Электромагнитные поля (эмп) и излучения. Излучение и спектры

ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ (ЭМП) И ИЗЛУЧЕНИЯ

Спектр электромагнитных излучений

Земля с момента начала своего существования подвергалась воздействию электромагнитного излучения Солнца и Космоса. В процессе этого воздействия происходят сложные, взаимосвязанные явления в магнитосфере и атмосфере Земли, влияющие самым непосредственным образом на живые организмы биосферы и среду обитания.

В процессе эволюции живые организмы адаптировались к естественному фону ЭМП. Однако вследствие научно-технического прогресса электромагнитный фон Земли в настоящее время не только увеличивается, но и претерпевает качественные изменения. Появились электромагнитные излучения таких длин волн, которые имеют искусственное происхождение в результате техногенной деятельности.

К основным источникам ЭМП антропогенного происхождения относятся телевизионные и радиолокационные станции, мощные радиотехнические объекты, промышленное технологическое оборудование, высоковольтные ЛЭП промышленной частоты, термические цеха, плазменные, лазерные и рентгеновские установки, атомные и ядерные реакторы.

Спектральная интенсивность некоторых техногенных источников ЭМП может существенным образом отличаться от эволюционно сложившегося естественного электромагнитного фона, к которому привык человек и другие живые организмы.

Электромагнитное поле представляет собой совокупность двух взаимосвязанных полей: электрического и магнитного.

Характерная особенность электрического поля состоит в том, что оно действует на электрический заряд (заряженную частицу) с силой, которая не зависит от скорости движения заряда.

Характерная особенность магнитного поля (МП) в том, что оно действует на движущиеся электрические заряды с силами, пропорциональными скоростям зарядов и направленными перпендикулярно этим скоростям.

Электромагнитными волнами называются возмущения электромагнитного поля (т. е. переменное электромагнитное поле), распространяющиеся в пространстве.

Скорость распространения электромагнитных волн в вакууме совпадает со скоростью света в вакууме.

Спектр электромагнитных излучений, освоенный человечеством в настоящее время, представляется необычно широким: от нескольких тысяч метров до -12 см.

В настоящее время известно, что радиоволны, свет, инфракрасные и ультрафиолетовые излучения, рентгеновские лучи и - излучения - все это волны одной электромагнитной природы, отличающиеся длиной волны. Существуют определенные области электромагнитного спектра, в которых генерация и регистрация волн затруднена. Длинноволновый и коротковолновый концы спектра определены не очень строго. Шкала электромагнитных излучений представлена на рис. 7.1.

№ 1 - 11 - поддиапазоны, установленные международным консультативным комитетом радиосвязи (МККР). По решению этого комитета поддиапазоны 5 - 11 относятся к радиоволнам. По регламенту МККР к СВЧ-диапазону отнесены волны с частотами ГГц. Однако исторически сложилось под СВЧ-диапазоном понимать колебания с длиной волны от 1 м до 1 мм. Поддиапазоны № 1 - 4 характеризуют электромагнитные поля промышленных частот.

Под оптическим диапазоном в радиофизике, оптике, квантовой электронике понимается диапазон длин волн приблизительно от субмиллиметрового до дальнего ультрафиолетового. Видимый диапазон составляет небольшую часть оптического. Границы переходов ультрафиолетового излучения, рентгеновского, -излучений точно не фиксированы, но приблизительно соответствуют указанным на схеме значениям и; -излучение переходит в излучение очень больших энергий, называемое космическими лучами.

Несмотря на единую электромагнитную природу любой из диапазонов электромагнитных колебаний отличается своей техникой генерации и измерений.

Электромагнитный спектр

Электромагни́тный спектр - совокупность всех диапазонов частот электромагнитного излучения .

Длина волны - частота - энергия фотона

В качестве спектральной характеристики электромагнитного излучения используют следующие величины :

  • Частоту колебаний - шкала частот приведена в отдельной статье;
  • Энергию фотона (кванта электромагнитного поля).

Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Зеркал и линз для γ-лучей не существует.

Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

Рентгеновское излучение

  • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) - жёсткое рентгеновское излучение . Источники: некоторые ядерные реакции , электронно-лучевые трубки .
  • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) - мягкое рентгеновское излучение . Источники: электронно-лучевые трубки, тепловое излучение плазмы.

Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа.

Ультрафиолетовое излучение

Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 - 300 3,10 - 4,13 эВ
Средний MUV 300 - 200 4,13 - 6,20 эВ
Дальний FUV 200 - 122 6,20 - 10,2 эВ
Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
Вакуумный VUV 200 - 10 6,20 - 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 - 315 3,10 - 3,94 эВ
Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 - 100 4,43 - 12,4 эВ

Оптическое излучение

Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

  • от 30 ГГц до 300 ГГц - микроволны .
  • от 3 ГГц до 30 ГГц - сантиметровые волны (СВЧ) .
  • от 300 МГц до 3 ГГц - дециметровые волны .
  • от 30 МГц до 300 МГц - метровые волны.
  • от 3 МГц до 30 МГц - короткие волны .
  • от 300 кГц до 3 МГц - средние волны .
  • от 30 кГц до 300 кГц - длинные волны .
  • от 3 кГц до 30 кГц - сверхдлинные (мириаметровые) волны .

В отличие от оптического диапазона, исследование спектра в радиодиапазоне проводится не физическим разделением волн, а методами обработки сигналов .

См. также


Wikimedia Foundation . 2010 .

  • Толковый англо-русский словарь по нанотехнологии. - М. - кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Спектр частот электромагнитного импульса… … Морской словарь
  • Электромагнитный импульс ядерного взрыва - кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве с атомами окружающей среды. Спектр частей Э.м.и. соответствует диапазону… … Гражданская защита. Понятийно-терминологический словарь

    Солнечный свет после прохождения через треугольную стеклянную призму Спектр (лат. spectrum от лат. spectare смотреть) в физике распределение значений физической величины (обычно энергии, частоты или массы), а также графическое представление… … Википедия

    Кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Спектр частот И.э.м. выводит из строя или… … Словарь черезвычайных ситуаций

Приведена в отдельной статье;

  • Энергию фотона (кванта электромагнитного поля).
  • Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако, согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики - γ-оптики .

    Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

    Рентгеновское излучение

    • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) - жёсткое рентгеновское излучение . Источники: некоторые ядерные реакции , электронно-лучевые трубки .
    • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) - мягкое рентгеновское излучение . Источники: электронно-лучевые трубки, тепловое излучение плазмы.

    Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

    В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа.

    Ультрафиолетовое излучение

    Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

    Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
    Ближний NUV 400 - 300 3,10 - 4,13 эВ
    Средний MUV 300 - 200 4,13 - 6,20 эВ
    Дальний FUV 200 - 122 6,20 - 10,2 эВ
    Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
    Вакуумный VUV 200 - 10 6,20 - 124 эВ
    Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 - 315 3,10 - 3,94 эВ
    Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
    Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 - 100 4,43 - 12,4 эВ

    Оптическое излучение

    Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение [ ]) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

    Цвета видимого излучения, соответствующие монохроматическому излучению , называются спектральными . Спектр и спектральные цвета можно увидеть при прохождении узкого светового луча через призму или какую-либо другую преломляющую среду. Традиционно, видимый спектр делится, в свою очередь, на диапазоны цветов:

    Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
    Фиолетовый 380-440 790-680 2,82-3,26
    Синий 440-485 680-620 2,56-2,82
    Голубой 485-500 620-600 2,48-2,56
    Зелёный 500-565 600-530 2,19-2,48
    Жёлтый 565-590 530-510 2,10-2,19
    Оранжевый 590-625 510-480 1,98-2,10
    Красный 625-740 480-405 1,68-1,98

    Ближнее инфракрасное излучение занимает диапазон от 207 ТГц (0,857 эВ) до 405 ТГц (1,68 эВ). Верхняя граница определяется способностью человеческого глаза к восприятию красного цвета, различной у разных людей. Как правило, прозрачность в ближнем инфракрасном излучении соответствует прозрачности в видимом свете.

    Инфракрасное излучение

    Инфракрасное излучение расположено между видимым светом и терагерцовым излучением. Диапазон: от 2000 мкм (150 ГГц) до 740 нм (405 ТГц).

    СПЕКТРАЛЬНЫЕ МЕТОДЫ АНАЛИЗА

    Спектральные методы анализа основаны на регистрации спектров испускания или поглощения атомов и молекул и измерении интенсивности электромагнитного излучения в узком энергетическом диапазоне. Методы спектрального анализа подразделяются на радиочастотную, оптическую, рентгеновскую и др. виды спектрометрии в зависимости от того, в какой области электромагнитного спектра проводятся измерения.

    Электромагнитное излучение может быть охарактеризовано либо волновым , либо энергетическим параметрами. Все эти величины взаимосвязаны и выбор той или иной величины определяется удобствами при работе.

    Волновой параметр выражается длиной волны l (м, см, мкм, нм или Å), частотой колебаний n (с -1 или герц, 1 Гц = 1 с -1), либо волновым числом uu (м -1 , см -1). В некоторых книгах волновое число обозначают знаком . Частота электромагнитных колебаний n связана с длиной волны l соотношением n = c/l, где с - скорость света в вакууме, равная 2.997925∙10 8 м/с (приближенно 3∙10 8 м/с). В спектроскопии принято называть частотой также и волновое число u = 1/l , показывающее, сколько длин волн умещается на интервале 1 см (т.е. если l = 10 -5 м = 10-3 см, то u = 1000 см -1). В нарушение требования об использовании системы СИ волновые числа измеряют по-прежнему в обратных сантиметрах (см -1). 1 см ≡ 11.9631 Дж /моль.

    Частота линии спектра поглощения связана с разностью энергий ΔЕ возбужденного и основного состояний:

    ΔЕ= hν = Е возб. - Е осн.,

    где h – константа Планка (h = 6.626·10 -34 Дж·с).

    Как следует из вышеприведенной формулы кванты излучения с более короткой длиной волны (с более высокой частотой) имеют более высокую энергию.

    Рис.1. Схема квантования энергии электрона в атомарном водороде (на схеме не указаны р - и d – подуровни). Энергия электрона с главным квантовым числом n = 1 соответствует основному состоянию атома (1s 1). Другие состояния (2s 1 , 3s 1 , 4s 1 , ….) – возбужденные. Переход электрона из возбужденных состояний 2s 1 , 3s 1 , 4s 1 , … на уровень 1s 1 соответствует серии Лаймана, из состояний 3s 1 , 4s 1 , … на уровень 2s 1 - серии Бальмера и т.д.

    Рис. 2. Спектр испускания атомарного водорода - светлые линии и полосы на черном фоне. черные линии на белом фоне. Спектры поглощения выглядят иначе – черные линии и полосы (на том же самом месте) на белом фоне. белые линии и полосы на черном фоне. Расширение линий связано с

    Спектр электромагнитного излучения

    Е кванта →

    10 5 3∙10 -4 8∙10 -7 4∙10 -7 10 -8 10 -12 l, м
    Радиочастотная область Микроволновая область Инфракрасная область Видимое излучение Ультрафиолетовая область Рентгеновское излучение g - излучение космические лучи
    Вращательный спектр К-вр. Электронный спектр Изменения Изменения
    Изменение энергетического состояния спинов электронов (ЭПР - спектроскопия). Изменение энергетического состояния спинов ядер (ЯМР - спектроскопия) Колебательно - вращательный спектр (колебания атомов в молекуле). ИК - спектроскопия Изменения в энергетическом состоянии внешних (валентных) электронов (Спектроскопия в УФ и видимой области, КР - спектроскопия) в энергетическом состоянии внутренних электронов атомов (Рентгеноско-пия) в энергетическом состоянии ядер (ядерно- физические методы анализа)


    Электромагнитный спектр простирается от жесткого g- излучения с очень короткой длиной волны до длинных радиоволн. Каждая из областей спектра связана с определенными видами внутримолекулярных движений, процессами в атомах и ядрах. При поглощении или испускании квантов света изменяется энергия электронов в электронных оболочках атомов и молекул, энергия колебания атомных ядер в молекуле и энергия вращения молекулы.

    Все виды внутримолекулярных движений взаимосвязаны, но для каждого из них существует определенный набор допустимых (разрешенных) значений энергии.

    1.1.1 Молекулярные спектры испускания, поглощения и комбинационного (см.п 1.4) рассеяния

    Современное учение о спектрах электромагнитного излучения базируется на квантовой теории, согласно которой атомная система является устойчивой лишь в определенных стационарных состояниях, соответствующих некоторой дискретной последовательности значений энергии. Переход между двумя квантовыми состояниями 1 « 2 с энергиями Е 1 и Е 2 приводит к поглощению (абсорбции), ‌E 1 < E 2‌ , или испусканию (эмиссии), ‌E 1 > E 2‌ , энергии в виде электромагнитного излучения с частотой n, определяемой уравнением Бора:

    DE =‌ ‌|E 1 - E 2‌ | ‌‌= hn,

    где E 1 и E 2 - энергия начального и конечного состояний соответственно, hh - постоянная Планка, n - частота поглощаемого или испускаемого излучения. h = 6.616 10 -34 Дж∙с

    Согласно уравнению частот Бора в спектре возникает линия с частотой (с -1)

    n = |E 1 - E 2‌ | /h

    или с волновым числом (см -1)

    u = |E 1 - E 2‌ | /hc.

    Переходы с нижнего энергетического уровня на верхний порождают спектр поглощения (абсорбции), с верхнего на нижний - спектр испускания (эмиссии) (рис.2).

    В оптико - спектрометрических методах анализа используют дискретность энергетических уровней молекул и испускание или поглощение излучения, которое связано с переходом молекулы или атома с одного энергетического уровня на другой (Рис.1). Энергию квантов света в спектроскопии выражают в обратных сантиметрах, учитывая, что 1 см -1 ≡ 11.9631 Дж/моль. Наиболее высокую энергию имеют кванты, возникающие при электронных переходах (от 40 до 400 кДж/моль), затем следуют колебательные кванты (от 4 до 40 кДж/моль) и затем вращательные, с самой малой энергией (0.4 - 4 кДж/моль). Электронный переход одновременно сопровождается колебательными и вращательными переходами, т.е. представляет собой электронно - колебательно - вращательный переход. (рис.3).

    Рис. 31. Схема энергетических уровней двухатомной молекулы: Е е - уровни энергии электронов; Е v – уровни колебательной энергии (vibration – вибрация, колебание): Е r – уровни вращательной энергии (rotation –вращение): v evr – переходы, соответствующие электронно – колебательно - вращательному спектру: v v r - переходы, соответствующие колебательно-вращательному спектру; v r – переходы, соответствующие вращательному спектру. [Золотов. Основы аналитической химии. Книга 2. с.207]

    Энергия кванта такого перехода выражается формулой

    e эл.-кол.-вр = e эл + e кол + e вр = hn эл + hn кол + hn вр,

    а частота соответствующей линии в спектре равна сумме частот (это одна линия):

    n эл.-кол.-вр = n эл + n кол + n вр.

    Для краткости электронно – колебательно - вращательный спектр называют просто электронным спектром. Он состоит из множества серий полос в УФ и видимой области. Каждая серия отвечает одному электронныому переходаму с более высоких уровней на какой-либо ниже расположенный (рис.1). Энергия квантов, возбуждающих такие переходы, повторим, лежит в области 40 ÷ 400 кДж/моль. Волновые числаЧастоты νu квантов электронныхого переходова лежат в диапазоне (3.3 ÷ 33.3)∙10 3 см -1 , что соответствует длинам волнт.е. l от 0.3 до 3 мкм.

    Кванты более низкой энергии в области 4 ÷ 40 кДж/моль отвечают переходам между колебательными уровнями. При этом неизбежно происходит и изменение вращательных состояний, еще более низких по энергии, и возникает колебательно-вращательный спектр. Энергия перехода и частота линий в колебательно-вращательном спектре связаны соотношениями:

    e кол.-вр = e кол + e вр = hn кол + hn вр.

    n кол.-вр = n кол + n вр.

    При данном колебательном переходе с частотой n кол возникает полоса, отдельные линии которой отвечают разным комбинациям слагаемых в сумме n кол + n вр. Волновые числа u Частоты колебательных квантов n простираются от 30 до 4000 см -1 (l от 2.5 мкм до 0.3 мм). Это далекая инфракрасная область, вплотную смыкающаяся с областью миллиметровых радиоволн.

    Кванты еще более низкой энергии (0.4 ÷ 4 кДж/моль) могут вызывать только переходы между вращательными уровнями и дают начало чисто вращательному спектру. Энергии перехода и частоты во вращательном спектре связаны соотношением

    e вр = hn вр.

    Каждая линия в таком спектре имеет частоту n вр , отвечающую i -му вращательному переходу. Вращательный спектр имеет частоты порядка 10 -1 ÷ 1 см -1 и простирается в область субмиллиметровых (МВ - микроволновая область) и сантиметровых (СВЧ - сверхвысокочастотная область) радиоволн.

    Рис.3.Форма полос в молекулярных спектрах: а - гладкий колокообразный контур; б – полоса с выраженной тонкой структурой. Характеристики полосы: I max , v max , Δv. Спектральная полоса –это совокупность близко расположенных спектральных линий, образующихся в результате наложения на электронный переход сопутствующих ему колебательных и вращательных переходов.

    Контур спектральной полосы в молекулярных спектрах может быть гладким колокообразным или обнаруживать тонкую структуру (рис.3). Полосу без разрешенной тонкой структуры принято характеризовать, как и спектральную линию, тремя параметрами: частотой n max (длиной волны l max ); значением максимальной интенсивности (пиковой интенсивности) I max ; шириной Δv λ ). Ширина полос в колебательно-вращательном спектре может достигать нескольким десятков обратных сантиметров, а в электронном – несколько тысяч обратных сантиметров.

    1.1.2 Возбуждение спектра

    Энергетическое воздействие на вещество может осуществляться тепловым, электромагнитным, химическим и другими путями. Все эти воздействия приводят к испусканию веществом электромагнитных излучений. Энергия излучается в виде линейчатого спектра, характеризующегося дискретными значениями длин волн. При прохождении излучения сплошного спектра через вещество, напротив, происходит поглощение энергии и образуется спектр поглощения, также характеризующийся дискретными значениями длин волн. Отношение интенсивностей полосы, отвечающей одному и тому же переходу m « n , в спектре поглощения (абсорбции) I a и спектре испускания (эмиссии) I e различно и зависит от частоты перехода. Теория приводит к соотношению

    т.е. интенсивность испускания I e во много раз превосходит интенсивность поглощения I a в области высоких частот . Поэтому спектры испускания удобнее изучатьизучают в видимой и ультрафиолетовой области. В области малых частот (ИК- и СВЧ- области) удобнее изучать спектры поглощения. На этих частотах, наоборот, интенсивнее спектры абсорбции.

    С другой стороны, спектры испускания известны для атомов (изучены атомные спектры) и лишь сравнительно небольшого числа достаточно простых молекул. Поэтому молекулярные спектры изучают главным образом как спектры поглощения , когда излучение источника сплошного спектра (например, лампы накаливания) проходит через кювету, наполненную раствором вещества. Так как каждый структурный элемент молекулы поглощает энергию только в характерной для него области, то определив частоту и количественно оценив интенсивность поглощаемого излучения можно установить структуру соединения (качественный анализ) и определить количество исследуемого вещества (количественный анализ).