пучка на выходе трубки резко сокращается.

Блок автоподстройки, связанный с трубкой, вырабатывает сигнал ошибки, возвращающий частоту кварцевого генератора к номинальному значению. Стабильность цезиевого репера составляет 10 13 . Делитель частоты, находящийся в кварцевых часах, позволяет получить на их выходе требуемые частоты и временные интервалы (в том числе и частоту 1 Гц).

Долговременная стабильность цезиевого репера частоты невелика. Поэтому для хранения единиц времени и частоты в состав государственного первичного эталона входит водородный мазер (рис. 1.5).

1 - стеклянная трубка; 2 - коллиматор; 3 - шестиполюсной осевой магнит; 4 - накопительная ячейка; 5 - резонатор; 6 - многослойный экран

Рисунок 1.5 - Мазер на атомарном водороде

В стеклянной трубке 1 под действием высокочастотного электрического разряда происходит диссоциация молекул водорода. Пучок атомов водорода через коллиматор 2, обеспечивающий его направленность, попадает в неоднородное магнитное поле шестиполюсного осевого магнита 3, где претерпевает пространственную сортировку. В результате последней на вход накопительной ячейки 4, расположенной в объемном резонаторе 5, попадают лишь атомы водорода, находящиеся на верхнем энергетическом уровне. Находящийся внутри многослойного экрана 6 высокодобротный резонатор настроен на частоту используемого квантового перехода. Взаимодействие возбужденных атомов с высокочастотным полем резонатора (в течение примерно 1 с) приводит к их переходу на нижний энергетический уровень с одновременным излучением квантов энергии на резонансной частоте 1420405751,8 Гц. Это вызывает самовозбуждение генератора, частота которого отличается высокой стабильностью (510 -14). Значение этой частоты периодически поверяется по цезиевому реперу.

Наряду с водородным мазером для хранения шкал времени в состав государственного первичного эталона единиц времени и частоты и шкал времени входит группа квантово-механических часов. Общий диапазон временных интервалов, воспроизводимых эталоном, составляет 10 -8 10 8 с. Эталон расположен в ГП ВНИИФТРИ г. Москва.

Федеральное агентство по образованию

Государственное общеобразовательное учреждение высшего профессионального образования

СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра «Приборостроение и телекоммуникации»

РЕФЕРАТ

ЭТАЛОН ДЛИНЫ И МАССЫ

Выполнил:

ст-т гр. Р 54-2

А. Е. Шамова

Проверил:

преподаватель

Красноярск 2007

Эталоном называется средство измерений (комплекс средств измерений), предназначенное для воспроизведения и хранения единицы величины и передачи ее размера другим, менее точным, средствам измерения.

Международные эталоны хранятся в Международном Бюро Мер и Весов, расположенном в Севре – пригороде Парижа. В соответствии с международными соглашениями с их помощью периодически проводятся сличения национальных эталонов разных стран, в том числе взаимные сличения национальных эталонов. Например, национальные эталоны метра и килограмма сличаются один раз в 20-25 лет, а эталоны вольта и Ома – раз в три года.

Эталон единицы длины.

В 1971 г. Национальное собрание Франции приняло длину десятимиллионной части четверти дуги парижского меридиана в качестве единицы длины – метра. В тот период времени во Франции применялся в качестве единицы длины туаз. Соотношение между метром и туазом оказалось равным 1 м = 0,513074 туаза .

Но уже в 1837 г. Французские ученые установили, что в четверти меридиана содержится не 10 млн., а 10 млн. 856 м. Примерно в тот же период времени стало очевидным, что форма и размеры Земли со временем изменяются. Поэтому в 1872 г. по инициативе Петербургской академии наук была создана международная комиссия, решившая не создавать уточненных эталонов метра, а принять в качестве исходной единицы длины метр Архива Франции.

В 1889 г. Был изготовлен 31 эталон метра в виде платиноиридиевого стержня Х-образного поперечного сечения, который, как следует из рассмотрения Рис. 1 вписывается в квадрат .

Длина линейки составляет 102 см. На каждом из ее концов нанесены три штриха на расстоянии 0,5 мм друг от друга. Таким образом, расстояние между средними штрихами равно 1 м.

Погрешность платиноиридиевых штриховых метров составляет. Уже в начале 20 в. эта погрешность оказалась достаточно большой, не удовлетворяющей требованиям измерений длины.

В 1960 г. XI Генеральной конференцией по мерам и весам было принято новое определение метра: метр – длина, равная 1650763,73 длины волны в вакууме излучения, соответствующего переходу между уровнями
и
атома криптона-86.

Криптоновый эталон метра состоит из газоразрядной лампы, наполненной криптоном-86, помещенной в сосуд Дюара с жидким азотом (Рис. 2 ). При подаче электрического напряжения +1500 в лампе образуется свечение возбужденных атомов криптона-86. Капилляр, в котором происходит свечение (с внутренним диаметром около 3 мм), имеет оптический выход на автоматический интерференционный фотоэлектрический компаратор. С помощью интерференционного компаратора определяется расстояние между штрихами, что позволяет найти число длин волн, укладывающихся между средними штрихами линейки (Рис. 1 ). Фактически определяется не все количество длин волн, «помещающихся» в метре, а оценивается разница между измеряемой длиной и эталонной длиной, воспроизводимой газоразрядной лампой. Измерение длины волны и энергетических характеристик свечения производится с помощью спектроинтерферометров.

Погрешность воспроизведения метра, оцениваемая средним квадратическим отклонением результата измерения, с помощью данного эталона существенно уменьшилась по сравнению с погрешностью платиноиридиевого прототипа метра и составила
.

Новый эталон метра.

Повышение точности эталона длины стало реальным при получении возможности распространения абсолютных измерений частоты (в радиочастотном спектре колебаний) на оптический диапазон и разработке высокостабильных лазеров, что позволило уточнить значение скорости света. В 1983 г. XVII Генеральная конференция по мерам и весам приняла новое опреде­ление метра: «Метр - длина пути, проходимого в вакууме светом за 1/299792458 доли секунды (точно)». Данное определение метра принципиально отличается от определения 1960 г.: «криптоновый» метр не был непосредственно связан со временем, новый метр опирается на эталон единицы времени - секунду и известное значение скорости света.

Еще многие годы метрология и техника будут использовать значение скорости света, установленное XVII Ге­неральной конференцией по мерам и весам.

В настоящее время для обеспечения высокой степени стабилизации важ­нейшего параметра лазерного излучения – частоты, широко применяются ге­лий-неоновые лазеры на длине волны излучения
мкм (инфракрасная область спектра) и
мкм (видимая область спектра), стабилизирован­ные соответственно по насыщенному поглощению в метане (Не-Ne/CH 4 ) и молекулярном йоде (Не-Ne/I 2 ).

Лазеры на основе (Не-Ne/CH 4 ) по воспроизводимости частоты прибли­жаются к цезиевому стандарту, являющемуся основой эталона времени и час­тоты. Работающий в видимом диапазоне спектра Не-Ne/I 2 лазер позволяет реализовать новое определение метра через скорость распростране­ния света в вакууме. Наличие излучения на двух длинах волн ( мкм и мкм) дает возможность с помощью интерферометра обеспечить высо­кую точность измерений. Секунда воспроизводит­ся с помощью цезиевых стандартов частоты в СВЧ диапазоне электромагнит­ных колебаний, а новый метр – в оптическом диапазоне частот, т. е. на несколько порядков выше частот, применяемых в эталоне времени и частоты. Таким образом, необходим «мост», служащий для передачи эталонной частоты цезиевого стандарта в оптическую часть диапазона.

Комплекс аппаратуры для «переноса» измерений частоты в «радиочастотном» эталоне времени на изме­рения частоты высокостабильных лазеров (в оптическом диапазоне) был наз­ван радиооптическим частотным мостом (РОЧМ). РОЧМ позволил по­лучить наивысшую точность измерения скорости света в вакууме и рассматри­вать ее как фундаментальную физическую константу, явился основой создания единого эталона частоты – времени - длины. В этот эталон входят эталон време­ни и частоты, аппаратура РОЧМ, а также новый эталон метра, включающий Не-Ne лазеры, интерферометр сравнения длин волн Не-Ne/CH 4 лазеров и Не-Ne/I 2 лазеров, интерферометр, непосредственно формирующий единицу длины - метр. Этот эталон имеет погрешность воспроизведения в виде средне­го квадратического отклонения результата измерений около , система­тическая составляющая не превышает , т. е. более чем на три порядка меньше погрешности воспроизведения метра с помощью «криптонового» мет­ра.

Эталон единицы массы.

Международный прототип килограмма был утвержден на I Генеральной конференции по мерам и весам в 1889 г. как прототип единицы массы, хотя в тот период еще не существовало четкое разграничение понятий массы и веса, и поэтому часто эталон массы называли эталоном веса.

В состав эталона входят:

Копия международного прототипа килограмма (№ 12), представляющая собой платиноиридиевую гирю в виде прямого цилиндра с закругленными реб­рами диаметром и высотой 39 мм. Прототип килограмма хранится во ВНИИМ им. Д. И. Менделеева (г. Санкт -Петербург) на кварцевой подставке под двумя стеклянными колпаками в стальном сейфе. Эталон хранится при поддержании температуры воздуха в пределах (20±3)°С и относительной влажности 65 %. С целью сохранения эталона с ним сличают два вторичных эталона раз в 10 лет. Они и используются для дальнейшей передачи размера килограмма;

Равноплечие призменные весы на 1 кг № 1 с дистанционным управлением (с целью исключения влияния оператора на температуру окружающей среды), изготовленные фирмой «Рупрехт», и равноплечие современные весы на 1 кг № 2, изготовленные во ВНИИМ им. Д. И. Менделеева. Весы № 1 и № 2 служат для передачи размера единицы массы от прототипа № 12 вторич­ным эталонам.

На Рис. 3 показан эталон килограмма в современном виде. Справа на рисунке представлено вместе с прототипом килограмма № 12 двухконтурное стеклянное защитное устройство.

Погрешность воспроизведения килограмма, вы­раженная средним квадратическим отклонением результата измерений, составляет
.

Со времени создания прототипов килограмма прошло более 100 лет. За истекший период периодически сличали национальные эталоны с международным эталоном. В Табл. 1 приведены результаты лишь двух сличений (они были и позже 1954 г.) эталонов килограмма.

Таблица 1

Новый эталон килограмма

Недавно выяснилось, что Парижский эталон килограмма не совсем точен. Решить эту проблему, т.е. создать новый эталон массы, поможет программа, в которой участвуют ученые из восьми стран. Первые 140 граммов вещества для нового эталона уже существуют. Это сверхчистый кремний, на 99,99% состоящий из изотопа кремния-28.

Через три года такого кремния будет уже 5 кг. Этого хватит, чтобы сделать килограммовый шар, число атомов кремния-28 в котором будет точно известно. И тогда допотопную гирю в парижской Палате мер и весов заменит эталон, не только масса, но и число атомов в котором будут определены с предельной для сегодняшней мировой науки точностью.

Получить новый, действительно точный эталон массы ученые, а особенно физики, мечтали давно. Часть работы выполнена, но впереди еще огромный объем. Дело в том, что в микроэлектронике химически чистый кремний получать в основном научились. Но природный кремний состоит из трех изотопов с разной, естественно, массой атомов - 28 (92%), 29 (5%) и 30 (3%) углеродных единиц. А для эталона массы атомы нужны только одинаковые. Только после получения в России изотопически-чистого кремния в Австралии сделают идеальный гладкий шар. И потом шар будут долго и тщательно проверять в Германии и Франции. Таким образом, впервые появляется возможность уточнить одну из самых фундаментальных химических величин - число Авогадро.

ГОСУДАРСТВЕННЫЙ ПЕРВИЧНЫЙ ЭТАЛОН

ЕДИНИЦЫ МАССЫ (килограмм)


Эталонные весы с наибольшим пределом взвешивания 1 кг

Утвержден Постановлением Госстандарта СССР от 6.12.1984 г. № 4109, хранится во ВНИИМ им. Д.И.Менделеева. Эталон предназначен для воспроизведе­ния, хранения и передачи размера еди­ницы массы, получаемого на основании периодических сличений с Международ­ным прототипом килограмма. Основу эталона составляют копии № 12 и № 26 Международного прототипа кило­грамма, который хранится в Междуна­родном бюро мер и весов. Копии были изготовлены фирмой «Джонсон, Маттей и К 0 » из платино-иридиевого сплава в ви­де прямого круглого цилиндра с высотой, равной диаметру, подогнаны по массе и исследованы в МБМВ, переданы России в 1889 г

В составе эталона:

Национальный прототип килограмма - копия № 12 Международного прототипа килограмма;

Национальный прототип килограмма - копия № 26 Международного прототипа килограмма;

Эталонная гиря массой 1 кг и набор эта­лонных гирь массой от 1 до 500 г из пла- тино-иридиевого сплава;

Эталонные весы-компараторы с наи­большими пределами взвешивания 1 кг; 200, 25 и 3 г.

Область применения:

Метрологическое обеспечение единства измерений массы во всех областях науки и производственной деятельности: машиностроение, приборостроение, микроэлектроника, транспорт, оборонная промышленность, научные исследования, системы контроля и учета продукции, сельское хозяйство и др.

Современные эталоны - это, как правило, сложные аппаратурные комплексы. А эталон массы был и остается гирей - платиново-иридиевой "образца 1889 года" (именно тогда Международное бюро мер и весов изготовило 42 эталона килограмма). Сущность самой измерительной операции также осталась прежней и сводится к сравнению двух масс при взвешивании. Конечно, изобретены сверхчувствительные весы, растет точность взвешивания, благодаря которой появляются новые научные открытия (так, например, были открыты аргон и другие инертные газы).

Эту килограммовую гирю из платины и иридия сделала в 1889 году парижская ювелирная фирма по заказу Международного бюро мер и весов. Всего таких эталонов было изготовлено 42, а стран, подписавших тогда конвенцию о принятии метрической системы, - 17. По мере “подключения” к новой системе измерений других стран им вручали эталон килограмма.

Килограмм никак не связан ни с физическими константами, ни с какими-либо природными явлениями. Поэтому эталон берегут тщательнее: не дают пылинке на него сесть, ведь пылинка - это уже несколько делений на чувствительных весах. Международный прототип эталона достают из хранилища не чаще одного раза в пятнадцать лет, российский - раз в пять лет. Все работы ведутся со вторичными эталонами (только их допускается сравнивать с основным), от вторичного эталона значение массы передается рабочим эталонам, от них - к образцовым наборам гирь.
Эталонные весы во ВНИИМ им. Д. И. Менделеева установлены на специальном фундаменте в 700 тонн, не связанном со стенами здания, чтобы исключить влияние вибраций. Температура в помещении, где за сутки на весы устанавливаются две килограммовые гири, поддерживается с точностью до 0,01 о С, а все операции ведутся из соседней комнаты с помощью манипуляторов. Погрешность эталона массы России не превышает +0,002 мг.



Государственный первичный эталон единицы массы Государственный эталон единицы массы - килограмм - является самым древним из всех государственных эталонов, хотя в современном его составе он был утвержден в 1968 г. Размер килограмма был впервые задан при установлении метрической системы через размер его дольной единицы - грамма, определенного как масса дистиллированной воды при температуре таяния льда в объеме куба с ребром 1/100 метра. Позднее перешли к более удобному размеру единицы - килограмму, как массе воды в объеме кубического дециметра. В качестве нормальных условий была принята температура +4°С, при которой вода имеет наибольшую плотность. В 1889 г. по результатам тщательных измерений массы 1 дм3 воды во Франции был изготовлен первый прототип килограмма - платино-иридиевая гиря в виде цилиндра высотой 39 мм, равной ее диаметру, впоследствии названная архивным килограммом. Дальнейшие успехи точного взвешивания позволили установить, что масса архивного килограмма на 0,028 г больше массы 1 дм воды и что определить массу платинового килограмма можно в тысячу раз точнее, чем массу 1 дмводы. В 1878-83 гг. были изготовлены 43 новые килограммовые гири по образцу архивного килограмма из платиноиридиевого сплава. Одна из этих гирь, масса которой оказалась наиболее близкой к архивному килограмму, в 1899 г. на I ГКМВ была принята в качестве международного прототипа килограмма, который и определяет в настоящее время размер единицы массы для всех стран Метрической конвенции. Россия получила в 1889 году две копии (№12 и №26) международного килограмма. Первый Государственный эталон единицы массы в нашей стране был утвержден в 1918 г. Им являлся один из национальных прототипов, приобретенных Россией в 1889 г., - копия №12 международного прототипа килограмма. В МБМВ за 1883 -1889 гг. была произведена окончательная подгонка всех прототипов и их исследование. Вся процедура изготовления прототипа №12 и его исследования подробно изложена в сертификате МБМВ на этот прототип, согласно которому масса прототипа №12 на 1889 г. составляла1кг + (0,068± 0,002) мг. Все национальные прототипы каждые 25 - 35 лет должны сличаться в МБМВ с международным прототипом килограмма (или с его свидетелями). Передача размера килограмма (или его дольных частей) от прототипа №12 ко вторичным эталонам (эталонным гирям) до 1966 г. осуществлялась при помощи эталонных весов №1 с нагрузкой до 1 кг. Однако весы не входили тогда в состав Государственного эталона килограмма.Действующий в настоящее время Государственный первичный эталонединицы массы - килограмма утвержден в 1968 г. в составе следующих средств измерений: 1) копия №12 международного прототипа килограмма; 2) эталонные весы №1 и №2. Прототип №12 обеспечивает воспроизведение и хранение единицы массы национальном масштабе - масштабе всей страны. При этом используются сложные приемы бережливого хранения вещественного килограмма и ювелирная техника работы на эталоне. Даже при самом тщательном и осторожном применении прототипа неизбежно его взаимодействие с внешними объектами, неизбежен износ (изменение массы). Поэтому для его применения и хранения были выбраны особые правила и приемы, прежде всего - максимальное сокращение его перемещений и использование для передачи размера единицы нескольких эталонов-копий, сличение которых с прототипом №12 производится методом совокупных измерений. Для минимизации изменений массы прототипа он хранится на кварцевой пластинке под двумя стеклянными колпаками в стальном шкафу особого сейфа, находящегося в термостатированном помещении. Годовое колебание температуры в помещении не превышает 2°С. Важным элементом Государственного первичного эталона килограмма являются эталонные весы, при помощи которых осуществляется передача размера единицы вторичным эталонам - эталонам-копиям массой в 1 кг. Сличения проводятся примерно 1 раз в 10 лет. Эталонные весы являются одним из наиболее точных измерительных устройств. Как и большинство высокоточных весов, эталонные весы №1 и №2 являются равноплечными призменными рычажными весами. Весы №2 имеют ряд преимуществ по сравнению с весами №1 в части конструкции и снабжены автоматическим регистрирующим устройством. Управление обоими "эталонными" весами производится дистанционно при помощи манипуляторов, которые позволяют освобождать коромысла весов (и перемещать в них гири) из другого помещения, с расстояния почти 4 м.Для уменьшения влияний температурных и воздушных колебаний в процессе измерений, а также попадании всевозможных пылинок, эталонные весы заключены в специальный стеклянный кожух. Специальное устройство позволяет измерять дистанционно температуру воздуха внутри весов с погрешностью 0,002°С. Использование методики, основанной на способе Гаусса, позволяет обеспечивать на государственном первичном эталоне воспроизведение единицы массы в 1 кг и передачу ее размера вторичным эталонам с СКО результата, не превышающим 0,007 мг при условии соблюдения установленных правил хранения и применения эталонов массы. Государственный первичный эталон единицы массы хранится и применяется во ВНИИМ им. Д. И. Менделеева. Опыт применения национальных прототипов килограмма из платиноиридиевого сплава на протяжении более 80 лет показал, что эти гири обладают высокой стабильностью массы; по исследованиям МБМВ эти гири обеспечат хранение единицы массы с погрешностью не более 10 -8 в течение нескольких столетий их применения. В настоящее время, однако, остается принципиальное несовершенство эталона, связанное с искусственным определением единицы массы. Стремясь заменить его естественным эталоном и получить гарантию определенной стабильности, ученые ведут поиски путей существенного повышения точности определения атомной единицы массы с тем, чтобы выразить килограмм через массу какой-либо элементарной частицы или атома. Германские ученые стремятся вывести единицу массы через трудоемкий подсчет количества атомов, содержащихся в килограммовом кристалле кремния. Речь идет об основном изотопе кремния - 28, отделением которого от прочих изотопов немецкие ученые занимаются совместно в сотрудничестве с российскими физиками-ядерщиками, разработавшими наиболее эффективные методы центрифужного получения высокообогащенных радиоактивных элементов. Американские ученые пошли по другому пути: их идея заключается в том, чтобы точно измерить в ваттах величину электромагнитной мощности, необходимой для уравновешивания эталонного килограмма (так называемый ваттовый баланс). Окончательное решение – какой из этих двух вариантов определения килограмма взять за основу – остается за Международным комитетом мер и весов.

Масса – это инерционная характеристика тела, показывающая, насколько трудно выводится оно внешней силой из состояния покоя или равномерного и прямолинейного движения. Единица силы есть сила, которая, воздействуя на единицу массы, изменяет ее скорость на единицу скорости в единицу времени.

Все тела притягиваются друг к другу. Таким образом, всякое тело вблизи Земли притягивается к ней. Иначе говоря, Земля создает действующую на тело силу тяжести. Эта сила называется его весом . Сила веса, как указывалось выше, неодинакова в разных точках на поверхности Земли и на разной высоте над уровнем моря из-за различий в гравитационном притяжении и в проявлении вращения Земли. Однако полная масса данного количества вещества неизменна; она одинакова и в межзвездном пространстве, и в любой точке на Земле.

Точные эксперименты показали, что сила тяжести, действующая на разные тела (т.е. их вес), пропорциональна их массе. Следовательно, массы можно сравнивать на весах, и массы, оказавшиеся одинаковыми в одном месте, будут одинаковы и в любом другом месте (если сравнение проводить в вакууме, чтобы исключить влияние вытесняемого воздуха). Если же некое тело взвешивать на пружинных весах, уравновешивая силу тяжести силой растянутой пружины, то результаты измерения веса будут зависеть от места, где проводятся измерения. Поэтому пружинные весы нужно корректировать на каждом новом месте, чтобы они правильно показывали массу. Простота же самой процедуры взвешивания явилась причиной того, что сила тяжести, действующая на эталонную массу, была принята за независимую единицу измерения в технике.

Энергия движений движ
Масса - килограмм (кг, kg) микрограмм (мкг) = 10 –9 кг миллиграмм (мг) = 10 –6 кг грамм (г) = 10 –3 кг центнер метрический (ц) = 100 кг тонна метрическая (т, тн) = 1000 кг
Сила - ньютон (Н, N) Размерность: Н = кг·м/с2 килоньютон (кН) = 1000 Н меганьютон (МН) = 106 Н
Энергия, работа, количество теплоты - джоуль (Дж, J) Размерность: Дж = Н·м = кг·м2/с2 килоджоуль (кДж) = 1000 Дж мегаджоуль (МДж) = 106 Дж
Масса (мера механической инертности тел, т.е. инерционности; мера взаимодействия тел с гравитационным полем) m килограмм (кг)
Сила (мера взаимодействия тел) F = m · a ньютон (Н = кг · м / с2)
Работа (мера воздействия на тело, вызывающего изменение его состояния, в механике - вызывающего перемещение под действием силы, внешней или внутренней) A = F · s
Энергия (мера способности тела совершить работу) E = A джоуль (Дж = Н · м) кг · м2 / с2
Кинетическая энергия E к = m · v 2 / 2
Потенциальная энергия в гравитационном поле E п = m · g · Δh, где g - ускорение свободного падения, Δh - разность высот, между которыми переместилось тело массой m.
Энергия Е физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие
Сила F векторная физическая величина, являющаяся мерой интенсивности взаимодействия тел. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нем деформаций
Джоуль J Работа, произведенная силой в 1 ньютон при перемещении ею тела на расстояние 1 метр в направлении действия

Механическая работа – физическая величина, равная произведению силы на путь, пройденный телом вдоль направления этой силы. Единица измерения работы – 1 джоуль (1 Дж = 1 Н·м).

Энергия тела – физическая величина, показывающая работу, которую может совершить это тело. Энергия измеряется теми же единицами, что и работа – джоулями.

Что такое килограмм? Детский вопрос! Это же масса литра воды. Чтобы получить его в домашних условиях, достаточно иметь водопроводный кран и литровую банку. Но вот «настоящее и полновесное» эталонное кило в последнее время стремительно теряет в весе.

Увы, всемирный эталон килограмма, как явствует из New York Times, стал жертвой загадочной и продолжительной болезни. Заглянем в анамнез.

В XVIII веке килограмм был определён как масса кубического дециметра воды при температуре её наибольшей плотности (4 o С). Как оказалось, такое определение не вполне конструктивно: нужен очень точный кубический дециметр, совершенно чистая вода и абсолютно правильный термометр.

За дополнительными сведениями о заболевшем обратимся в Книгу Судеб - БСЭ.

«Килограмм, единица массы, одна из семи основных единиц Международной системы единиц (СИ). Он равен массе международного прототипа, хранимого в Международном бюро мер и весов. Прототип в 1799 году был выполнен в виде цилиндрической гири из платины.

Масса прототипа килограмма оказалась приблизительно на 0,028 грамма больше массы одного кубического дециметра воды.

Самый главный на сегодняшний день килограмм - просто кусок железа (фото bipm.org).

В 1889 году было принято существующее определение килограмма и в качестве международного прототипа была утверждена гиря со знаком К („К“ готическое заглавное), изготовленная из платиноиридиевого сплава (10% Ir) и имеющая форму цилиндра диаметром и высотой 39 мм».

Оказывается, сработанный английским ювелиром платиноиридиевый килограмм - единственная основная единица СИ, доблестно хранящая своё определение аж с позапрошлого века. И сама хранящаяся в виде материального артефакта.

Метр, например, поначалу соотнесённый с длиной земной окружности, теперь приравнен к расстоянию, проходимому светом за одну 299792458-ю долю секунды. А собственно секунда - это время, за которое атом цезия совершает 9192631770 колебаний.

Мало того, что эти единицы определены с подобающей квантовой точностью, они ещё могут быть адекватно воспроизведены в любой точке мира. Клонировать килограмм куда сложнее, вдобавок для этого требуется сложная бюрократическая процедура.

Видимо, долгое время такое уникальное положение килограмма всех устраивало, раз не было достаточных побудительных оснований к созданию его скрупулёзной формулы.

Но переменчивый килограмм тянет за собой в дрейфующее плавание и Ватт, и другие смежные единицы измерения.

А в изменчивости килограмма не осталось никаких сомнений, несмотря на все меры предосторожности: эталон хранится под тремя герметичными стеклянными колпаками в сейфе охраняемого замка в окрестностях Парижа, а ключи от сейфа имеют лишь три особо приближенных бюрократа из Международного бюро мер и весов (Bureau International des Poids et Mesures — BIPM).

Килограмм и 6 его приспешников хранятся в постоянно запертом сейфе (фото bipm.org).

Вместе с главным килограммом в сейфе располагаются 6 преемников, а всего за время правления по его образу и подобию было изготовлено более 80 копий.

Для освидетельствования престарелого килограмма, происходящего раз в год, он торжественно извлекается из своего хранилища. И каждый раз обнаруживается микроскопическое уменьшение веса.

Килограмм чахнет. Об этом ясно говорят сравнения с другими обитателями сейфа. Природа болезни загадочна, но все симптомы налицо: за сто лет килограмм теряет около 0,00000003-й части своей драгоценной массы.

А ведь даже похудение всего на 50 микрограмм (меньше веса соляной крупинки) может серьёзно исказить результаты сложных научных вычислений. Не вызывает сомнений необходимость замены уникального килограмма на абстрактный килограмм.

Международная команда исследователей из Германии, Австралии, Италии и Японии под эгидой Немецкой лаборатории стандартов (German standards laboratory) хочет переопределить килограмм как массу определённого числа атомов. В лаборатории сделан совершенно круглый килограммовый шар из чистого кристаллического кремния.

Если точно известно, какие атомы составляют кристалл и на каком расстоянии они находятся друг от друга, то, измерив размер шара, можно вычислить число атомов кремния, его составляющих. Это число и будет определением килограмма.

Для производства шара необходимо было получить изотоп кремния очень высокой степени очистки. Помощь в этом начинании оказала Россия - на старых, ещё советских ядерных оружейных фабриках имеются центрифуги, использовавшиеся для выработки высокообогащённого урана.

Возможно, этот кремниевый шар станет новым килограммом. Но только в виде числа составляющих его атомов (фото nytimes.com).

Полученный шар потребовалось измерить на «круглость». Кристалл был педантично замерен в полумиллионе точек. Вывод: шар - самое круглое творение рук человеческих. Если увеличить шар до размеров Земли, высота Эвереста составит всего четыре метра.

Интригующая особенность шара: совершенно невозможно на глаз определить, покоится он или вращается. Только если на поверхность упадёт пылинка, взгляду будет за что зацепиться.

Хотя число атомов кремния, составляющих уникальный объект, ещё не подсчитано, методика уже вызывает критику из другого лагеря, сплотившего учёных из США, Англии, Франции и Швейцарии.

По их мнению, с сегодняшними технологиями невозможно точно сосчитать число атомов, поэтому килограмм легче и надёжнее вычислить, используя электрическое напряжение. Измерение энергии, дескать, проще подсчёта атомов. Может и проще, но только не на словах.

В работе используется сложный механизм, называемый балансом Ватта. В основу методики положена эквивалентность механической и электрической мощности.

Следует создать электромагнитное поле, поместить в него эталонный килограмм, и замерить параметры эксперимента. Поскольку гравитационное поле постоянно и детерминировано местоположением трёхэтажной установки, через эталонный килограмм можно связать значения механических и электрических величин.

Правда, надо ещё учесть приливно-отливные воздействия, а прочие проявления внешней среды можно исключить, поместив установку в глубокий вакуум.

Кремниевая сфера, созданная в Австралийской Национальной лаборатории измерений (Australia’s National Measurement Laboratory — NML).

Измерив значения длины, времени, электрического тока и сопротивления (а все они могут быть вычислены на основе фундаментальных и инвариантных квантовых явлений) можно квантовым же способом оцифровать и основную единицу - килограмм. Подобным образом была уже определена масса электрона.

О точности изощрённого и окольного способа вычисления килограмма говорить пока рано, учёные поглощены устранением колебаний напряжения в электрических цепях. Однако они уверены, что победа будет за ними, а не за конструкторами кремниевых шаров.

По информации New York Times, секция массы BIMP - инстанция, в конечном счёте, определяющая судьбу килограмма - склоняется к последнему подходу, но сделать окончательный выбор пока что очень сложно. Но выбирать хотят между этим двумя, хотя существуют и другие варианты.

Например, как и всё в нашем мире купли-продажи, пресловутый килограмм может иметь точное ценовое выражение.

Для его исчисления надо узнать количество атомов в килограмме чистого золота. По сегодняшним прикидкам, в таком числе должно быть порядка 25 цифр, но ничего более определённого сказать о нём нельзя.

Старейшая на сегодняшний день материальная единица измерения - эталон массы. Международное определœение идеального килограмма не меняется с 1875 года. Килограмм определили как вес одного кубического дециметра воды при наибольшей ее плотности, при температуре 4 градуса. В России копия идеального килограмма хранится в Петербургском научно-исследовательском институте метрологии им. Д.И.Менделœеева.

Кубический дециметр воды из парижской реки Сена увековечили в платиноиридиевом прототипе. Чистая платина не окисляется и имеет большую плотность и твердость. Но платина не идеальный металл, чересчур чувствительно реагирует на изменения температуры. Проблему решило добавление иридия. 90% платины и 10% иридия стали совершенным материалом для хранения весовой гири в 19 веке. Как ни странно, данный прототип до сих пор служит всœеобщим эталоном веса. Хотя его точность не столь высока как у других более современных эталонов. В случае если единица времени воспроизводится с погрешностью несколько единиц 16-го знака, то, скажем, величины типа электрические, тот же килограмм, те же тепловые величины, это что-нибудь типа девятый, восьмой знак. То есть отличие 6-7 порядков, то есть десятки миллионов раз. Килограмм - самый проблемный эталон в мире. Несмотря на аккуратность при хранении, сверхпрочная гиря постепенно меняется в весе.

За последние 100 лет относительно международного эталона, международного прототипа, который хранится в Париже, российский эталон килограмма изменился на 30 микрограмм. С поверхности металла происходит испарение, механический износ, на металл осаждаются атомы кислорода, водорода, тяжелых металлов. Пока мы используем данный прототип, этого не избежать. Чем грозит отклонение от эталона веса на 30 микрограммов? Что такое один микрограмм? Тысячная доля миллиграмма или миллионная доля грамма? 500 микрограммов обычных яблок - это 1 кубический миллиметр.
Размещено на реф.рф
В сфере бытовой торговли таких изменений никто не заметит. Другое дело - фармацевтика. В случае если ошибка при изготовлении лекарства будет на один миллиграмм, последствия бывают очень трагичными. Ученые всœего мира работают над созданием обновленного эталона массы - шара из сверхчистого кремния. Кремний имеет идеальную кристаллическую решетку. С помощью силовых микроскопов метрологи определят точное количество атомов в одном килограмме кремния.

Эталоны времени .

Уже сейчас современный человек ежеминутно сталкивается с работой сложнейших метрологических устройств, даже не подозревая об этом. К примеру, мобильная связь, мобильный телœефон. . Кто задумывался, почему оно работает? Кнопочку нажал - работает. Для того чтобы мобильная связь работала, вот эти станции сотовые, вот эти вышки, которые люди всœе видят, должны быть жестко синхронизованы межу собой, то есть увязаны по времени. И эта увязка по времени для обеспечения работоспособности мобильной связи, это миллионные доли секунды.

Люди измеряли время по обращению небесных светил до середины 20 века. Но такой способ оказался далеко не идеальным. Земля потихоньку замедляется в своем вращении. Более того она вращается не совсœем равномерно. То есть, грубо говоря, то побыстрее, то помедленнее. Перед метрологией встал вопрос: как вычислить и сохранить точный интервал времени? В 1967 году был создан новый эталон.

Это 9 млрд. 192 млн. 631 тысяча 770 периодов излучения атома цезия 133 в основном состоянии. Когда столько периодов излучения отсчитают, это и есть одна секунда. И есть устройства, конкретные приборы, физические установки, которые это реализуют. Почему цезий? Он наиболее нечувствителœен к внешним воздействиям. В России главный эталон времени хранится в подмосковном научно-исследовательской институте физико-технических и радиотехнических измерений. За определœение точного времени отвечает сложнейший комплекс приборов - хранителœей и частоты, и шкал времени. Российский эталон времени входит в группу лучших мировых эталонов. Его относительная погрешность не более 1 секунды за полмиллиона лет.

Только изобретение атомных эталонов времени часов позволило создать сложнейшие системы навигации: GPS и Глонасс. Для того чтобы передвижение на дороге было удобным, система должна определить положение машины в пределах одного метра. Метр для спутника - это 3 миллиардные доли секунды. С такой невероятной скоростью идет обновление информации о передвижении автомобиля. При помощи сигналов спутников метрологи всœего мира обмениваются данными о точном времени. Установки фиксируют разность показания часов лабораторий и спутника. Далее данные всœех лабораторий сличаются специальной программой. В результате получается синхронизированное международное атомное время. Подмосковный спутниковый комплекс осуществляет передачу данных в космос с погрешностью всœего в одну наносœекунду, то есть в одну миллиардную часть секунды обычной.

ʼʼХранители времениʼʼ. Как бы загадочно должность этих специалистов ни звучала, атомные часы в Институте радиотехнических измерений, по которым сверяет стрелки вся страна, не выглядят фантастически. Хотя здесь оперируют нано и пико секундами, человеку почувствовать такую точность не дано.

ʼʼКогда говорят о точном времени, то в своей массе, на бытовом уровне, люди слышат, передающие сигналы проверки времени по радио ʼʼпи, пи, пиʼʼ, вот это точное время. На самом делœе это время с нашей колокольни мало точное, очень скромной точности. Национальная шкала времени та͵ которую мы здесь формируем. Погрешность за сутки составляет приблизительно несколько стомиллиардных долей секунды в суткиʼʼ, Чтобы атомные часы убежали вперед или отстали на секунду, должны пройти миллионы лет. Главные потребители эталонного времени – сотовая связь и навигация.

ʼʼСовременные системы радионавигации пользуются электромагнитными сигналами, которые распространяются со скоростью светаʼʼ. За миллиардную долю секунды свет распространяется на 30 сантиметров. В случае если мы хотим с помощью ГЛОНАСС определять своё местоположение с метровой точностью, это значит, что вся система должна работать с погрешностью одну – две миллиардные доли секунды. GPS, ГЛОНАСС - ϶ᴛᴏ система спутников, которые предназначены для точного определœения географических координат и точного времени. GPS, иначе ее называют NAVSTAR – американская группировка спутников, ГЛОНАСС – российская.

Атомному времени столько же лет, сколько и космонавтике. Полвека. Бурное развитие квантовой физики привело к тому, что в серединœе XX века появились первые атомные часы, а Международный комитет по мерам и весам принял решение перейти на атомный стандарт. Современный эталон времени - ϶ᴛᴏ цезиевый репер частоты. Прибор за стеклом, заходить в комнату нельзя, т.к. у прибора ʼʼтепличные условияʼʼ, они созданы специально для того, чтобы внешний мир не мешал работе. А если говорить о точности, то это десятимиллионная часть миллиардной доли секунды. Выговорить и осмыслить сложно. Казалось бы, что ещё в природе должна быть точнее? Оказывается, может - нейтронные звёзды. Пульсары или нейтронные звезды - это то, во что превращаются звёзды после своей гибели. Οʜᴎ взрываются, быстро закручиваются. Появляется шар с желœезной оболочкой и огромной силой притяжения, излучающий волны со строгой периодичностью. ʼʼЭлектрическое поле вырывает электроны прямо с поверхности звезды, а она желœезная, они летят, ускоряются и в направлении своего движения они излучают разные волныʼʼ. Пульсары открыли английские астрономы в 1967 году. Информация долго была секретной. Думали, что это сигнал внеземных цивилизаций. Ведь не могут природные объекты давать радиосигналы с такой частотой. Привлекали даже шифровальщиков. При этом гипотеза об искусственном происхождении вспышек не подтвердилась. ʼʼВ случае если бы мы захотели с кем-то вступить в контакт, - говорит Михаил Попов, - можно подавать позывные, они никакой информации не несут, импульсы, которые в жизни не должны образовываться. Пока не открыли пульсары, так думалиʼʼ. Идею, использовать пульсары для сверки земных часов, предложили российские ученые. Точность звёздных импульсов превосходит атомный эталон на несколько порядков. Получается, что вскоре, на вопрос: ʼʼКоторый час?ʼʼ человечеству будет отвечать Вселœенная.