Электронный парамагнитный резонанс применение в медицине. Электронный парамагнитный резонанс

По спектрам ЭПР можно определить валентность парамагнитного иона, симметрию его окружения, что в сочетании с данными рентгеновского структурного анализа дает возможность определить положение парамагнитного иона в кристаллической решетке. Значение энергетических уровней парамагнитного иона позволяет сравнивать результаты ЭПР с данными оптических спектров и вычислять магнитные восприимчивости парамагнетиков.

Метод ЭПР позволяет определять природу и локализацию дефектов решетки, например центров окраски. В металлах и полупроводниках возможен также ЭПР, связанный с изменением ориентации спинов электронов проводимости. Метод ЭПР широко применяется в химии и биологии, где в процессе химических реакций или под действием ионизирующего излучения могут образовываться молекулы с незаполненной химической связью- свободные радикалы. Их g-фактор обычно близок к , а ширина линии ЭПР
мала. Из-за этих качеств один из наиболее устойчивых свободных радикалов (), у которогоg=2,0036, используется как стандарт при измерениях ЭПР. В биологии ЭПР изучаются ферменты, свободные радикалы в биологических системах и металлоорганических соединениях.

    1. Эпр в сильных магнитных полях

Подавляющее число экспериментальных исследований парамагнитного резонанса выполнено в магнитных полях, напряженность которых меньше 20 кэ. Между тем применение более сильных статических полей и переменных полей более высоких частот значительно расширило бы возможности метода ЭПР, увеличило бы даваемую им информацию. В ближайшем будущем станут доступными постоянные магнитные поля до 250 кэ и импульсные поля, измеряемые десятками миллионов эрстед. Это означает что зеемановские расщепления в постоянных полях будут достигать примерно 25
, а а в импульсных полях – величины еще на два порядка большей. Лоу при помощи спектрометра со сверхпроводящим магнитом проводил измерения ЭПР в поляхH 0 65 кэ. Прохоров с сотрудниками наблюдал сигналы ЭПР на длине волны =1,21мм .

Большую пользу сильные магнитные поля должны принести для излучения редкоземельных ионов в кристаллах, интервалы между штарковскими подуровнями которых имеют порядок 10-100
. Эффект ЭПР в обычных полях нередко отсутствует из-за того, что основной штарковский уровень оказывается синглетом, или потому, что переходы между зеемановскими подуровнями основного крамерсова дублеты запрещены. Эффект же благодаря переходам между различными штарковскими подровнями, вообще говоря, возможен. Далее, кристаллическое поле в редкоземельных кристаллах характеризуется большим числом параметров, для определения которых знанияg - тензора основного крамерсова дублета недостаточно.

Сильные магнитные поля могут быть использованы и для изучения ионов группы железа, в особенности, таких как

у которых имеются расщепления порядка 10100
.

В применении к обменно-связанным парам сильные магнитные поля позволят путем наблюдения эффекта, обусловленного переходами между уровнями с различными значениями результирующего спина S пары со спектроскопической точностью измерить параметр обменного взаимодействия J .

Парамагнитный резонанс в сильных магнитных полях будет обладать рядом особенностей. Эффекты насыщения намагниченности будут происходить при относительно высоких температурах. При не очень низких температурах поляризация ионных магнитных моментов будет настолько велика, что помимо внешнего магнитного поля в резонансные условия необходимо будет ввести поле внутреннее. Появится зависимость резонансных условий от формы образца.

Явления электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР) широко используются в современной физике, химии, биологии и медицине при исследовании процессов, протекающих с участием парамагнитных молекул и ядер. Кроме того, ядерный магнитный резонанс является физической основой наиболее мощного современного метода получения изображений органов и тканей человека - магнитно-резонансной томографии (МРТ).

Метод ЭПР приобрел большое значение в химии и биологии прежде всего благодаря способности обнаруживать и идентифицировать свободные радикалы в химических и биологических системах. При этом с высокой точностью определяются не только вид и концентрация свободных радикалов, но и кинетика биохимических реакций, протекающих с образованием свободных радикалов как в промежуточных, так и в конечных стадиях реакции.

Свободные радикалы в биологических системах

Известно, что в соответствии с принципом Паули в каждом квантовом состоянии молекулы может находиться не более двух электронов, спины которых должны быть противоположно ориентированы (скомпенсированы). Спин - это внутреннее свойство электрона, которое проявляется в наличии у него собственного механического момента J , т.е. электрон представляет собой как бы «закрученный» волчок. Для устойчивых молекул обычно характерно четное число электронов и каждая пара электронов на любом энергетическом уровне имеет противоположно направленные, или, как говорят, скомпенсированные (спаренные) спины.

Однако есть соединения, у которых число электронов нечетное и тогда у одного из валентных электронов спин не будет скомпенсирован. Такая же ситуация возникает и в том случае, если у стабильного соединения отнять либо, наоборот, добавить ему один электрон. Тогда спин одного из электронов тоже будет не скомпенсирован.

Молекула или ее часть, имеющая неспаренный электрон, называется свободным радикалом.

С точки зрения химии наличие в молекуле неспаренного электрона есть не что иное, как наличие у нее свободной валентности. Поэтому свободные радикалы очень активны в химическом отношении. Они легко вступают в химические связи с другими молекулами и химическими соединениями, что влияет на протекание многих процессов в биологических системах.

Наиболее важную роль в биологических системах играют следующие виды радикалов (радикал часто обозначается точкой над соответствующей химической группой):

  • свободные радикалы воды: ОН - гидроксильный, Н0 2 - перекисный, 0 2 - супероксид;
  • свободные радикалы органических молекул, образующиеся при действии ионизирующей и ультрафиолетовой радиации:

где е“ - сольватированный электрон, а образующийся радикал обозначен точкой сверху.

Эти свободные радикалы играют важную роль в возникновении радиационного повреждения тканей и органов, а также при УФ-ожогах;

  • свободные радикалы хинонов участвуют в окислительновосстановительных реакциях организма;
  • свободные радикалы липидов могут образовываться в определенных условиях при окислении их жирных кислот. Наличие свободных радикалов в липидах биологических мембран ведет к нарушению их проницаемости для ионов и других молекул, что приводит к развитию той или иной патологии в организме. Примером таких патологий может служить развитие УФ-эритемы кожи, световых ожогов глаз и др.

Основное физическое отличие свободных радикалов от других молекул состоит в том, что свободные радикалы парамагнитны, т.е. обладают собственным магнитным моментом, тогда как стабильные молекулы его не имеют, т.е. они диамагнитны. Именно это различие в магнитных свойствах и позволяет обнаруживать свободные радикалы среди диамагнитных молекул.

Основным физическим методом изучения свободных радикалов в биологических системах является электронный парамагнитный резонанс (ЭПР). Метод ЭПР получил большое распространение в биологии и медицине именно благодаря его способности определять наличие и вид свободных радикалов в биологических системах in vivo, исследовать кинетику биохимических реакций с их участием и др.

При этом очень важно, что метод этот неинвазивный, безвредный и позволяет исследовать процессы, протекающие в живых организмах, не внося никаких изменений в эти процессы.

Основы электронного парамагнитного резонанса и его применение к исследованию свободных радикалов. Ядерный магнитный резонанс. Химический сдвиг. Основы ЯМР-томографии.

Магнитный резонанс

Избирательное поглощение электромагнитных волн определенной частоты веществом в постоянном магнитном поле, обусловленное переориентацией магнитных моментов ядер, называют ядерным магнитным резонансом .

ЯМР можно наблюдать при выполнении условия (h = g я я В , где g я - ядерный множитель Ланде ) лишь для свободных атомных ядер. Экспериментальные значения резонансных частот ядер, находящихся в атомах и молекулах, не соответствуют условию. При этом происходит «химический сдвиг», который возникает в результате влияния локального (местного) магнитного поля, создаваемого внутри атома электронными токами, индуцированными внешним магнитным полем. В результате такого «диамагнитного эффекта» возникает дополнительное магнитное поле, индукция которого пропорциональна индукции внешнего магнитного поля, но противоположна ему по направлению. Поэтому полное эффективное магнитное поле, действующее на ядро, характеризуется индукцией В эф = (1 ) В , где  - постоянная экранирования, по порядку величины равная 10 -6 и зависящая от электронного окружения ядер.

Отсюда следует, что для данного типа ядер, находящихся в различных окружениях (разные молекулы или разные, не эквивалентные места одной и той же молекулы), резонанс наблюдается при различных частотах. Это и определяет химический сдвиг. Он зависит от природы химической связи, электронного строения молекул, концентрации данного вещества, типа растворителя, температуры и т. д.

Если два или несколько ядер в молекуле экранированы по-разному, т. е. ядра в молекуле занимают химически не эквивалентные положения, то они имеют различный химический сдвиг. Спектр ЯМР такой молекулы содержит столько резонансных линий, сколько химически не эквивалентных групп ядер данного типа в ней имеется. Интенсивность каждой линии пропорциональна числу ядер в данной группе.

В спектрах ЯМР различают два типа линий по их ширине. Спектры твердых тел имеют большую ширину, и эту об ласть применения ЯМР называют ЯМР широких линий. В жидкостях наблюда ют узкие линии, и это называют ЯМР высокого разрешения.

По химическому сдвигу, числу и положению спектральных линий можно установить структуру молекул.

Химики и биохимики широко используют метод ЯМР для исследования структуры от простейших молекул неорганических веществ до сложнейших молекул живых объектов. Одним из преимуществ этого ана­лиза является то, что он не разрушает объектов исследования.

Интроскопия – визуальное наблюдение предметов или процессов внутри оптических непрозрачных тел, в непрозрачных тел, в непрозрачных средах (веществах).

Достоинством метода ЯМР-томографии является его высокая чувствительность в изображении мягких тканей, а также высокая разрешающая способность, вплоть до долей миллиметра. В отличие от рентгеновской томографии ЯМР-томография позволяет получить изображение исследуемого объекта в любом сечении.

Магнитный резонанс - избирательное поглощение электромагнитных волн веществом, помещенным в магнитное поле.

В зависимости от типа частиц - носителей магнитного момента - различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР) .

ЭПР происходит в веществах, содержащих парамагнитные частицы: молекулы, атомы, ионы, радикалы, обладающие магнитным моментом, обусловленным электронами. Возникающее при этом явление Зеемана объясняют расщеплением электронных уровней. Наиболее распространен ЭПР на частицах с чисто спиновым магнитным моментом.

У словие резонансного поглощения энергии :

Магнитный резонанс наблюдается, если на частицу одновременно действуют постоянное поле индукции В рез и электромагнитное поле с частотой . Обнаружить резонансное поглощение можно двумя путями : либо при неизменной частоте плавно изменять магнитную индукцию, либо при неизменной магнитной индукции плавно изменять частоту. Технически более удобным оказывается первый вариант.

Форма и интенсивность спектральных линий, наблюдаемых в ЭПР, определяются взаимодействием магнитных моментов электронов, в частности спиновых, друг с другом, с решеткой твердо­го тела и т. п.

При электронном парамагнитном резонансе наряду с поглощением энергии и увеличением населенности верхних подуровней происходит и обратный процесс - безызлучательные переходы на нижние подуровни, энергия частицы передается решетке.

Процесс передачи энергии частиц решетке называют спин-ре шеточной релаксацией, он характеризуется временем .

Современная методика измерения ЭПР основывается на определении изменения какого-либо параметра системы, происходящего при поглощении электромагнитной энергии.

Прибор, используемый для этой цели называют ЭПР-спектро метром. Он состоит из следующих основных частей (рис. 25.5): 1 - электромагнит, создающий сильное однородное магнитное поле, индукция которого может плавно изменяться; 2 - генератор СВЧ-излучения электромагнитного поля; 3 - специальная «поглощающая ячейка», которая концентрирует падающее СВЧ-излучение на образце и позволяет обнаружить поглощение энергии образцом (объемный резонатор); 4 - электронная схема, обеспечивающая наблюдение или запись спектровЭПР; 5 - образец; 6 - осциллограф.

В современных ЭПР-спектрометрах используют частоту около 10 ГГц

Одно из медико-биологических применений метода ЭПР заключается в обнаружении и исследовании свободных радикалов. ЭПР широко используют для изучения фотохимических процессов, в частности фотосинтеза. Исследуют канцерогенную активность некоторых веществ. С санитарно-гигиенической целью метод ЭПР используют для определения концентрации радикалов в воздушной среде.

Электронный парамагнитный резонанс (ЭПР) - явление резонансного поглощения электромагнитного излучения парамагнитным веществом, помещенным в постоянное магнитное поле. Обусловлен квантовыми переходами между магнитными подуровнями парамагнитных атомов и ионов (эффект Зеемана). Спектры ЭПР наблюдаются, главным образом, в диапазоне сверхвысоких частот (СВЧ).

Метод электронного парамагнитного резонанса позволяет оценить эффекты, проявляющиеся в спектрах ЭПР из-за наличия локальных магнитных полей. В свою очередь локальные магнитные поля отражают картину магнитных взаимодействий в исследуемой системе. Таким образом, метод ЭПР спектроскопии позволяет исследовать как структуру парамагнитных частиц, так и взаимодействие парамагнитных частиц с окружением.

ЭПР спектрометр предназначен для регистрации спектров и измерения параметров спектров образцов парамагнитных веществ в жидкой, твердой или порошкообразной фазе. Он используется при реализации существующих и разработке новых методик исследований веществ методом ЭПР в различных областях науки, техники и здравоохранения: например, для исследования функциональных характеристик биологических жидкостей по спектрам введенных в них спиновых зондов в медицине; для обнаружения радикалов и определения их концентрации; в исследовании внутримолекулярной подвижности в материалах; в сельском хозяйстве; в геологии .

Базовым устройством анализатора является спектрометрический блок - спектрометр электронного парамагнитного резонанса (ЭПР спектрометр).

Анализатор обеспечивает возможность исследования образцов:

  • с регуляторами температур - системами термостатирования образца (в том числе, в диапазоне температур от -188 до +50 ºС и при температуре жидкого азота);
  • в кюветах, ампулах, капиллярах и трубках с использованием систем автоматической смены и дозирования образцов.

Особенности работы ЭПР спектрометра

Парамагнитный образец в специальной кювете (ампуле или капилляре) помещается внутрь рабочего резонатора, расположенного между полюсами электромагнита спектрометра. Электромагнитное СВЧ излучение постоянной частоты поступает в резонатор. Условие резонанса достигается путем линейного изменения напряженности магнитного поля. Для повышения чувствительности и разрешающей способности анализатора используется высокочастотная модуляция магнитного поля.

Когда индукция магнитного поля достигает величины, характерной для данного образца, происходит резонансное поглощение энергии этих колебаний. Преобразованное излучение далее поступает на детектор. После детектирования сигнал обрабатывается и подается на регистрирующее устройство. Высокочастотная модуляция и фазочувствительное детектирование преобразуют сигнал ЭПР в первую производную кривой поглощения, в виде которой и происходит регистрация спектров электронного парамагнитного резонанса. В этих условиях регистрируется и интегральная линия поглощения ЭПР. Пример регистрируемого спектра резонансного поглощения представлен на рисунке ниже.

ВВЕДЕНИЕ……………………………………………………………………….2

1.ПРИНЦИП МЕТОДА ЭПР…………………………………………………..3

1.1. История открытия метода ЭПР……………………………………………..3

1.2. Механический и магнитный моменты электрона…………………………4

1.3. Эффект Зеемана…………...............................................................................6

1.4. Основное уравнение резонанса……………………………………………8

2. ХРАКТЕРИСТИКА СПЕКТРОВ ЭПР ………………………………….10

2.1. Амплитуда сигнала, форма линии и ширина линии…………………….10

2.2. Сверхтонкая структура спектров ЭПР………………………………….16

……………………………………………………………..18

3.УСТРОЙСТВО РАДИОСПЕКТРОМЕТРА ЭПР……………………...22

4.ПРИМЕНЕНИЕ ЭПР В МЕДИКО-БИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ………………………………………………………….24

4.1.Сигналы ЭПР, наблюдаемые в биологических системах………………..24

4.2. Метод спиновых меток и зондов…………………………………………26

4.3. Метод спиновых ловушек………………………………………………...35

ЗАКЛЮЧЕНИЕ……………………………………………………………...39

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ………………………..40

ВВЕДЕНИЕ

Электронный парамагнитный резонанс (ЭПР, электронный спиновый резонанс), явление резонансного поглощения электромагнитного излучения парамагнитными частицами, помещенными в постоянное магнитное поле, обусловленное квантовыми переходами между магнитными подуровнями парамагнитных атомов и ионов (эффект Зеемана). Открыт Завойским Евгением Константиновичем в Казанском государственном университете в 1944 г.

В отсутствие постоянного магнитного поля Н магнитные моменты неспаренных электронов направлены произвольно, состояние системы таких частиц вырождено по энергии. При наложении поля Н проекции магнитных моментов на направление поля принимают определенные значения и вырождение снимается (эффект Зеемана), т. е. происходит расщепление уровня энергии электронов E 0 .

Так как на нижнем уровне число электронов больше в соответствии с распределением Больцмана, то преимущественно будет происходить резонансное поглощение энергии переменного магнитного поля (его магнитной составляющей).

Для непрерывного наблюдения поглощения энергии условия резонанса недостаточно, т.к. при воздействии электромагнитного излучения произойдет выравнивание заселенностей подуровней (эффект насыщения). Для поддержания больцмановского распределения заселенностей подуровней необходимы релаксационные процессы.

Основные параметры спектров ЭПР - интенсивность, форма и ширина резонансной линии , g-фактор, константы тонкой и сверхтонкой (СТС) структуры.

1.ПРИНЦИП МЕТОДА ЭПР

1.1.История открытия метода ЭПР

Метод электронного парамагнитного резонанаса (ЭПР, EPR – electron paramagnetic resonance , ESR – electron spin resonance ) является основным методом для изучения парамагнитных частиц. К парамагнитным частицам имеющим важное биологическое значение относятся два основных типа – это свободные радикалы и комплексы металлов переменной валентности (таких как Fe, Cu, Co, Ni, Mn).

Метод электронного парамагнитного резонанса был открыт в 1944 г. Е.К. Завойским при исследовании взаимодействия электромагнитного излучения микроволнового диапазона с солями металлов. Он заметил, что монокристалл CuCl2, помещенный в постоянное магнитное поле 40 Гаусс (4 мТл), может поглощать излучение с частотой около 133 Мгц.

Пионерами применения ЭПР в биологических исследованиях в СССР были Л.А. Блюменфельд и А.Э. Калмансон, которые начали изучать свободные радикалы белков, полученные под действием ионизирующего излучения.

Со временем, синтез стабильных нитроксильных радикалов существенно расширил область применения метода ЭПР в биологических и медицинских исследованиях. Сегодня этот метод является одним из широко используемых методов современной науки.

1.2. Механический и магнитный моменты электрона

В основе метода ЭПР лежит поглощение электромагнитного излучения радиодиапазона неспаренными электронами, находящимися в магнитном поле.

Хорошо известно, что электрон в атоме участвует в орбитальном и спиновом движении, которые можно охарактеризовать с помощью соответствующих механических и магнитных моментов. Так, орбитальный магнитный момент связан с механическим выражением

(1)

где -магнитный орбитальный момент, а -механический орбитальный момент. В свою очередь механический орбитальный момент может быть выражен через орбитальное квантовое число

(2)

Подставив выражение (1.2) в (1.1) получим, что

Величина является элементарным магнитным моментом и носит название –магнетон Бора для электрона. Она обозначается буквой β и равна 9,27·10–24 Дж/Тл.

Для спинового магнитного момента можно написать аналогичные выражения

(4)

(5)

(6)

где – спиновый магнитный момент, Ps – механический магнитный момент, а s –спиновое квантовое число. Важно отметить, что коэффициент пропорциональности между и Ps (e/m ) вдвое больше, чем для и Pl (e/2m ).

В итоге полный магнитный момент электрона, являющийся вектором, будет равен сумме векторов орбитального и спинового магнитных моментов

(7)

Поскольку абсолютные значения и могут сильно отличаться, то для удобства учета вклада орбитального и спинового магнитных моментов в суммарный магнитный момент электрона вводят коэффициент пропорциональности, показывающий долю каждого из моментов в полном магнитном моменте – величину g или g -фактор.

где Pj – полный механический момент электрона, равный Pl + Ps . g -Фактор равен единице при s = 0 (т.е. при отсутствии спинового движения) и равен двум, если орбитальный момент равен нулю ( l = 0). g -Фактор идентичен фактору спектроскопического расщепления Ланде и может быть выражен через полные квантовые числа S , P и J :

где (9)

Поскольку в большинстве случаев электронные орбитали сильно отличаются от сферических, то орбитальный магнитный момент дает относительно небольшой вклад в суммарный магнитный момент. Для упрощения вычислений этим вкладом можно пренебречь. Кроме того, если заменить спиновый механический момент его проекцией на выделенное направление (например, на направление магнитного поля), то мы получим следующее выражение:

(10)

где eh/4πm – магнетон Бора, а – магнитное квантовое число, являющееся проекцией спинового магнитного момента на выделенное направление и равное ±1/2.

1 .3. Эффект Зеемана

Рисунок 1 – Ориентация электронов во внешнем магнитном поле ( H ).

В отсутствие внешнего магнитного поля магнитные моменты электронов ориентированы случайным образом (рис.1 слева), и их энергия практически не отличается друг от друга (Е0). При наложении внешнего магнитного поля магнитные моменты электронов ориентируются в поле в зависимости от величины спинового магнитного момента (рис.1. справа), и их энергетический уровень расщепляется на два (рис.2).

Рисунок 2 – Расщепление энергетических уровней одиночных электронов в магнитном поле (эффект Зеемана).

Энергия взаимодействия магнитного момента электрона с магнитным полем выражается уравнением

(11)

где μ – суммарный магнитный момент электрона, Н – напряженность магнитного поля, а cos(μH) – косинус угла между векторами μ и Н.

В нашем случае энергия взаимодействия электрона с внешним магнитным полем составит величину

(12)

а разница в энергии между двумя уровнями составит

(13)

Таким образом энергетические уровни электронов, помещенных в магнитное поле, расщепляются в этом поле в зависимости от величины спинового магнитного момента и интенсивности магнитного поля (эффект Зеемана ) .

1.4.Основное уравнение резонанса

Количество электронов в изучаемой системе, имеющих ту или иную энергию, будет определяться в соответствии с распределением Больцмана, а именно

(14)

где и количество электронов на более высоком или более низком энергетическом уровне, соответствующем магнитному моменту электрона со спином +1/2 или –1/2.

Если на систему электронов, находящуюся в магнитном поле, падает электромагнитная волна, то при определенных значениях величины энергии падающих квантов будут происходить переходы электронов между уровнями.

Необходимое условие – равенство энергии падающего кванта (hν) и разности энергий между уровнями электронов с различными спинами (gβH).

ΔE = hν = gβH (15)

Это уравнение выражает основное условие поглощения энергии электронами и называется основным уравнением резонанса . Под влиянием излучения электроны, находящиеся на более высоком энергетическом уровне, будут испускать энергию и возвращаться на нижний уровень, это явление называется индуцированной эмиссией. Электроны же, находящиеся на нижнем уровне, будут поглощать энергию и переходить на более высокий

энергетический уровень, это явление называется резонансным поглощением . Поскольку вероятности одиночных переходов между энергетическими уровнями равны, а общая вероятность переходов пропорциональна количеству электронов, находящихся на данном энергетическом уровне, то поглощение энергии будет преобладать над ее излучением. Это связано с тем, что как следует из распределения Больцмана заселенность нижнего уровня выше заселенности верхнего энергетического уровня.

Следует помнить, что различие в уровнях энергии электрона в магнитном поле (а также и других заряженных частиц, обладающих спином, например, у протонов) связано с наличием у электрона собственного магнитного момента. У спаренных электронов магнитные моменты скомпенсированы, и они на внешнее магнитное поле не реагируют, поэтому обычные молекулы не дают сигналов ЭПР. Таким образом, ЭПР позволяет обнаруживать и изучать свойства свободных радикалов (имеющих неспаренный электрон на внешних орбиталях) и комплексов металлов переменной валентности (у которых неспаренный электрон принадлежит более глубоким электронным оболочкам). Эти две группы парамагнитных частиц часто называют парамагнитными центрами.

2.ХАРАКТЕРИСТИКА СПЕКТРОВ ЭПР

Метод ЭПР позволяет нам изучать свойства парамагнитных центров посредством спектров поглощения электромагнитного излучения этими частицами. Зная характеристики спектров можно судить и о свойствах парамагнитных частиц. К основным характеристикам спектров относятся амплитуда, ширина линии, форма линии, g -фактор и сверхтонкая структура спектров.

2.1. Амплитуда сигнала, форма линии и ширина линии

Амплитуда сигнала

Сигнал ЭПР представляет собой первую производную от спектра поглощения (рис. 3). Площадь под линией поглощения пропорциональна концентрации парамагнитных частиц в образце. Таким образом, концентрация парамагнитных центров пропорциональна первому интегралу под линией поглощения или второму интегралу от спектра ЭПР. Если два сигнала имеют одинаковую ширину, то концентрации парамагнитных центров соотносятся как амплитуды сигналов в спектрах поглощения.

Рисунок 3 - Сигнал ЭПР. Слева – зависимость поглощения СВЧ от напряженности магнитного поля (H); справа – первая производная этой зависимости. ЭПР-спектрометры регистрируют кривые второго типа.

Для определения концентрации измеряют площади под кривой поглощения у образца сравнения с известной концентрацией парамагнитных центров и у измеряемого образца и неизвестную концентрацию находят из пропорции, при условии, что оба образца имеют одинаковый объем:

(16)

где и – концентрации измеряемого образца и образца сравнения соответственно, а S x и S 0 – площади под линиями поглощения измеряемого сигнала и образца сравнения.

Для определения площади под линией поглощения неизвестного сигнала можно воспользоваться приемом численного интегрирования

(17)

где f "(H ) – первая производная линии поглощения (спектр ЭПР), F (H ) – функция линии поглощения, а H – напряженность магнитного поля.

(18)

Учитывая, что F (H ) . H в точках -∞ и ∞ равно нулю и dF (H ) равно f "(H ) dH , получим

(19)

где f "(H ) – первая производная от линии поглощения, или спектр ЭПР. От интеграла легко перейти к интегральной сумме, учитывая, что H = nΔH , получим

(20)

где Δ H – шаг изменения магнитного поля, а n i – номер шага. Таким образом, площадь под кривой поглощения будет равна произведению квадрата величины шага магнитного поля на сумму произведений амплитуды спектра ЭПР на номер шага. Из выражения (20) легко видеть, что при больших n (т.е. вдали от центра сигнала) вклад удаленных частей спектра может быть достаточно большим даже при малых значениях амплитуды сигнала.

Форма линии

Хотя согласно основному уравнению резонанса поглощение происходит только при равенстве энергии падающего кванта разности энергии между уровнями неспаренных электронов, спектр ЭПР является непрерывным в некоторой окрестности точки резонанса. Функция, описывающая сигнал ЭПР называется функцией формы линии. В разбавленных растворах, когда можно пренебречь взаимодействием между парамагнитными частицами, кривая поглощения описывается функцией Лоренца:

(21)

где – функция кривой поглощения в точке резонанса, – значение поля в точке резонанса,– ширина сигнала на половине высоты. Аналогичные обозначения используются для кривой поглощения, описываемой функцией Гаусса.

(22)

Функция Гаусса является огибающей спектра ЭПР если между парамагнитными частицами существует взаимодействие. Учитывать форму линии особенно важно при определении площади под кривой поглощения. Как видно из вышеприведенных формул у Лоренцевой линии более медленное убывание и соответственно более широкие крылья, что может давать значительную ошибку при интегрировании спектра.

Ширина линии

Ширина спектра ЭПР зависит от взаимодействия магнитного момента электрона с магнитными моментами окружающих ядер (решетки) (спин-решеточное взаимодействие) и электронов (спин-спиновое взаимодействие). В отсутствие этих взаимодействий энергия, поглощенная электронами, приводила бы к снижению разности заселенности уровней и прекращению поглощения.

Однако, в эксперименте изменения разности заселенности уровней не наблюдается благодаря тому, что существуют процессы, в которых поглощенная энергия передается окружению и электроны возвращаются на исходный уровень. Такие процессы называются процессами релаксации, они поддерживают постоянной разность заселенности энергетических уровней. Механизм релаксации заключается в передаче электромагнитной энергии кванта решетке или окружающим электронам и возвращении электрона на

низкоэнергетический уровень. Время, в течение которого электрон пребывает на высокоэнергетическом уровне, называется временем релаксации. Соответственно существует время спин-решеточной (Т 1) и спин-спиновой (Т 2) релаксации.

Одна из причин уширения полос поглощения в сигналах ЭПР кроется в волновых свойствах элементарных частиц, которые проявляются в существовании известного принципа соотношения неопределенностей Гейзенберга. Согласно этому принципу, чем точнее задано время наблюдения (чем меньше Δ t ), тем больше неопределенность в величине энергии частицы (:

(23)

Если принять, что Δ t это время релаксации T , а Δ Е соответствует g βΔ H , то мы получим, что

(24)

т.е. неопределенность в ширине линии обратно пропорциональна времени релаксации. Наблюдаемое время релаксации считают суммой времени спин-решеточной и спин-спиновой релаксации.

(25)

Свободные радикалы в растворах имеют Т1>> T 2, следовательно ширина линии будет зависеть в основном от Т2.

«Естественное» уширение сигнала ЭПР, зависящее от времени спин-решеточной и спин-спиновой релаксации – не единственный механизмам, влияющий на ширину линии c игнала. Важную роль играют также диполь-дипольное взаимодействие ; анизотропия g -фактора; динамическое уширение линии и спиновый обмен.

В основе диполь-дипольного взаимодействия лежит взаимодействие магнитного момента неспаренного электрона с локальным магнитным полем, создаваемым соседними электронами и ядрами. Напряженность магнитного поля в точке, где находится неспаренный электрон, зависит от взаимной ориентации магнитных моментов неспаренного электрона и другого электрона или ядра и расстояния между этими центрами. Изменение энергии неспаренного электрона определяется уравнением

(26)

где μ – магнитный момент электрона, θ – угол между взаимодействующими магнитными моментам R – расстояние между ними.

Вклад анизотропии g-фактора в уширение линии ЭПР связан с тем, что орбитальное движение электрона создает магнитное поле, с которым взаимодействует спиновый магнитный момент. Это создает сдвиг величины напряженности внешнего поля, при которой наблюдается резонанс, т.е. к сдвигу положения максимума сигнала ЭПР. В свою очередь, это проявляется в кажущемся отклонении g -фактора свободного электрона от значения 2,00. С другой стороны, влияние орбитального магнитного поля на электрон

зависит от ориентации молекулы по отношению к внешнему магнитному полю, что приводит к уширению сигнала ЭПР при измерении в системе, состоящей из множества хаотически ориентированных молекул.

Уширение сигнала ЭПР может быть связано также с взаимным превращением двух парамагнитных частиц. Так, если каждая из частиц имеет свой спектр ЭПР, то увеличение скорости взаимного превращения друг в друга будет приводить к уширению линий, т.к. при этом уменьшается время жизни радикала в каждом состоянии. Такое изменение ширины сигнала называется динамическим уширением сигнала.

Спиновый обмен является еще одной из причин уширения сигнала ЭПР. Механизм уширения сигнала при спиновом обмене заключается в изменении направления спинового магнитного момента электрона на противоположное при соударении с другим неспаренным электроном или иным парамагнетиком. Поскольку при таком соударении уменьшается время жизни электрона в данном состоянии, то опять-таки сигнал ЭПР уширяется. Наиболее частым случаем уширения линии ЭПР по механизму спинового обмена является уширение сигнала в присутствие кислорода или парамагнитных ионов металлов .

2.2 Сверхтонкая структура спектров ЭПР

В основе расщепления одиночной линии ЭПР на несколько лежит явление сверхтонкого взаимодействия , т. е. взаимодействия магнитных моментов неспаренных электронов () с магнитными моментами соседних ядер (

На рисунке 4 дано пояснение сверхтонкого взаимодействия. Неспаренный электрон в радикале может быть расположен близко к протону, например как в радикале этанола (1). В отсутствие влияния близлежащих протонов электрон имеет сигнал в форме одиночной линии (2). Однако протон также имеет магнитный момент, который ориентирован во внешнем магнитном поле ( H 0) в двух направлениях (по полю либо против поля) потому, что, подобно электрону, имеет спиновое число S = ½. Будучи маленьким магнитом, протон создает магнитное поле, которое в месте расположения электрона имеет определенные значения +Hp или –Hp в зависимости от ориентации протона (3). В результате суммарное магнитное поле, приложенное к неспаренному электрону (4), имеет значение, немного большее (+ Hp) или немного меньшее (– Hp), чем в отсутствии протона (). Поэтому сигнал ЭПР радикала состоит из двух полос, расстояние от которых до прежнего центра полосы равно Hp (5).

Рисунок 4- Сверхтонкое расщепление сигнала ЭПР в радикале этанола.

1 – радикал этанола. 2 – сигнал ЭПР электрона во внешнем поле. 3 – ориентация протонов во внешнем магнитном поле. 4 – увеличение или уменьшение поля, действующего на электрон в результате наложения магнитного поля протона ( H p) на внешнее магнитное поле. 5 – сигнал ЭПР радикала, в котором магнитное поле протона накладывается на внешнее магнитное поле.

В рассмотренном нами примере спин ядра, взаимодействующего с неспаренным электроном, был равен ± 1/2, что в конечном итоге дало нам расщепление на две линии. Такая величина спина характерна для протонов. У ядер атомов азота (N14) спин целочисленный . Он может принимать значения ±1 и 0. В этом случае при взаимодействии неспаренного электрона с ядром атома азота будет наблюдаться расщепление на три одинаковых линии, соответствующих величине спина +1, –1 и 0. В общем случае число

линий в спектре ЭПР равно 2 m N+1. (см. далее, рис.10)

Естественно, что количество неспаренных электронов и соответственно площадь под кривой поглощения ЭПР не зависят от величины спина ядра и являются постоянными величинами. Следовательно, при расщеплении одиночного сигнала ЭПР на два или три, интенсивность каждой компоненты будет соответственно в 2 или 3 раза ниже.

Очень похожая картина возникает, если неспаренный электрон взаимодействует не с одним, а с несколькими эквивалентными (с одинаковой константой сверхтонкого взаимодействия) ядрами, имеющими магнитный момент отличный от нуля, например двумя протонами. В этом случае возникает три состояния, соответствующие ориентации спинов протонов: (а) оба по полю, (б) оба против поля и (в) один по полю и один против поля. Вариант (в) имеет вдвое большую вероятность, чем (а) или (б), т.к. может быть осуществлен двумя способами. В результате такого распределения неспаренных электронов одиночная линия расщепится на три с соотношением интенсивностей 1:2:1. В общем случае, для n эквивалентных ядер со спином mN число линий равно n 2 m N +1.

2.3. Свойства атомов с магнитными ядрами, константы, СТВ неспаренного электрона с ядром

Атом

Массовое число

Ядерный спин

а x 10- 4 Тл

99,98

7,52

54,29

92,48

143,37

316,11

93,26

82,38

72,15

361,07

27,85

1219,25

819,84

В -электронных системах (большинство органических свободных радикалов) спиновая плотность в точке ядра равна нулю (узловая точка р-орбитали) и реализуются два механизма возникновения СТВ (спинового переноса): конфигурационное взаимодействие и эффект сверхсопряжения. Механизм конфигурационного взаимодействия иллюстрируется рассмотрением СН-фрагмента (рис. 5). Когда на р-орбитали появляется неспаренный электрон , его магнитное поле взаимодействует с парой электронов -связи С — Н так, что происходит их частичное распаривание (спиновая поляризация), в результате чего на протоне появляется отрицательная спиновая плотность , поскольку энергии взаимодействия спинов и различны. Состояние, указанное на рис. 5, а, более устойчиво, так как для углеродного атома , несущего неспаренный электрон , в соответствии с правилом Хунда реализуется максимальная мультиплетность . Для систем этого типа существует связь между константой СТВ с протоном и спиновой плотностью на соответствующем углеродном атоме , определяемая соотношением Мак-Коннела: где Q = -28 x 10 -4 Тл, - спиновая плотность на атоме углерода . Спиновый перенос по механизму конфигурационного взаимодействия реализуется для ароматических протонов и -протонов в органических свободных радикалах.

Рисунок 5 - Возможные спиновые конфигурации для -орбитали, связывающей атом водорода во фрагменте С — Н, и р-орбитали атома углерода со спином а - спины на связывающей -орбитали и р-орбитали атома углерода параллельны, б - те же спины антипараллельны.

Эффект сверхсопряжения заключается в непосредственном перекрывании орбиталей неспаренного электрона и магнитных ядер. В частности, в алкильных радикалах СТВ по этому механизму возникает на ядрах -протонов. Например, в этильном радикале на -протонах СТВ определяется конфигурационным взаимодействием, а на -протонах - сверхсопряжением. Эквивалентность СТВ с тремя протонами метильной группы в рассматриваемом случае обусловлена быстрым вращением группы СН 3 относительно связи С — С. В отсутствие свободного вращения (или в случае затрудненного вращения), что реализуется в жидкой фазе для множества систем с разветвленными алкильными заместителями или в монокристаллических образцах, константа СТВ с -протонами определяется выражением , где - двугранный угол между 2р z -орбиталью -углеродного атома и связью СН, В 0 4 x 10 -4 Тл определяет вклад спиновой поляризации по ядерному остову (конфигурационное взаимодействие), B 2 45 x 10 -4 Тл. В пределе быстрого вращения а н = 2,65 x 10- 3 Тл. В спектроскопии ЭПР триплетных состояний (S=1) помимо электрон-ядерных взаимодействий (СТВ) необходимо учитывать взаимодействие неспаренных электронов друг с другом. Оно определяется диполь-дипольным взаимодействием, усредняемым до нуля в жидкой фазе и описываемым параметрами нулевого расщепления D и E, зависящими от расстояния между неспасенными электронами (радикальные пары), а также обменным взаимодействием (изотропным), обусловленным непосредственным перекрыванием орбиталей неспаренных электронов (спиновый обмен), которое описывается обменным интегралом J обм . Для бирадикалов , в которых каждый из радикальных центров имеет одно магнитное ядро с константой СТВ на этом ядре а, в случае быстрого (сильного) обмена J обм а, и каждый неспаренный электрон бирадикальной системы взаимодействует с магнитными ядрами обоих радикальных центров. При слабом обмене (J обм а) регистрируются спектры ЭПР каждого радикального центра независимо, то есть фиксируется "монорадикальная" картина. Зависимость J обм от т-ры и растворителя позволяет получить динамические характеристики бирадикальной системы (частоту и энергетический барьер спинового обмена) .

  1. УСТРОЙСТВО РАДИОСПЕКТРОМЕТРА ЭПР

Устройство радиоспектрометра ЭПР лишь весьма отдаленно напоминает устройство спектрофотометра для измерения оптического поглощения в видимой и ультрафиолетовой частях спектра (рис. 6).

Рисунок 6 – Устройство ЭПР спектрометра.

Источником излучения в радиоспектрометре является клистрон, представляющий из себя радиолампу, дающую монохроматическое излучение в диапазоне сантиметровых волн.

Роль диафрагмы в радиоспектрометре выполняет аттенюатор, позволяющий дозировать мощность, падающую на образец. Кювета с образцом в радиоспектрометре находится в специальном блоке, называемом резонатором. Резонатор представляет собой изготовленный из металла полый параллелепипед, полость которого имеет цилиндрическую или прямоугольную форму. В ней находится поглощающий образец. Размеры резонатора таковы, что входящее излучение образует в нем стоячую электромагнитную волну. Элементом, полностью отсутствующим в оптическом спектрометре, является электромагнит, создающий постоянное магнитное поле, необходимое для расщепления энергетических уровней электронов. Излучение, прошедшее измеряемый образец, попадает на детектор, затем сигнал детектора усиливается и регистрируется на самописце или компьютере. Своеобразие конструкции радиоспектрометра заключается в том, что излучение радиодиапазона передается от источника к образцу и далее к детектору с помощью специальных трубок прямоугольного сечения, служащих волноводами. Размеры сечения волноводов определяются длиной волны передаваемого излучения. Эта особенность передачи радиоизлучения по волноводам и определяет тот факт, что для регистрации спектра ЭПР в радиоспектрометре используется постоянная частота излучения, а условие резонанса достигается изменением величины магнитного поля.

Еще одной важной особенностью радиоспектрометра является то, что этот прибор измеряет не поглощение (A) электромагнитных (свч) волн, а первую производную поглощения по напряженности магнитного поля dA/dH. Дело в том, что для измерения поглощения нужно сравнивать интенсивности прошедшего излучения у измеряемого и контрольного объекта (скажем, пустой кюветы), а при измерении первой производной контрольный объект не нужен. При изменении магнитного поля интенсивность свч волн, прошедших через пустое пространство или непоглощающий объект, не изменяется и первая производная поглощения равна нулю. Если же свч волны проходят через объект с парамагнитными центрами, то поглощение имеет место, а его величина зависит от напряженности магнитного поля. Изменяем поле и изменяется поглощение, что проявляется в изменении интенсивности измеряемого свч колебания. Именно это изменение интенсивности измеряемого свч при небольшой модуляции магнитного поля около заданной его величины позволяет определять dA/dH в каждой точке H, получая тем самым спектры, или сигналы ЭПР .

  1. ПРИМЕНЕНИЕ ЭПР В МЕДИКО-БИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ
  1. Сигналы ЭПР, наблюдаемые в биологических системах

Применение метода ЭПР в биологических исследованиях связано с изучением двух основных видов парамагнитных центров – свободных радикалов и ионов металлов переменной валентности. Изучение свободных радикалов в биологических системах связано с трудностью, заключающейся в низкой концентрации свободных радикалов, образующихся при жизнедеятельности клеток. Концентрация радикалов в нормально метаболизирующих клетках составляет по разным источникам примерно М, в то время как современные радиоспектрометры позволяют измерять концентрации радикалов М. Повысить концентрацию свободных радикалов можно затормозив их гибель или повысив скорость их образования. В условиях эксперимента образование

радикалов легче всего наблюдать при облучении биологических объектов при очень низкой температуре (скажем 77К) в ходе их облучения УФ или ионизирующей радиацией. Изучение структуры радикалов более или менее сложных биологически важных молекул, полученных в таких условиях, и было одним из первых направлений применения метода ЭПР в биологических исследованиях (рис.7). Вторым направлением применения метода ЭПР в биологических исследованиях было изучение металлов переменной валентности и/или их комплексов, существующих in vivo . Из-за коротких времен релаксации сигналы ЭПР металлопротеинов тоже можно наблюдать только при низкой температуре, например, температуре жидкого азота или даже гелия.

Рисунок 7 - Спектры ЭПР УФ-облученного цистеина при температуре жидкого азота (77 К) и обычной температуре (300 К).

В качестве примера на рис. 8 дан спектр ЭПР печени крысы. На нем можно увидеть сигналы цитохрома Р-450, имеющие g -фактор 1,94 и 2,25, сигнал метгемоглобина с g - фактором 4,3 и сигнал свободных радикалов, принадлежащий семихинонным радикалам аскорбиновой кислоты и флавинов с g -фактором 2,00.

Рисунок 8 - Спектр ЭПР печени крысы.

Впрочем, сигналы ЭПР некоторых радикалов можно наблюдать и при комнатной температуре. К таким сигналам относятся сигналы ЭПР многих семихинонных или феноксильных радикалов, таких как семихинонный радикал убихинона, феноксильный и семихинонный радикал α-токоферола (витамина Е), витамина D, и многие другие (рис.9).

Рисунок 9 - Сигналы ЭПР семихинонных и феноксильных радикалов.

  1. Метод спиновых меток и зондов

Важным этапом в развитии применения метода ЭПР в биологических исследованиях стал синтез стабильных свободных радикалов. Среди таких радикалов наибольшую популярность получили нитроксильные радикалы.

Стабильность нитроксильных радикалов обусловлена пространственным экранированием группы N–O . , имеющей неспаренный электрон, четырьмя метильными группами, препятствующими протеканию реакции с участием свободной валентности. Однако, такая экранировка не является абсолютной и реакция восстановления свободной валентности все-таки может происходить. Аскорбиновая кислота, например, является хорошим восстановителем нитроксильных радикалов.

Спектр ЭПР нитроксильных радикалов обычно состоит из трех линий равной интенсивности, благодаря взаимодействию неспаренного электрона с ядром атома азота (рис.10).

Рисунок 10 - Формула и спектр ЭПР нитроксильного радикала 2,2,6,6-

тетраметил-пиперидин-1-оксил (ТЕМПО).

Оставим в стороне непростую теорию, объясняющую зависимость формы сигнала ЭПР от подвижности зонда и ограничимся весьма схематическим изложением того, что наблюдается в опытах. Если нитроксильный радикал находится в водном растворе, то его вращение является изотропным и достаточно быстрым, при этом наблюдается сигнал ЭПР, состоящий из трех узких симметричных линий (рис. 11, вверху). При уменьшении скорости вращения наблюдается уширение линий и изменению амплитуды компонент спектра (рис. 11, в середине). Дальнейшее увеличение вязкости среды приводит к еще большему изменению сигнала ЭПР спинового зонда (рис. 11, внизу).

Для количественного описания вращательного движения радикала используют понятие времени вращательной корреляции (τс). Оно равно времени поворота нитроксильного радикала на угол π/2. На основании анализа сигнала ЭПР время корреляции можно оценить, используя эмпирическое уравнение

(27)

Где Δ– ширина полосы спектра ЭПР при низком значении поля, а и –интенсивность высокопольной и низкопольной компоненты спектра ЭПР. Это уравнение можно использовать при времени корреляции от 5·до с.

Синтез стабильных нитроксильных радикалов семейства ТЕМПО был важным этапом в использовании метода ЭПР для изучения внутренней вязкости биологических мембран и белков решению медико-биологических задач.

Рисунок 11 - Спектр ЭПР ТЕМПО при разных временах вращательной корреляции τс (цифры слева от спектров ).

Однако производные ТЕМПО, имеют, к сожалению, один существенный недостаток - вследствие их амфифильности трудно бывает определить локализацию этого зонда и таким образом ответить на вопрос, где мы, собственно говоря, определяем микровязкость. Эта проблема была практически решена, когда появились так называемые «жирнокислотные спиновые зонды», т.е. соединения, в которых молекула нитроксильного радикала была ковалентно присоединена к молекуле жирной кислоты. В этом случае спектр ЭПР несомненно отражает свойства именно гидрофобной (липидной) фазы изучаемой системы, куда встаивается зонд. На рисунке 12 приведено схематическое строение молекулы жирнокислотного спинового зонда, 5-доксилстеарата, в которой нитроксильный радикал (доксил, соединение родственное ТЕМПО по структуре) присоединен к 5 атому углерода молекулы стеариновой кислоты. Характеристикой движения такого зонда служит величина, называемая параметром упорядоченности S , который характеризует степень асимметрии вращания зонда относительно продольной и поперечной осей его молекулы. Найти параметр упорядоченности можно из характеристик спектра ЭПР по эмпирическому уравнению

(28)

где A|| и A ⊥ – параметры, указанные на рисунке. Теоретически, параметр упорядоченности может изменяться от 0 до 1, с изменением вязкости и структурированности мембраны. При совершенно симметричном вращении, когда скорость вращения вокруг трех осей одинакова (что характерно для сферических частиц в изотропной среде), параметр упорядоченности равен нулю. Параметр упорядоченности равен 1, если ось вращения зонда совпадает с нормалью к мембране, а вращение относительно иных осей полностью отсутствует. При низких температурах или в мембранах из синтетических насыщенных фосфолипидов, вращение зонд вращается преимущественнол вокруг длинной оси молекулы, ориетированной поперек мембраны. При этом параметр упорядоченности имеет высокие значсения. При уменьшении вязкости мембраны значение параметра упорядоченности уменьшается.

Рисунок 12 – Химическая формула и спектр ЭПР 5 – доксилстеарата.

Очень ценным качеством спиновых зондов, содержащих жирную кислоту, является возможность измерения с их помощью параметра упорядоченности на разном расстоянии от поверхности мембраны, так называемого профиля упорядоченности или профиля вязкости. Для этого используют набор спиновых зондов, которые представляют собой молекулы одной и той же жирной кислоты, которые содержат нитроксильный фрагмент на разном расстоянии от карбоксильной группы. Например, используются спиновые зонды с нитроксильным радикалом у 5, 7, 12 и 16 атома углерода стеариновой кислоты. Набор этих соединений позволяет измерять параметр S на расстоянии 3,5, 5, 8,5 и 10,5 ангстрем от поверхности мембраны (рис.13).

Рисунок 13- Изменение сигнала ЭПР при удалении нитроксильного радикала от полярной карбоксильной группы жирной кислоты.

Обычно спектры ЭПР спинового зонда, включенного в мембрану, и зонда, находящегося в окружающем водном растворе, могут существенно различаться. Это свойство было использовано для создания нового класса спиновых зондов, позволяющих измерять межфазный потенциал мембраны (часто называемый поверхностным потенциалом). Для измерения этого потенциала измеряют коэффициент распределения вода/мембрана нейтрального и заряженного зондов. Поскольку заряженный зонд взаимодействует с зарядами, расположенными на поверхности мембраны, то его коэффициент распределения будет отличаться от такового у нейтрального зонда. Отношение коэффициентов распределения служит мерой поверхностного потенциала изучаемой мембраны. Химическая формула спинового зонда, используемого для измерения поверхностного потенциала приведена на рис.14 .

Рисунок 14 - Химическая формула заряженного спинового зонда.

Еще одним важным применением метода спинового зонда является измерение рН в микрообъемах, например, внутри лизосом или фагосом клеток. Для этих целей применяют специальные рН-чувствительные спиновые зонды (рис. 15). В основе метода рН-метрии с применением спиновых зондов лежит способность зонда давать разные спектры ЭПР в

протонированной и депротонированной формах. Таким образом, в зависимости от рК спинового зонда, существует некоторый диапазон рН в котором и происходит его протонирование и соответствующее изменение спектра ЭПР (рис.16).

Рисунок 15 - Химические формулы рН-чувствительного спинового зонда.

Рисунок 16 - Спектры ЭПР и и зависимость концентрации депротонированного рН- чувствительного спинового зонда от рН

Все о чем до сих пор говорилось в данном разделе касалось метода спиновых зондов . Однако не менее интересным является и метод спиновых меток . В основе метода спиновых меток лежит тот же принцип изменения спектра ЭПР нитроксильного радикала в зависимости от скорости и изотропности его вращения. Отличием же метода является тот факт, что спиновая метка ковалентно связывается с другой более или менее крупной

молекулой.

Одним из первых и удачных применений метода спиновой метки было измерение количества и доступности SH-групп белков (рис.17). Химическая формула и спектр ЭПР спиновой метки, взаимодействующей с сульфгидрильными группами, в свободном состоянии и после присоединения к белку приведены на рис.18.

Рисунок 17 - Схема взаимодействия спинового зонда с тиоловой группой белка.

Из рисунка можно видеть, что спектры ЭПР спиновой метки в свободном и связанном состоянии сильно отличаются, что связано с различием в скорости и направлении вращения. Естественно, что связанная спиновая метка имеет значительно более низкую скорость вращения, чем в свободном виде. Более того, количество связанных спиновых меток и соответственно интенсивность сигнала ЭПР пропорциональны количеству

прореагировавших со спиновой меткой сульфгидрильных групп, что позволяет определять не только подвижность зонда, но и его количество.

Рисунок 18 - Химическая формула спиновой метки для SH-групп и спектры ЭПР иммобилизованной (1), связанной (2) и свободной (3) спиновой метки.

В настоящее время существует множество методических приемов, позволяющих изучать топографию белковой глобулы с использованием спиновых меток. Поскольку многие ионы металлов переменной валентности являются парамагнетиками и кроме того могут находиться в активном центре фермента, то взаимодействие спиновой метки, прикрепленной, например, к остатку цистеина или гистидина белковой глобулы, с ионом металла будет приводить к уширению спектра ЭПР в результате диполь-дипольного взаимодействия парамагнетиков .

  1. Метод спиновых ловушек

Появление нитроксильных радикалов оказалось решающим событием в решении проблемы обнаружения и исследования свободных радикалов, образующихся в живых системах. Обнаружение радикалов оказалось возможным благодаря появлению метода

спиновых ловушек. Суть метода заключается в том, что некоторое соединение, не являющееся нитроксильным радикалом, но имеющее структуру близкую к нитроксильному радикалу (спиновая ловушка ), взаимодействует со свободным, короткоживущим радикалом и превращается в долгоживущий нитроксильный радикал (спиновый аддукт ), спектр ЭПР которого, уникален для данного радикала или семейства радикалов.

По химической природе спиновые ловушки можно отнести к двум основным классам – это нитроны и нитрозосоединения. К нитронам относятся две наиболее популярные спиновые ловушки – С-фенил-N-трет-бутил нитрон (ФБН) и 5,5-диметил-пирролин-1- оксил (ДМПО). Реакция взаимодействия ФБН с радикалом выглядит следующим образом:

Стабильность образующегося нитроксильного радикала ФБН (спинового аддукта ) объясняется тем, что атом кислорода, на котором локализован неспаренный электрон, пространственно экранирован тремя метильными группами. Спиновый аддукт радикала обладает уникальным спектром ЭПР (см. рис.19). При этом форма спектров ЭПР спиновых аддуктов зависит от природы присоединившегося свободного радикала. Таким образом удается проводить исследование свободнорадикальных реакций в биологических объектах методом ЭПР при физиологических температурах.

Рисунок 19 - Спектр ЭПР спинового аддукта и значения констант сверхтонкого расщепления для некоторых радикалов.

aH и aN – константы сверхтонкого расщепления на протоне и атоме азота соответственно

Рисунок 20 – Схема реакции ловушки ДМПО и ОН радикала.

На рис. 20 показана реакция другой спиновой ловушки, ДМПО с гидроксильным радикалом и образование спинового аддукта этого радикала. Опять-таки, измеряя константы сверхтонкого расщепления спектра спинового аддукта можно идентифицировать короткоживущий радикал .

Метод спиновых ловушек занимает одно из важнейших мест в медико-биологических исследованиях, т.к. позволяет обнаруживать и идентифицировать радикалы, образующиеся в живых клетках и тканях. Среди таких радикалов следует отметить супероксидный и гидроксильный радикалы, а также оксид азота. Кроме того, применение метода спиновых ловушек дает возможность иучать антиоксидантные свойства веществ и величину антиоксидантного резерва .

ЗАКЛЮЧЕНИЕ

Метод электронного парамагнитного резонанса (ЭПР) основан на взаимодействии вещества с магнитным полем. Как следует из названия метода, он применяется для исследования парамагнитных частиц.

Известно, что при помещении парамагнетиков в магнитное поле, парамагнетик втягивается в это поле. Это связано с наличием у парамагнетиков магнитных моментов.Магнитные моменты создаются неспаренными электронами.

Примерами парамагнитных частиц, представляющих интерес для биологов, служат свободные радикалы, являющиеся промежуточными продуктами биохимических реакций, ионы металлов переменной валентности, таких как железо, медь, марганец и др.

Проявление магнитного момента у электрона связано с тем, что электрон является заряженной частицей, и при вращении электрона вокруг своей оси (спиновое движение) возникает магнитное поле, направленное вдоль оси вращения. При помещении парамагнитного образца в магнитное поле магнитные моменты неспаренных электронов ориентируются в этом

поле, подобно тому, как это происходит с магнитными стрелками.

Магнитный момент неспаренного электрона во внешнем магнитном поле может ориентироваться двумя способами - по полю и против поля. Таким образом, если в исследуемой системе имеются неспаренные электроны, наложение внешнего магнитного поля приводит к разделению электронов по группам: магнитные моменты одних электронов ориентированы по полю, других – против.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  1. Д. Ингрэм Электронный парамагнитный резонанс в биологии [Текст]. Изд-во «Мир», 1972.
  2. Свободные радикалы в биологических системах [Текст]. т.1, ст.88-175, 178-226. Изд-во «Мир», 1979.

3. Дж. Вертц и Дж. Болтон, Теория и практические приложения метода ЭПР [Текст], Москва: Мир,1975.

4. Современные методы биофизических исследований [Текст]. Практикум по биофизике, под редакцией А.Б. Рубина, Москва: Высшая школа, 1988.

5. Метод спиновых меток [Текст]. Теория и применение, под редакцией Л. Берлинера, Москва: Мир, 1979.

6. А.Н. Кузнецов, Метод спинового зонда, Москва [Текст]: Наука, 1976.

7. В.Е. Зубарев, Метод спиновых ловушек, Москва [Текст]: Издательство МГУ, 1984.

PAGE \* MERGEFORMAT 1