Эмбриология. Значение эмбриологии при лечении бесплодия

Эмбриология – наука о внутриутробном развитии зародыша от оплодотворения до момента рождения.

Предметом изучения эмбриологии также являются строение и развитие половых клеток и постэмбриональный период. Данные эмбриологии важны для анатомии, гистологии, профилактической медицины, для тестирования новых лекарственных препаратов и лечения наследственных заболеваний.

Эмбриология человека - история развития науки

Эмбриология зародилась еще в древнем мире. В Древнем Египте, Индии, Греции в сочинениях врачей можно встретить представления о внутриутробном развитии зародыша. Некоторые философы полагали, что в материнском или отцовском семени есть маленький человечек, невидимый человеческому взгляду, который увеличивается в размерах. Аристотель выступил против такой теории. Он полагал, что органы формируются путем последовательных преобразований из оплодотворенного яйца.

И уже в 1600 году Фабриций составил первый в истории эмбриологии трактат, который называется «О формировании плода». Становление эмбриологии как науки произошло в 1651 году, когда английский врач, эмбриолог и физиолог Уильям Гарвей издал сочинение «Исследования о зарождении животных». Немало важную роль в развитии эмбриологии сыграли исследования немецкого врача эмбриолога К.Ф. Вольфа. Данные эмбриологии доказывают то, что алгоритм развития любого живого организма – это модификация алгоритма развития его предков.

Что изучает эмбриология?

Эмбриология человека изучает развитие человеческого эмбриона от момента слияния яйцеклетки со сперматозоидом до рождения ребенка. Эмбрион человека развивается в три стадии. Рассмотрим коротко каждую из них:

  • Первая стадия длится от момента оплодотворения до 14 дней внутриутробной жизни зародыша. В этот период зародыш прикрепляется к стенке матки и питается за счет материнского организма.
  • Вторая стадия начинается с конца третьей и длится до восьмой недели беременности. По окончании второй стадии зародыш называется плодом.
  • На третьей стадии эмбрионального развития происходит специализация органов и систем, что заканчивается рождением ребенка.

Эмбриология человека изучает условия, необходимые для наступления беременности. Такими условиями являются:

  • нормальное положение матки;
  • проходимость маточных труб;
  • достаточное количество сперматозоидов;
  • щелочная среда в женских половых путях;
  • нормальная температура тела.

Практическое значение эмбриологии человека заключается в профилактике мертворождаемости, гигиене беременных, борьбе с внутриутробной асфиксией, с пороками развития плода. Всеми вопросами, которые касаются эмбриологии, занимаются врачи эмбриологи.

Над чем работают врачи-эмбриологи?

Врач эмбриолог изучает развитие организма от момента оплодотворения яйцеклетки сперматозоидом до рождения плода. Специалисты данной области медицины очень важны при лечении бесплодия, поскольку они в совершенстве владеют методиками вспомогательных репродуктивных технологий. Врачи эмбриологи создают благоприятные условия при проведении экстракорпорального оплодотворения.

Эмбриолог проводит инсеминацию (введение половых клеток мужчины в полость матки) и оценивает качество ооцитов, спермы и результат оплодотворения.

К эмбриологу можно обратиться не только по поводу лечения бесплодия, но и при следующих заболеваниях:

  • болезнях щитовидной железы;
  • нарушении овуляции;
  • синдроме поликистозных яичников;
  • спаечном процессе в малом тазу;
  • гиперпролактинемии;
  • эндометриозе;
  • инфекционных заболеваниях, которые передаются половым путем.

Опытный эмбриолог вам скажет, что причиной бесплодия могут быть не только заболевания, перечисленные выше, но еще и усиленные физические нагрузки, неправильное питание, истощение организма вследствие частых и строгих диет.

Эмбриологи клиники "Центр ЭКО"

Супружеская пара, которая имеет проблемы с зачатием ребенка, может обратиться к лучшим эмбриологам Москвы, которые работают в медицинской клинике «Центр ЭКО». В клинике вы можете получить консультацию ведущих специалистов с огромным опытом работы в области клинической эмбриологии. Врачи «Центра ЭКО» повышают квалификацию в лучших медицинских университетах России, Израиля, Австрии и Норвегии. В клинике «Центр ЭКО» принимает эмбриолог, врач уролог – андролог Ашитков Т.В., эмбриолог, биолог, врач-лаборант Мачкур М.А. и другие специалисты по репродуктологии. Лучшие эмбриологи Москвы всегда помогут вам решить проблемы со здоровьем.

В медицинской клинике есть эмбриологическая лаборатория, в которой происходит выращивание эмбрионов после ЭКО.

На основании данных обследования эмбриологом для пациента выбирается метод лечения бесплодия. Это может быть искусственная инсеминация донорской спермой, ЭКО, ИКСИ.

Метод экстракорпорального оплодотворения заключается в том, что у женщины эмбриологом проводится пункция, с помощью которой изымаются ооциты. После пункции их переносят в "пробирку", где происходит оплодотворение яйцеклеток сперматозоидами мужа или донора.

Метод интрацитоплазматической инъекции сперматозоида отличается от ЭКО тем, что эмбриологом отбирается один сперматозоид, который вводится в цитоплазму яйцеклетки с помощью специальной иглы. Как видно из вышесказанного, при методе ЭКО эмбриология играет важную роль.

Начните свой путь к счастью - прямо сейчас!

Эмбриология - это наука о закономерностях эмбрионального развития зародыша. Термин "эмбриология" возник от греческого словосочетания - em bryo, что означает "в оболочках". Эмбрион, или зародыш, - это организм, развивающийся под покровом яйцевых оболочек или внутри материнского организма в специализированном органе - матке. У человека развивающийся организм до 8-й недели эмбриогенеза называется зародышем, далее - плодом. В задачи эмбриологии входит изучение развития зародыша от момента оплодотворения до рождения (вылупления из яйцевых оболочек или выхода из материнского организма), а также изучение прогенеза - процесса образования мужских и женских половых клеток. Медицинская (клиническая) эмбриология изучает закономерности эмбрионального развития человека, причины нарушений эмбриогенеза и механизмы возникновения уродств, а также пути и способы влияния на эмбриогенез.

Эмбриональное развитие , или эмбриогенез, - это сложный и длительный морфогенетический процесс, в ходе которого из отцовской и материнской половых клеток формируется новый многоклеточный организм, способный к самостоятельной жизнедеятельности в условиях внешней среды. Чтобы представить масштаб процессов, происходящих в развитии человека, достаточно вспомнить, что яйцеклетка диаметром 0,15 мм оплодотворяется спермием диаметром 0,005 мм, общая масса оплодотворенного яйца составляет всего лишь 5х10-9 г. Доношенный плод рождается со средним размером 500 мм и массой 3400 г. От зиготы до рождения масса плода возрастает примерно в миллиард раз.

Эмбриологические исследования домикроскопического периода давали лишь общую картину развития организмов и не могли раскрыть суть зачатия и развития эмбриона и плода. С общебиологических позиций, однако, эти исследования оказали существенное влияние на последующую трактовку многих научных фактов, открытых с помощью микроскопических методов исследования.

Развитие эмбриологии как науки

История эмбриологии тесно связана с борьбой двух течений, зародившихся еще в античные времена - преформизма и эпигенеза. Преформизм, означающий предобразование, утверждает, что развитие организма является лишь ростом имеющегося зародыша. Теоретиком преформизма является Ш. Бонне (1740-1793), утверждавший, что все органы тела настолько тесно связаны между собой, что невозможно допустить существование такого момента, когда тот или другой из них отсутствовал бы. С позиций преформизма, вопрос заключался лишь в том, где находится этот зародыш. По мнению овистов (М. Мальпиги), зародыш находится в женской половой клетке, а по мнению анималькулистов - в мужской половой клетке. Сторонники эпигенеза, например, Ж. Бюффон (1707-1788), отрицали предопределение, однако не смогли подтвердить свои убеждения фактами. Спор разрешил русский академик К. Вольф (1733-1794), опубликовавший в 1759 г. диссертацию "Теория зарождения", в которой доказал, что для развития зародыша необходимы женские и мужские половые клетки. К. Вольф экспериментально обосновал концепцию эпигенеза - учение о развитии, согласно которому новые разнородные части организма появляются из исходного однородного материала яйца под влиянием факторов, стоящих над зародышем (иными словами, происходит нововобразование структур). Данная концепция укрепилась благодаря работам X. Пандера (1794-1865) и К. Бэра (1792-1876).

Идеи преформизма вновь стали обсуждаться в литературе , когда развитие зародышей начали изучать методами молекулярной биологии. Так, по мнению А. Спирито (1984), в яйцеклетке содержится не анатомическая, а химическая миниатюра взрослого организма (различия химического состава разных участков яйца и в последующем - цитоплазмы клеток зародыша, которые морфологически идентичны).

Становление эмбриологии как науки и систематизация фактического материала связаны с именем ординарного профессора Медико-хирургической академии К. Бэра. Он выявил, что в процессе эмбрионального развития раньше всего обнаруживаются общие типовые признаки, а затем появляются частные признаки класса, отряда, семейства и, в последнюю очередь, признаки рода и вида. Данное заключение было названо правилом Бэра. Согласно этому правилу, развитие организма происходит от общего к частному. К. Бэр указал на образование в эмбриогенезе двух зачатковых листков, описал хорду и др.

В развитии сравнительной эмбриологии ведущее место принадлежит русскому эмбриологу А.О. Ковалевскому (1840-1901). Он изучал многочисленных представителей типов первично- и вторичноротых и установил единый план развития многоклеточных животных - ланцетника, асцидий, червей, кишечнополостных. А.О. Ковалевский обосновал теорию зародышевых листков как образований, лежащих в основе развития всех многоклеточных организмов. Опираясь на работы А.О. Ковалевского, немецкий биолог Э. Геккель (1834-1919) сформулировал основной биогенетический закон, который гласит, что онтогенез есть краткое повторение филогенеза. Это означает, что в индивидуальном развитии можно наблюдать предковые признаки (или палингенезы) - например, образование у эмбрионов млекопитающих зародышевых листков, хорды, жаберных щелей и др. Однако в ходе эволюции появляются новые признаки - ценогенезы (образование провизорных, или внезародышевых, органов у рыб, птиц и млекопитающих). Явление повторения в ходе эмбрионального развития высших организмов тех или иных признаков более низкоорганизованных животных получило название рекапитуляция. Примерами рекапитуляции в эмбриогенезе человека являются смена трех форм скелета (хорда, хрящевой скелет, костный скелет), образование и сохранение до трехмесячного возраста плода хвоста, развитие практически сплошного волосяного покрова (на 5-м месяце внутриутробного развития), образование жаберных щелей и др.

Учение о рекапитуляции развил А.Н. Северцов (1866-1936), который сформулировал положение о том, что онтогенез не только повторяет филогенез, но и творит его (теория филэмбриогенезов). Так, если изменение индивидуального развития идет путем добавления новых стадий к предковым - это надставка, или анаболия; изменения, начинающиеся со средних стадий, называются отклонением, или девиацией; наконец, развитие может измениться с самых ранних стадий, тогда это архаллаксис (древний). В последнем случае определить предковые признаки в индивидуальном развитии практически невозможно.

Большой вклад в развитие эмбриологии внесли П.П. Иванов (1878-1942) - автор теории о ларвальных и постларвальных сегментах первичноротых, П.Г. Светлов (1892-1974)- автор теории о критических периодах эмбриогенеза и другие исследователи.

Тема 6. ОБЩАЯ ЭМБРИОЛОГИЯ

Определение и составные части эмбриологии

Эмбриология – наука о закономерностях развития животных организмов от момента оплодотворения до рождения (или вылупливания на яйца). Следовательно, эмбриология изучает внутриутробный период развития организма, т. е. часть онтогенеза.

Онтогенез – развитие организма от оплодотворения до смерти, подразделяется на два периода:

1) эмбриональный (эмбриогенез);

2) постэмбриональный (постнатальный).

Развитию любого организма предшествует прогенез.

Прогенез включает в себя:

1) гаметогенез – образование половых клеток (сперматогенез и овогенез);

2) оплодотворение.

Классификация яйцеклеток

В цитоплазме большинства яйцеклеток содержатся включения – лецитин и желток, содержание и распределение которых значительно отличаются у различных живых организмов.

1) алецитарные яйцеклетки (безжелтковые). К этой группе относятся яйцеклетки гельминтов;

2) олиголецитарные (маложелтковые). Характерно для яйцеклетки ланцетника;

3) полилецитарные (многожелтковые). Свойственно яйцеклеткам некоторых птиц и рыб.

По распределению лецитина в цитоплазме выделяют:

1) изолецитарные яйцеклетки. Лецитин распределяется в цитоплазме равномерно, что характерно для олиголецитарных яйцеклеток;

2) телолецитарные. Желток концентрируется на одном из полюсов яйцеклетки. Среди телолецитарных яйцеклеток выделяют умеренно телолецитарные (характерны для амфибий), резко телолецитарные (бывают у рыбы и птицы) и центролецитарные (у них желток локализуется в центре, что характерно для насекомых).

Предпосылкой онтогенеза является взаимодействие мужских и женских половых клеток, при этом происходит оплодотворение – процесс слияния женской и мужской половых клеток (сингамия), в результате которого образуется зигота.

Оплодотворение может быть внешним (у рыб и амфибий), при этом мужские и женские половые клетки выходят во внешнюю среду, где и происходит их слияние, и внутренним – (у птиц и млекопитающих), при этом сперматозоиды поступают в половые пути женского организма, в котором и происходит оплодотворение.

Внутреннее оплодотворение, в отличие от внешнего, представляет собой сложный многофазный процесс. После оплодотворения образуется зигота, развитие которой продолжается при внешнем оплодотворении в воде, у птиц – в яйце, а у млекопитающих и человека – в материнском организме (матке).

Периоды эмбриогенеза

Эмбриогенез по характеру процессов, происходящих в зародыше, подразделяется на три периода:

1) период дробления;

2) период гаструляции;

3) период гистогенеза (образования тканей), органогенеза (образования органов), системогенеза (образования функциональных систем организма).

Дробление . Продолжительность жизни нового организма в виде одной клетки (зиготы) продолжается у разных животных от нескольких минут до нескольких часов и даже дней, а затем начинается дробление. Дробление – процесс митотического деления зиготы на дочерние клетки (бластомеры). Дробление отличается от обычного митотического деления следующими особенностями:

1) бластомеры не достигают исходных размеров зиготы;

2) бластомеры не расходятся, хотя и представляют собой самостоятельные клетки.

Различают следующие типы дробления:

1) полное, неполное;

2) равномерное, неравномерное;

3) синхронное, асинхронное.

Яйцеклетки и образующиеся после их оплодотворения зиготы, содержащие небольшое количество лецитина (олиголецитальные), равномерно распространенного в цитоплазме (изолецитальные), делятся полностью на две дочерние клетки (бластомеры) равной величины, которые затем одновременно (синхронно) делятся снова на бластомеры. Такой тип дробления является полным, равномерным и синхронным.

Яйцеклетки и зиготы, содержащие умеренное количество желтка, также дробятся полностью, но образующиеся бластомеры имеют разную величину и дробятся неодновременно – дробление полное, неравномерное, асинхронное.

В результате дробления образуется вначале скопление бластомеров, и зародыш в таком виде носит название морулы. Затем между бластомерами накапливается жидкость, которая отодвигает бластомеры на периферию, а в центре образуется полость, заполненная жидкостью. В этой стадии развития зародыш носит название бластулы.

Бластула состоит из:

1) бластодермы – оболочки из бластомеров;

2) бластоцели – полости, заполненной жидкостью.

Бластула человека – бластоциста. После образования бластулы начинается второй этап эмбриогенеза – гаструляция.

Гаструляция – процесс образования зародышевых листков, образующихся посредством размножения и перемещения клеток. Процесс гаструляции у разных животных протекает неодинаково. Различают следующие способы гаструляции:

1) деламинацию (расщепление скопления бластомеров на пластинки);

2) иммиграцию (перемещение клеток внутрь развивающегося зародыша);

3) инвагинацию (впячивание пласта клеток внутрь зародыша);

4) эпиболию (обрастание медленно делящихся бластомеров быстро делящимися с образованием наружного пласта клеток).

В результате гаструляции в зародыше любого вида животного образуются три зародышевых листка:

1) эктодерма (наружный зародышевый листок);

2) энтодерма (внутренний зародышевый листок);

3) мезодерма (средний зародышевый листок).

Каждый зародышевый листок представляет собой обособленный пласт клеток. Между листками вначале имеются щелевидные пространства, в которые вскоре мигрируют отростчатые клетки, образующие в совокупности зародышевую мезенхиму (некоторые авторы рассматривают ее как четвертый зародышевый листок).

Зародышевая мезенхима образуется путем выселения клеток из всех трех зародышевых листков, главным образом из мезодермы. Зародыш, состоящий из трех зародышевых листков и мезенхимы, носит название гаструлы. Процесс гаструляции у зародышей разных животных существенно отличается как по способам, так и по времени. В образующихся после гаструляции зародышевых листках и мезенхиме содержатся презумптивные (предположительные) зачатки тканей. После этого начинается третий этап эмбриогенеза – гисто– и органогенез.

Гисто– и органогенез (или дифференцировка зародышевых листков) представляет собой процесс превращения зачатков тканей в ткани и органы, а затем и формирование функциональных систем организма.

В основе гисто– и органогенеза лежат следующие процессы: митотическое деление (пролиферация), индукция, детерминация, рост, миграция и дифференцировка клеток. В результате этих процессов вначале образуются осевые зачатки комплексов органов (хорда, нервная трубка, кишечная трубка, мезодермальные комплексы). Одновременно постепенно формируются различные ткани, а из сочетания тканей закладываются и развиваются анатомические органы, объединяющиеся в функциональные системы – пищеварительную, дыхательную, половую и др. На начальном этапе гисто– и органогенеза зародыш носит название эмбриона, который в дальнейшем превращается в плод.

В настоящее время окончательно не установлено, каким образом из одной клетки (зиготы), а в дальнейшем из одинаковых зародышевых листков образуются совершенно различные по морфологии и функции клетки, а из них – ткани (из эктодермы образуются эпителиальные ткани, роговые чешуйки, нервные клетки и клетки глии). Предположительно в данных превращениях играют ведущую роль генетические механизмы.

Понятие о генетических основах гисто– и органогенеза

После оплодотворения яйцеклетки сперматозоидом образуются зигота. Она содержит генетический материал, состоящий из материнских и отцовских генов, которые затем передаются при делении дочерним клеткам. Сумма всех генов зиготы и образующихся из нее клеток составляет геном, характерный только для данного вида организма, а особенности сочетания материнских и отцовских генов у данной особи составляют ее генотип. Следовательно, любая клетка, образующаяся из зиготы, содержит одинаковый по количеству и качеству генетический материал, т. е. одинаковые геном и генотип (исключением являются только половые клетки, они содержат половинный набор генома).

В процессе гаструляции и после образования зародышевых листков клетки, расположенные в разных листках или в различных участках одного зародышевого листка, оказывают влияние друг на друга. Такое влияние называют индукцией. Индукция осуществляется путем выделения химических веществ (белков), но существуют и физические методы индукции. Индукция оказывает влияние прежде всего на геном клетки. В результате индукции некоторые гены клеточного генома блокируются, т. е. становятся нерабочими, с них не производится транскрипция различных молекул РНК, следовательно, не осуществляется и синтез белка. В результате индукции одни гены оказываются блокированными, другие свободными – рабочими. Сумма свободных генов данной клетки называется ее эпигеном. Сам процесс формирования эпигенома, т. е. взаимодействия индукции и генома, носит название детерминации. После сформирования эпигенома клетка становится детерминированной, т. е. запрограммированной к развитию в определенном направлении.

Сумма клеток, расположенных в определенном участке зародышевого листка и имеющих одинаковый эпигеном, представляет собой презумптивные зачатки определенной ткани, так как все эти клетки будут дифференцироваться в одном направлении и войдут в состав этой ткани.

Процесс детерминации клеток в разных участках зародышевых листков осуществляется в разное время и может протекать в несколько стадий. Сформированный эпигеном является устойчивым и после митотического деления передается дочерним клеткам.

После детерминации клеток, т. е. после окончательного формирования эпигенома, начинается дифференцировка – процесс морфологической, биохимической и функциональной специализации клеток.

Этот процесс обеспечивается транскрипцией с активных генов, определенных РНК, а затем осуществляется синтез определенных белков и небелковых веществ, которые и определяют морфологическую, биохимическую и функциональную специализацию клеток. Некоторые клетки (например, фибробласты) формируют межклеточное вещество.

Таким образом, формирование из клеток, содержащих одинаковый геном и генотип, разнообразных по строению и функциям клеток можно объяснить процессом индукции и формированием клеток с различным эпигеномом, которые затем дифференцируются в клетки различных популяций.

Внезародышевые (провизорные) органы

Часть бластомеров и клеток после дробления зиготы идет на образование органов, способствующих развитию зародыша и плода. Такие органы и называются внезародышевыми.

После рождения некоторые внезародышевые органы отторгаются, другие на последних этапах эмбриогенеза подвергаются обратному развитию или перестраиваются. У разных животных развивается неодинаковое количество провизорных органов, отличающихся по строению и по выполняемым функциям.

У млекопитающих, в том числе и у человека, развиваются четыре внезародышевых органа:

1) хорион;

2) амнион;

3) желточный мешок;

4) аллантоис.

Хорион (или ворсинчатая оболочка) выполняет защитную и трофическую функции. Часть хориона (ворсинчатый хорион) внедряется в слизистую оболочку матки и входит в состав плаценты, которую иногда рассматривают как самостоятельный орган.

Амнион (или водная оболочка) образуется только у наземных животных. Клетки амниона продуцируют амниотическую жидкость (околоплодные воды), в которой и развивается эмбрион, а затем – плод.

После рождения ребенка хориальная и амниотическая оболочки отторгаются.

Желточный мешок развивается в наибольшей степени у зародышей, образующихся из полилецитальных клеток, и потому содержит много желтка, откуда и происходит его название. Желточный меток выполняет следующие функции:

1) трофическую (за счет трофического включения (желтка) обеспечивается питание зародыша, особенно развивающегося в яйце, на более поздних стадиях развития для доставки трофического материала к зародышу формируется желточный круг кровообращения);

2) кроветворную (в стенке желточного мешка (в мезенхиме) образуются первые клетки крови, которые затем мигрируют в кроветворные органы зародыша);

3) гонобластическую (в стенке желточного мешка (в энтодерме) образуются первичные половые клетки (гонобласты), которые затем мигрируют в закладки половых желез зародыша).

Аллантоис – слепое выпячивание каудального конца кишечной трубки, окруженное внезародышевой мезенхимой. У животных, развивающихся в яйце, аллантоис достигает большого развития и выполняет функцию резервуара для продуктов обмена зародыша (главным образом мочевины). Именно поэтому аллантоис нередко называю мочевым мешком.

У млекопитающих необходимость в накоплении продуктов обмена отсутствует, так как они поступают через маточно-плацентарный кровоток в организм матери и выводятся ее экскреторными органами. Поэтому у таких животных и человека аллантоис развит слабо и выполняет другие функции: в его стенке развиваются пупочные сосуды, которые разветвляются в плаценте и благодаря которым формируется плацентарный круг кровообращения.

Из книги Хирургия грыж брюшной стенки автора Николай Валерианович Воскресенский

ОБЩАЯ ЧАСТЬ

Из книги Инфекционные болезни автора Евгения Петровна Шувалова

ОБЩАЯ ЧАСТЬ

Из книги Гистология автора Татьяна Дмитриевна Селезнева

Тема 7. ЭМБРИОЛОГИЯ ЧЕЛОВЕКА ПрогенезРассмотрение закономерностей эмбриогенеза начинается с прогенеза. Прогенез – гаметогенез (спермато– и овогенез) и оплодотворение.Сперматогенез осуществляется в извитых канальцах семенников и подразделяется на четыре периода:1)

Из книги Питание при сахарном диабете автора Илья Мельников

Из книги Питание при туберкулезе автора Илья Мельников

ОБЩАЯ ХАРАКТЕРИСТИКА Туберкулез – это преимущественно хроническая инфекция, при которой чаще всего поражены легкие. Реже встречается туберкулез гортани, кишечника, почек, костей и суставов, кожи. При туберкулезе возможны изменения пораженных органов, интоксикация

Из книги Асана, пранаяма, мудра, бандха автора Сатьянанда

Общая польза Физическая: при регулярной практике асан все железы внутренней секреции нашей эндокринной системы выделяют оптимальное количество гормонов. Это нормализует как физическое, так и психическое состояние человека. Сбой в работе хотя бы одной из желез ощутимо

Из книги Гистология автора В. Ю. Барсуков

6. Общая эмбриология Эмбриология – наука о закономерностях развития животных организмов от момента оплодотворения до рождения (или вылупливания на яйца). Следовательно, эмбриология изучает внутриутробный период развития организма, т. е. часть онтогенеза.1. Онтогенез –

Из книги Око настоящего возрождения автора Петр Левин

7. Эмбриология человека Рассмотрение закономерностей эмбриогенеза начинается с прогенеза. Прогенез – гаметогенез (спер-мато– и овогенез) и оплодотворение.Сперматогенез осуществляется в извитых канальцах семенников и подразделяется на 4 периода:1) I период –

Из книги Лечение простатита и других заболеваний предстательной железы традиционными и нетрадиционными способами автора Дарья Владимировна Нестерова

8. Эмбриология человека ЭмбриогенезЭмбриогенез человека подразделяется на:1) период дробления;2) период гаструляции;3) период гисто– и органогенеза. I. Период дробления. Дробление у человека полноенеравномерное, асинхронное. Бластомеры неравной величины,

Из книги Настольная книга для истинной женщины. Секреты естественного омоложения и очищения организма автора Лидия Ивановна Дмитриевская

ТЕМА 3: Приложение 1 Общая схема выполнения комплекса второго рождения При освоении комплекса на начальном этапе занятий для большего удобства целесообразно пользоваться приведенной здесь схемой. Комплекс осваивается в три этапа.Первый этапКаждое из первых шести

Из книги Настольная книга будущей мамы автора Мария Борисовна Кановская

Общая классификация В современной медицине простатит классифицируется следующим образом:- острый бактериальный;- хронический бактериальный;- хронический бактериальный с инфицированными камнями;- небактериальный;- простатодиния (наличествуют симптомы,

Из книги Тайная мудрость человеческого организма автора Александр Соломонович Залманов

Общая информация Каждая глава этой книги должна рассматриваться как часть единого целого. Только объединив все рекомендации и используя все приемы в своей ежедневной работе над собой, можно добиться успеха.Для реализации поставленной задачи, которая должна быть четко

Из книги Полный медицинский справочник диагностики автора П. Вяткина

Общая гигиена По мере того как малыш развивается, он нуждается все в большем количестве фосфора и кальция. И получить ему все эти важные вещества не откуда, кроме как из организма своей будущей мамочки. Сами понимаете: поскольку вы отдаете их малышу, вам нужно особенно

Из книги Секреты людей, у которых не болят суставы и кости автора Олег Ламыкин

Общая эуритмия Бывают случаи, и они нередки, когда смерть больного не может быть объяснена ни развитием болезненных явлений, ни недостаточностью важнейших видов деятельности организма (дыхания, кровообращения, выделения), ни серьезными предсмертными осложнениями.

ЭМБРИОЛОГИЯ

ОСНОВЫ ЭМБРИОЛОГИИ

СВЯЗЬ ИНДИВИДУАЛЬНОГО И ИСТОРИЧЕСКОГО РАЗВИТИЯ ОРГАНИЗМА

Эмбриология (от греч. embryon - зародыш, logos- учение) - наука о зародыше, о закономерностях его развития.

Медицинская эмбриология изучает закономерности развития зародыша человека, структурные, метаболические и функциональные особенности плацентарного барьера (система мать - плацента - плод), причины возникновения уродств и других отклонений от нормы, а также механизмы регуляции эмбриогенеза. Пути и методы влияния на эмбриогенез исследуются главным образом в условиях эксперимента на животных, а также в клинических условиях при патологии беременности. Одним из актуальных аспектов современной эмбриологии является изучение источников и механизмов развития тканей (гистогенез).

В понятие эмбриогенеза включают период от момента оплодотворения до рождения (для живородящих животных), вылупле-ния из яиц (для яйцекладущих), окончания метаморфоза (для животных с личиночной стадией развития).

Эмбриогенез- часть индивидуального развития, т. е. онтогенеза. Он тесно связан с прогенезом (развитие и созревание половых клеток) и ранним постэмбриональным периодом.

Актуальными задачами эмбриологии являются изучение влияния различных эндогенных и экзогенных факторов, роли микроокружения на развитие и строение половых клеток, развитие и взаимоотношение тканей, органов и систем, исследование механизмов, контролирующих репродуктивную функцию и обеспечивающих гомеостаз зародышей человека и млекопитающих, и других факторов, изучение критических периодов развития. Частным, но очень важным вопросом современной эмбриологии является культивирование яйцеклеток, зародышей и имплантация их в матку. Знание условий и факторов оплодотворения и эмбрионального развития позволяет врачам решать такие практически важные проблемы, как искусственное оплодотворение женщин при бесплодных браках, цитодиагностика патологии беременности и др.

Изучению эмбриогенеза человека предшествует краткое изложение основ сравнительной эмбриологии, так как в ходе исторического развития млекопитающих сложились основные этапы, последовательность и закономерности эмбриогенеза.

Процесс эмбрионального развития человека является результатом длительной эволюции и в определенной степени отражает черты развития других форм животного мира. Некоторые ранние стадии развития человека очень сходны с аналогичными стадиями эмбриогенеза более низко организованных хордовых животных.

Идея связи индивидуального и исторического развития была обоснована в начале XIX столетия. В частности, К. Бэр, изучая в сравнительном аспекте развитие некоторых позвоночных, пришел к заключению, что у большой группы животных на ранних стадиях развития проявляется больше сходства, чем частных, индивидуальных различий. По мере увеличения сроков эмбрионального развития это частное, индивидуальное вырисовывается все более отчетливо (закон зародышевого сходства). Ф. Мюллер, изучая развитие личиночных стадий ракообразных, также обнаружил сходство некоторых личиночных форм с вымершими ракообразными. Ч. Дарвин, придавая большое значение явлениям зародышевого сходства, считал это одним из доказательств общности происхождения животного мира.

В конце 60-х годов XIX столетия Э. Геккель сформулировал биогенетический закон, согласно которому индивидуальное развитие зародыша есть сжатое, сокращенное повторение исторического развития, иначе онтогенез повторяет в краткой форме филогенез. Идея биогенетического закона сыграла большую роль в развитии не только эмбриологии, но и эволюционного учения. Вместе с тем формулировка биогенетического закона не отражает влияние факторов окружающей среды, экологических условий, которые имеются в действительности и оказывают влияние на эмбриогенез. А. Н. Северцов, продолживший в 20-30-е годы XX столетия разработку биогенетического закона, пришел к заключению, что эволюционный процесс совершается не путем накопления изменений признаков взрослых животных, как считали Ч. Дарвин и Э. Геккель, а путем суммирования изменений, появляющихся у зародышей (теория филэмбриогенеза). Биологически важная перемена в условиях существования (среда) данного вида животных согласно воззрениям А. Н. Северцова, является стимулом к изменению его организации; характер же изменения среды, количественное и качественное соотношение между изменением среды и морфофункциональными изменениями организма определяет направление, в котором будет происходить эволюция изменяющегося вида в данную эпоху.

ОСНОВЫ СРАВНИТЕЛЬНОЙ ЭМБРИОЛОГИИ Прогенез

Половые клетки (гаметы)

Зрелые половые клетки в отличие от соматических содержат одиночный (гаплоидный) набор хромосом. Все хромосомы гаметы, за исключением одной половой, называются аутосомами. В муж-

ских половых клетках у млекопитающих содержатся половые хромосомы либо X, либо Y, в женских половых клетках - только хромосома X. Дифференцированные гаметы обладают невысоким уровнем метаболизма и неспособны к размножению.

Мужские половые клетки

Мужские половые клетки - сперматозоиды, или спермин, развиваются в очень большом количестве: выделяющаяся при эякуляции семенная жидкость содержит несколько миллионов сперматозоидов. Они невелики по размерам. У человека их размер достигает 70 мкм. Сперматозоиды обладают способностью к активному движению. Скорость их движения у человека 30- 50 мкм/с. Мужские половые клетки имеют жгутиковую форму.

Строение. В сперматозоиде различают головку и хвост (рис. 23). Головка сперматозоида (caput spermatozoidi) включает небольшое плотное ядро, окруженное тонким слоем цитоплазмы. Ядра сперматозоидов характеризуются высоким содержанием нуклеопрота-минов и нуклеогистонов. Передняя половина ядра покрыта плоским мешочком, составляющим "чехлик" сперматозоида. В нем у переднего полюса располагается акросома (от греч. acron - верхушка, soma-тело). Чехлик и акросома являются производными комплекса Гольджи. Акросома содержит набор ферментов, среди которых важное место принадлежит гиалуронидазе и про-теазам, способным растворять оболочки, покрывающие яйцеклетку. Важно отметить, что у высших позвоночных способность к оплодотворению (явление капацитации сперматозоидов) приобретается постепенно, по мере их продвижения по репродуктивному женскому тракту.

За головкой имеется кольцевидное сужение. Головка так же, как и хвостовой отдел, покрыта клеточной мембраной.

Хвостовой отдел (flagellum) сперматозоида состоит из связующих, промежуточных, главной и терминальной частей.

В связующей части (pars conjungens) или шейке (cervix) располагаются центриоли - проксимальная и дистальная, от которой начинается осевая нить (ахопета). Промежуточная часть (pars intermedia) содержит 2 центральных и 9 пар периферических микротрубочек", окруженных расположенными по спирали митохондриями (митохондриальное влагалище - vagina mitochond-rialis). Именно митохондрии обеспечивают энергией двигательную активность сперматозоидов, нарушение которой нередко связано с поражением процесса энергообразования в митохондриях. Движения хвостового жгутика бичеобразны. Они обусловлены последовательным изменением белков микротрубочек (динеин и др.). Эти белки обладают АТФ-азной активностью и расщепляют АТФ,

У многих животных между центральными и периферическими микротрубочками имеется еще 9 одиночных фибрилл.

Рис. 23. Строение мужских половых клеток.

А -- спермин в двух плоскостях; Б - ультрамикроскопическое строение спермиев; В - фрагмент главного отдела хвоста: Г -" фрагмент дистального отдела хвоста. / _ головка: // - хвост; а - связующий отдел (шейка): б-промежуточный отдел; а- главный отдел; г - дистальный отдел; / - цитолемма; 2 - акросома; - акросо-мальный пузырек; } - ядро; 4 - прокси-мальная центриоль; S - дистальная цент-риоль; и - митохондрии; 7 - осевая нить: S - циркулярные фибриллы; 9 - периферические микротрубочки: 10 - центральные микротрубочки.

вырабатываемую митохондриями. Освобождаемая при этом энергия используется для сокращения белков и обеспечения подвижности спермиев в жидкой среде. Среди факторов, влияющих на скорость движения, большое значение имеют степень зрелости спермиев, температура и рН среды.

Главная часть (pars principalis) по строению напоминает ресничку. Окружена тонкофибриллярным влагалищем (vagina tibrosa). Терминальная, или конечная, часть (pars terminalis) содержит единичные сократительные филаменты.

Сперматозоиды животных отличаются друг от друга соотношением указанных отделов и главным образом формой головки. Продолжительность жизни и оплодотворяющая способность сперматозоидов после эякуляции в определенных оптимальных условиях неодинаковы у различных животных. У млекопитающих они варьируют от нескольких часов до нескольких суток. В кислой

среде сперматозоиды быстро утрачивают способность к движению, оплодотворению и склеиваются. Способность к оплодотворению зависит также от концентрации сперматозоидов в семенной жидкости, продолжительности их пребывания в эякуляте и др.

Женские половые клетки. Классификация

Яйцеклетки, или овоциты (от лат. ovum - яйцо), созревают в неизмеримо меньшем количестве, чем сперматозоиды. Для некоторых млекопитающих количество созревающих в течение всей жизни яйцеклеток исчисляется сотнями. У других позвоночных их может быть гораздо больше (например, у рыб и амфибий). Как правило, яйцеклетки имеют шаровидную форму, больший объем цитоплазмы, чем у спермиев, они не обладают способностью самостоятельно передвигаться.

Характерным для яйцеклеток является наличие желтка (lecithos) (белково-липидных включений) в цитоплазме. В зависимости от количества желтка размеры яйцеклеток колеблются от нескольких микрометров до нескольких сантиметров (например, яйцеклетки птиц, акуловых рыб). Яйцеклетки классифицируют на безжелтковые (алецитальные), маложелтковые (олиголеци-тальные) и многожелтковые (полилецитальные). Маложелтковые яйцеклетки подразделяются на первичные (у примитивных хордовых, например ланцетника) и в торичн ы е (у млекопитающих и человека). Количество желтка в цитоплазме находится в прямой зависимости от условий развития животного (во внешней или внутренней среде) и продолжительности развития во внешней среде (рис. 24).

Как правило, в маложелтковых яйцеклетках желточные включения (гранулы, пластинки) распределены равномерно, поэтому они называются еще изолецитальными (греч. isos-равный). У большинства полилецитальных яйцеклеток желток в большей или меньшей степени сосредоточен у одного полюса (вегетативного), а орга-неллы-у противоположного (анимального). Такие яйцеклетки называются телолецитальными (греч. thelos-конец), а если желдгок находится в центре клетки - центролецитальными. Среди телолецитальных различают умеренно телолецитальные - мезо-лецитальные (например, у амфибий) и резко телолецитальные (например, у птиц).

У животных, ведущих наземное существование, организация яйцеклеток сложная. В частности, у пресмыкающихся и птиц яйцеклетки резко телолецитальны. Размеры яйцеклетки большие. Наземное развитие привело к возникновению вторичных и третичных оболочек, предохраняющих яйцеклетку от повреждающего действия механических, температурных и других факторов окружающей среды (пресмыкающиеся, птицы).

У плацентарных млекопитающих в связи с внутриутробным развитием и питанием за счет материнского организма отпала необходимость создания сколько-нибудь значительных запасов желтка

Рис. 24. Строение женских половых клеток. А - различные типы яйцеклеток: я - первично изолецитальная у ланцетника; б - умеренно телолецитальная у лягушки; в - резко телолецитальная у птицы; г - вторично изолеци-талькая у человека; 7 - ядро; 2 - цитоплазма; 3 - желточные зерна; 4 - желточные пластинки (масштаб не соблюден). Б - схема микроскопического (а) и ультрамикроскопического (б) строения яйцеклетки: 1 - ядро; 2 - цитоплазма с желточными включениями; 3 - кортикальные гранулы; 4 - цитолемма; 5 - микроворсинки цитолеммы; 6 - блестящая оболочка; 7 - фолликулярные клетки с отростками, формирующими лучистый венец.

в яйцеклетке. Поэтому вторично в эволюции появились маложелтковые яйцеклетки. Исключением являются яйцеклетки представителей примитивных млекопитающих (клоачные, отчасти сумчатые). Эти животные сохраняют многие черты своих предков - пресмыкающихся, в том числе и резко телолецитальные яйцеклетки. Яйцеклетка плацентарных млекопитающих относительно небольшая, диаметром 50-150 мкм, окружена прозрачной зоной (zona pellucida) и слоем фолликулярных клеток, принимающих участие в ее питании (см. рис. 24).

Строение. Яйцеклетка содержит ядро, цитоплазму (ооплазму), включающую в том или ином количестве питательный материал -

желток и оболочки. Все яйцеклетки имеют цитолемму (оволем-му), или первичную оболочку, а многие еще окружены вторичной (углеводно-белковой) и некоторые - третичной (скорлуповой, подскорлуповой) оболочками. Строение яйцеклеток характеризуется полярностью, которая выражена тем сильнее, чем больше желтка в клетке, например, у птиц. Та часть яйцеклетки, в которой накапливается желток, составляет вегетативный полюс, а противоположная, куда смещается ядро, - анимальный. Поверхность яйцеклетки покрыта микроворсинками.

Ядро женской половой клетки имеет гаплоидный набор хромосом. В период роста ооцита в ядре происходят интенсивные синтетические процессы амплификации генов синтеза РНК - образование многочисленных копий с тех участков хромосомной ДНК, которые кодируют рибосомную РНК. Копии ДНК замыкаются в кольца и смещаются к периферии ядра. На них возникают новые копии ДНК, которые в виде ядрышек выходят в цитоплазму, где становятся центрами усиленного синтеза рРНК и иРНК. Большая часть копий ДНК оказывается заблокированной белковыми молекулами (информосомы) до наступления оплодотворения.

Особенностью ооцитов является накопление огромных запасов химических компонентов аппарата трансляции: рибосом, иРНК, тРНК, количество которых в сотни и тысячи раз может превысить содержание их в соматических клетках. В цитоплазме яйцеклеток накапливаются также запасы разнообразных белков: гистонов, структурных белков рибосом, тубулина, липофосфопро-теидов желтка.

Среди органелл в яйцеклетках разных животных хорошо развита эндоплазматическая сеть. Количество митохондрий умеренно. Комплекс Гольджи на ранних стадиях развития яйцеклетки располагается около ядра, а в ходе созревания яйцеклетки смещается на периферию цитоплазмы. Здесь располагаются небольшие кортикальные гранулы (granula corticalia), содержащие гликозаминогли-каны. В цитоплазме яйцеклеток млекопитающих постоянно выявляются мультивезикулярные тельца. Из включений ооплазмы особого внимания заслуживает желток - питательный материал, во многом определяющий характер эмбриогенеза. Желток выявляется в виде гранул или более крупных шаров и пластинок, образованных фосфолипидами, протеинами и углеводами. Структурной единицей желтка является комплекс липовителлина (липопротеида) и фос-фовитина (фосфопротеина). Каждая пластинка состоит из более плотной центральной и более рыхлой периферической зон, снаружи ограничена осмиофильной мембраной. Плотная зона образована молекулами фосфовитина, имеет вид кристаллической решетки. Образуется желток при непосредственном участии эндоплазматиче-ской сети и комплекса Гольджи.

В процессе роста и созревания яйцеклеток в яичнике они окружаются слоем плоских или кубических клеток, называемых фолликулярными. За счет деятельности ооцита и фолликулярных клеток вокруг яйцеклетки образуется зона, богатая гликозаминогликанами.

У млекопитающих она называется прозрачной зоной (zona pellu-cida).

Фолликулярные клетки посылают через прозрачную зону длинные отростки, направленные к ооциту. В свою очередь цитолемма ооцита имеет микроворсинки, располагающиеся между отростками фолликулярных клеток (см. рис. 24, Б). Фолликулярные клетки выделяют вещества, которые поглощаются яйцеклеткой и способствуют ее росту. Фолликулярный эпителий выполняет также защитную функцию.

Эмбриогенез

Развитие зародыша происходит стадийно с постепенными качественными и количественными изменениями. Различают следующие стадии: оплодотворе ни е, дробление и образование бластулы, гаструляция и д ифференцировк а зародышевых листков с образованием зачатков тканей (г и с-т о гене з), органов (органогенез) и систем органов (с и стемогене з) плода.

Оплодотворение

Оплодотворение (fertilisatio) - слияние мужской и женской половых клеток, в результате чего восстанавливается диплоид-ный набор хромосом, характерный для данного вида животных, и возникает качественно новая клетка - зигота (оплодотворенная яйцеклетка или одноклеточный зародыш).

В зиготе масса ядра увеличивается вдвое, а объем цитоплазмы практически остается тот же, особенно при оплодотворении телоцитальных яйцеклеток. Оплодотворению предшествует о с е-менение- излияние семенной жидкости в половые пути при внутреннем оплодотворении или в среду, где находятся яйцеклетки, при наружном оплодотворении.

В процессе оплодотворения различают три фазы: 1) дистант-ное взаимодействие и сближение гамет; 2) контактное взаимодействие и активизация яйцеклетки; 3) вхождение сперматозоида в яйцо и последующее слияние - сингамия.

Первая фаза- дистантное взаимодействие - обеспечивается совокупностью ряда неспецифических факторов, повышающих вероятность столкновения половых клеток. Важную роль в этом играют химические вещества, вырабатываемые половыми клетками, - гамоны: гиногамоны (1, II), вырабатываемые яйцеклетками и андрогамоны (1, II), продуцируемые спермиями. Гиногамоны 1 (низкомолекулярные вещества небелковой природы, выделяемые яйцеклетками, активизируют движение спермиев. Гиногамоны II (фертилизины) - видоспецифические белки, вызывающие склеивание спермиев при их реакции с комплементарным андрогамоном II, встроенным в цитолему спермия. Склеивание

спермиев предохраняет яйцеклетку от проникновения многих спермиев.

Андрогамоны 1 - антагонисты гиногамонов 1 - вещества небелковой природы, подавляют подвижность спермиев.

Вторая фаза- контактное взаимодействие гамет и проникновение спермия в яйцеклетку - осуществляется с помощью акросомы и ее ферментов спермолизинов. Плазматические мембраны в месте контакта половых клеток сливаются и происходит плазмогамия - объединение цитоплазм обеих гамет.

У млекопитающих при оплодотворении в яйцеклетку проникает лишь один сперматозоид. Такое явление называют моноспер-мией. У беспозвоночных животных, рыб, хвостатых амфибий, рептилий и птиц возможна полиспермия, когда в яйцеклетку проникает несколько сперматозоидов, однако сливается с ядром яйцеклетки ядро только одного спермия. Оплодотворению способствуют тысячи других принимающих участие в осеменении сперматозоидов. Ферменты, выделяемые из акросом, - спермолизины (трипсин, гиалуронидаза), разрушают лучистый венец, расщепляют гликозаминогликаны вторичной (блестящей) оболочки яйцеклетки. Отделяющиеся фолликулярные клетки склеиваются в конгломерат, который вслед за яйцеклеткой перемещается по трубе благодаря мерцанию ресничек эпителиальных клеток слизистой оболочки.

Третья фаза. В ооплазму проникает головка и промежуточная часть хвостового отдела. После вхождения сперматозоида на периферии ооплазмы происходит уплотнение ее (кортикальная реакция) и образуется оболочка оплодотворения (рис. 25).

Как показано на беспозвоночных, механизм кортикальной реакции включает: приток ионов натрия через участок мембраны сперматозоида, встроенный в поверхность яйцеклетки после завершения акросомальной реакции. В результате отрицательный мембранный потенциал клетки становится слабоположительным. Приток ионов натрия обусловливает высвобождение ионов кальция из внутриклеточных депо и увеличение его содержания в цитоплазме яйцеклетки. Вслед за этим начинается экзоцитоз кортикальных гранул. Освобождающиеся из них протеолитические ферменты разрывают связи между блестящей оболочкой (или желточной оболочки у амфибий и птиц) и плазмолеммой яйцеклетки, а также между спермиями и прозрачной оболочкой. Кроме того, выделяется гликопротеид, связывающий воду и привлекающий ее в пространство между плазмолеммой и блестящей оболочкой. Вследствие этого формируется перивителлиновое пространство. Наконец, выделяется фактор, способствующий затвердению прозрачной оболочки и образованию из нее оболочки оплодотворения ("membrana fertilisationis).

Кортикальная реакция - один из механизмов, препятствующий проникновению в яйцеклетку других сперматозоидов. Проникновение сперматозоида через несколько минут значи-

тельно усиливает процессы внутриклеточного обмена, что связано с активизацией ферментативных систем яйцеклетки, в частности окислительно-восстановительных, а позднее - белковых синтезов.

Зигота. Ооплазматическая сегрегация. Образование мужского и женского пронуклеусов

Вслед за проникновением спермия в яйцеклетку и усилением окислительно-восстановительных реакций начинается интенсивное перемещение составных частей цитоплазмы (ооплазмы) с образованием зон повышенной концентрации желточных и пигментных гранул, органелл, что носит название о о плазмат и-ческой сегрегации. Методом маркировки установлено, что в ходе дальнейшего развития каждый участок оплодотворенной яйцеклетки даст начало определенной структуре зародыша.

Такие участки называются презумптивными (от лат. praesumptio - предположение, основанное на вероятности).

Попавшая в яйцеклетку головка спермия поворачивается на 180°, ядро постепенно набухает, округляется, хроматин разрыхляется и оно превращается в мужской пронуклеус. Центриоли, внесенные мужской половой клеткой, становятся при этом центром движения внутри оплодотворенной яйцеклетки (зиготы).

Ядро женской половой клетки, имеющее также гаплоидный набор хромосом, набухает, превращается в женский пронуклеус. Пронуклеусы сближаются. При этом в них происходит реплика-ция ДНК. В конце сближения происходит спирализация хромосом, образование метафазной пластинки из двух гаплоидных про-нуклеусов. Объединение двух пронуклеусов -синкарион (от греч. sin - связь, karyon - ядро) - приводит к восстановлению характерного для данной особи животного или человека диплоидного набора хромосом. Таким образом, зигота приобретает гены, унаследованные от обоих родителей. В реализации наследственной информации, кроме ядер, половых клеток, важная роль принадлежит цитоплазме клетки. Об этом свидетельствуют эксперименты с пересадкой ядер соматических клеток в яйцеклетку. При этом пол развивающегося организма зависит от половых хромосом. При слиянии яйцеклетки со сперматозоидом, несущим хромосому X, образуется женская особь, а при слиянии со сперматозоидом, имеющим хромосому Y, - мужская особь.

Дробление

Дробление (fissio) - последовательное митотическое деление зиготы на клетки (бластомеры) бс? последующего роста их до размеров материнской.

Вследствие фактического отсутствия интерфазы g[-периода, во время которого происходит рост клеток, образовавшиеся в результате деления клетки гораздо меньше материнской, поэтому и величина зародыша в целом в этот период независимо от составляющих его клеток не превышает величину исходной клетки - зиготы. Все это позволило назвать описываемый процесс дроблением, измельчением, а клетки, образующиеся в результате дробления, - бластомерами (от греч. blastos - зачаток, meros - часть).

На ранних стадиях все бластомеры сохраняют способность к развитию при определенных условиях в самостоятельный организм, или, как принято говорить, они тотипотентны. Дробление (уменьшение размеров бластомеров) продолжается до тех пор, пока не восстановится характерное для соматических клеток данного вида животного соотношение ядра и цитоплазмы. После этого наступает дерепрессия синтеза белка, и каждая дочерняя клетка увеличивается до размеров материнской. Дробление зародыша происходит неодинаково у различных

позвоночных, что определяется прежде всего количеством и характером распределения желтка в яйцеклетке.

Существует определенный строгий порядок появления борозд дробления. Борозды и плоскости попеременно проходят через анимальный и вегетативный полюса клетки (меридианное направление), поперечно (широтные) или параллельно поверхности (тангенциальные). Чем больше желтка в яйцеклетке у различных видов животных, тем менее полно и менее равномерно происходит дробление (рис. 26).

Первично олиголецитальные изолецитальные яйцеклетки дробятся полно и равномерно. В мезолецитальных яйцеклетках дробление полное, но неравномерное, так как в вегетативной части, где сосредоточен желток, дробление происходит медленнее, чем на анимальном полюсе, и неполно. В резко телолецитальных яйцеклетках дробление частичное - меробластическое. Например, у птиц дробится лишь часть яйцеклетки у анимального полюса". Для вторично олиголецитальных, изолецитальных яйцеклеток плацентарных млекопитающих и человека характерно полное, или г о лобластическо е, асинхронное, неравномерное дробление. Дробление происходит во время движения зиготы по яйцеводу, причем количество бластомеров нарастает в неправильном и притом у различных животных неодинаковом порядке (2, 3, 5, 10, 13, 17 и т. д.). В результате дробления образуется многоклеточный зародыш, сначала в форме плотного скопления клеток (мору ла), а затем в виде пузырька с небольшой полостью-бластоциста (бластула) (см. рис. 26).

Дробление зародышей требует соблюдения оптимальных условий среды (химический состав, осмотическое давление, температура, содержание кислорода и др.) Зародыши обладают высокой чувствительностью к химическим, физическим и другим повреждающим факторам, которые могут привести к мутациям.

Бластула ("blastula) имеет стенку - бластодерму и полость - бластоцель, заполненную жидкостью - продуктом секреции бластомеров. В бластодерме различают крышу, образовавшуюся за счет раздробившегося материала анимального полюса, дно - из материала вегетативного полюса и краевую зону, расположенную между ними.

При полном равномерном дроблении (например, ланцетника) бластула имеет однослойную бластодерму, а бластоцель находится в центре. Такая бластула называется целобластулой. В результате полного неравномерного дробления (минога, лягушка) образуется бластула с многослойной бластодермой и эксцентрично расположенным бластоцелем - амфибластула. Крыша такой бластулы, состоящая из мелких бластомеров, сравнительно тонкая,

Эмбриология I Эмбриоло́гия (греч. embryon утробный , зародыш + logos учение)

в узком смысле - наука о закономерностях образования и развития зародыша, в широком - наука об индивидуальном развитии организмов (см. Онтогенез). Различают эмбриологию животных и человека (собственно Э.) и эмбриологию растений (фитоэмбриологию). Э. животных и человека изучает различные этапы развития организма, в т.ч. предзародышевый, или прогенез ( , сперматогенез), (см. Половые клетки), эмбриональный (см. Зародыш), плодное развитие (см. Плод), а также период (у млекопитающих и человека). В зависимости задач и методов исследования различают общую эмбриологию, сравнительную эмбриологию (изучает развитие зародыша путем сопоставления развития различных видов животных), экспериментальную эмбриологию (изучает в условиях эксперимента - искусственного перемещения и изменения материала эмбриональных зачатков - для целенаправленного воздействия на него), популяционную эмбриологию, экологическую эмбриологию, а также эволюционную эмбриологию (исследует закономерности эволюционного изменения онтогенеза животных в процессе их филогенеза). В последние десятилетия на стыке Э. с цитологией, генетикой и молекулярной биологией возникла , изучающая причинные механизмы и движущие силы индивидуального развития (онтогенеза) животных и растений.

II Эмбриоло́гия ( + греч. logos учение, наука)

наука, изучающая закономерности образования зародыша и его развития.

Эмбриоло́гия сравни́тельная - направление в Э., изучающее развитие зародышей путем сопоставления развития представителей различных типов и классов животного мира.

Эмбриоло́гия эволюцио́нная - направление в Э., изучающее закономерности эволюционного изменения онтогенеза животных в ходе их филогенеза.

Эмбриоло́гия эксперимента́льная ( . физиология развития - устар.) - направление в Э., использующее методы искусственного перемещения и изменения материала эмбриональных зачатков в процессе развития организма.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Синонимы :

Смотреть что такое "Эмбриология" в других словарях:

    Эмбриология … Орфографический словарь-справочник

    - (от древнегреческого ἔμβρυον, зародыш, «эмбрион»; и λογία, логия) это наука, изучающая развитие зародыша. Зародышем называют любой организм на ранних стадиях развития до рождения или вылупления, или, в случае растений, до момента прорастания.… … Википедия

    Греч., от embryon, зародыш, и lego, говорю. Учение о зародышах. Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865. ЭМБРИОЛОГИЯ учение о развитии животных и растительных… … Словарь иностранных слов русского языка

    эмбриология - ЖИВОТНЫХ ЭМБРИОЛОГИЯ – наука о строении и закономерностях развития зародыша. ЭМБРИОЛОГИЯ РАСТЕНИЙ ЭМБРИОЛОГИЯ – отрасль науки, изучающая возникновение и развитие мужского и женского гаметофитов, процессы оплодотворения, развития зародыша и… … Общая эмбриология: Терминологический словарь

    - (от эмбрион и...логия), в узком смысле наука о зародышевом развитии, в широком наука об индивидуальном развитии организмов (онтогенезе). Э. животных и человека изучает предзародышевое развитие (оогенез и сперматогенез), оплодотворение,… … Биологический энциклопедический словарь

    Современная энциклопедия

    эмбриология - и, ж. embriologie f. Отдел биологии, изучающий развитие эмбрионов животных, в том числе и человека. Уш. 1940. || устар., перен. Зачаточное состояние чего л. БАС 1. Не зная эмбриологии науки, не зная судеб ее, трудно понять ее современное… … Исторический словарь галлицизмов русского языка

    Эмбриология - (от эмбрион и...логия), наука, изучающая предзародышевое развитие (образование половых клеток), оплодотворение и зародышевое развитие организма. Первые знания в области эмбриологии связывают с именами Гиппократа и Аристотеля. Создателем… … Иллюстрированный энциклопедический словарь

    - (от эмбрион и...логия) наука о предзародышевом развитии (образование половых клеток), оплодотворении, зародышевом и личиночном развитии организма. Выделяют эмбриологию животных и человека и эмбриологию растений. Различают общую, сравнительную,… … Большой Энциклопедический словарь

    ЭМБРИОЛОГИЯ, биологическая дисциплина, изучающая происхождение, развитие и функционирование эмбрионов, как животных, так и растительных. Эта дисциплина прослеживает все стадии процесса от оплодотворения ЯЙЦЕКЛЕТКИ (ЯЙЦА) до рождения (вылупления,… … Научно-технический энциклопедический словарь

    ЭМБРИОЛОГИЯ, эмбриологии, мн. нет, жен. Отдел биологии, изучающий развитие эмбрионов животных, в том числе человека. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Книги

  • Гистология и эмбриология органов полости рта и зубов. Учебное пособие , Гемонов Владимир Владимирович, Лаврова Эмилия Николаевна, Фалин Л. И.. Учебное пособие включает теоретическую часть по эмбриологии и гистологии органов полости рта и зубов, атлас, практикум, контрольно-обучающие материалы (примеры) сконтрольными вопросами,…