Электризация тел трением. Электризация трением Электризация тел трением

Интерактивное изложение материала по теме " Объяснение электризации. Закон сохранения заряда ";
Электрическое поле
Электрические явления в природе и технике

Посмотрите озвученную презентацию.

Тела электризуются , т е. получают электрический заряд , когда они приобретают или теряют электроны. Новые электрические заряды при этом не возникают. Происходит лишь разделение уже имеющихся зарядов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.

Способы электризации:

1) электризация трением: участвуют разнородные тела. Тела приобретают одинаковые по модулю, но разные по знаку заряды.

2) электризация соприкосновением: при соприкосновении заряженного и незаряженного тела часть заряда переходит на незаряженное тело, т. е. оба тела приобретают одинаковый по знаку заряд.

3) электризация через влияние: при электризации через влияние можно получить при помощи положительного заряда на теле отрицательный, и на оборот.

Тела, состоящие из нейтральных частиц (атомов и молекул), в обычных условиях не обладают зарядом. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными: то тело, которое отдало часть своих электронов, будет заряжено положительно, а то тело, которое их получило,- отрицательно.
Электризация трением объясняется переходом части электронов от одного тела к другому, в результате чего тела заряжаются разноимённо. Тела, наэлектризованные трением друг о друга, притягиваются.
Электризация индукцией объясняется перераспределением электронного газа между телами (или частями тела), в результате чего тела (или части тела) заряжаются разноимённо. Однако возникает вопрос: все ли тела поддаются электризации индукцией? Можно проделать опыты и убедиться, что пластмассовые, деревянные или резиновые шары можно легко наэлектризовать трением, но невозможно индукцией.

Знания об электроне и строении атома позволяют объяснить явление притяжения нена- электризованных тел к наэлектризованным. Почему, например, притягивается к заряженной палочке гильза, которую мы предварительно не наэлектризовали? Ведь мы знаем, что электрическое поле действует только на заряженные тела.


Дело в том, что в гильзе есть свободные электроны. Как только гильза будет внесена в электрическое поле, электроны придут в движение под действием сил поля. Если палочка заряжена положительно, то электроны перейдут на тот конец гильзы, который расположен ближе к палочке. Этот конец зарядится отрицательно. На противоположном конце гильзы будет недостаток электронов, и этот конец окажется заряженным положительно (рис. а). Отрицательно заряженный край гильзы ближе к палочке, поэтому гильза притянется к ней (рис. б). Когда гильза коснётся палочки, то часть электронов с неё перейдёт на положительно заряженную палочку. На гильзе останется нескомпенсированный положительный заряд (рис. в).

Если заряд передают от заряженного шара к незаряженному и размеры шаров одинаковы, то заряд разделится пополам. Но если второй, незаряженный шар больше, чем первый, то на него перейдёт больше половины заряда.Чем больше тело, которому передают заряд, тем большая часть заряда на него перейдёт. На этом основано заземление - передача заряда земле. Земной шар велик по сравнению с телами, находящимися на нём. Поэтому при соприкосновении с землёй заряженное тело отдаёт ей почти весь свой заряд и практически становится электрически нейтральным.

Еще в глубокой древности было известно, что если потереть янтарь о шерсть, он начинает притягивать к себе легкие предметы. Позднее это же свойство было обнаружено у других веществ (стекло, эбонит и др.). Это явление называют электризацией , а тела, способные притягивать к себе после натирания другие предметы, наэлектризованными. Явление электризации объяснялось на основании гипотезы о существовании зарядов, которые приобретает наэлектризованное тело.

Простые опыты по электризации различных тел иллюстрируют следующие положения.

  • Заряды существуют двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный $-$ при трении янтаря (или эбонита) о шерсть.
  • Заряды (или заряженные тела) взаимодействуют друг с другом. Одноименные заряды отталкиваются, разноименные $-$ притягиваются.

Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда. При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно $-$ положительный, а другое $-$ отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными экспериментами.

Объяснить, почему тела электризуются (т. е. заряжаются) при трении, стало возможным после открытия электрона и изучения строения атома. Как известно, все вещества состоят из атомов, которые, в свою очередь, состоят из элементарных частиц $-$ отрицательно заряженных электронов, положительно заряженных протонов и нейтральных частиц $-$ нейтронов. Электроны и протоны являются носителями элементарных (минимальных) электрических зарядов. Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома, вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электронейтрален. В обычных условиях тела, состоящие их атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещение электронов при этом не превышает межатомных расстояний. Но если после трения тела разъединить, то они окажутся заряженными: тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, $-$ отрицательно.

Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приобретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся зарядов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.

Основной причиной явления, которое мы называем «электризация трением», является то, что при тесном соприкосновении двух различных тел часть электронов переходит с одного тела на другое (рис. 11). В результате этого на поверхности первого тела оказывается положительный заряд (недостаток электронов), а на поверхности второго тела – отрицательный заряд (избыток электронов). Смещение электронов при этом очень мало, оно бывает порядка межатомных расстояний ( м). Поэтому возникший на границе двух тел так называемый двойной электрической слой ничем не проявляет себя во внешнем пространстве. Но если тела раздвинуть, то на каждом из них окажется заряд того или иного знака (рис. 12). В этом мы и убеждаемся, внося каждое из этих тел в стакан электроскопа (рис. 9).

Рис. 11. Возникновение двойного электрического слоя при тесном соприкосновении двух различных тел

Рис. 12. После раздвигания тел каждое из них оказывается заряженным

Говоря о «тесном соприкосновении» двух тел, мы имели в виду такое сближение их, при котором расстояние между частицами разных тел становится примерно таким же, как расстояние между атомами или молекулами одного и того же тела. Только при этих условиях возможен «захват» одним телом электронов другого тела и возникновение двойного электрического слоя. Но тела, с которыми мы имеем дело, никогда не бывают идеально гладкими. Поэтому даже тогда, когда мы прижимаем два тела вплотную друг к другу, действительно тесное соприкосновение их в указанном смысле слова имеет место не на всей поверхности тел, а только в отдельных небольших участках. Когда мы трем тела друг о друга, мы увеличиваем число таких участков тесного соприкосновения, в которых происходит электризация, и тем самым увеличиваем общий заряд, который окажется на каждом из тел, когда мы их раздвинем. Только в этом и заключается роль трения. «Электризация трением» - это название, имеющее только историческое происхождение.

В том, что дело обстоит именно так и что возникновение электрических зарядов при тесном соприкосновении различных тел происходит и тогда, когда трения между этими телами в обычном смысле слова нет, нас убеждает опыт, изображенный на рис. 13. Возьмем два электроскопа и укрепим на стержне каждого из них высокий металлический стакан, как на рис. 9. В один из этих стаканов нальем дистиллированную воду и погрузим в нее шарик из парафина, укрепленный на изолирующей ручке (рис. 13,а). Вынув этот шарик из воды, мы увидим, что листки электроскопа разойдутся (рис. 13,б справа). Опыт удается независимо от того, погрузим мы шарик в воду на малую или на большую глубину и будем ли мы вынимать его из воды медленно или быстро. Это показывает, что заряды разделяются при соприкосновении шарика и жидкости и что трение, как таковое, здесь роли не играет. Перенеся шарик во второй стакан (рис. 13,б слева), мы увидим, что листки второго электроскопа расходятся, т. е. шарик приобрел электрический заряд при соприкосновении с водой. Соединим теперь электроскопы проволокой (рис. 13,в); листки обоих электроскопов опадают, и это показывает, что заряды, приобретенные водой и шариком, равны по модулю и противоположны по знаку.

Рис. 13. Электризация воды и парафинового шарика, погруженного в нее

Разделение зарядов и возникновение двойного электрического слоя имеет место при соприкосновении любых двух различных тел: диэлектриков или проводников, твердых тел, жидкостей или газов. Мы увидим дальше (§ 76), какое значение имеет этот факт для объяснения ряда важных явлений, в том числе действия гальванических элементов. Почему же, описывая явления электризации трением, мы всегда брали для опыта только хорошие диэлектрики – янтарь, стекло, шелк, эбонит и т. п.? Причина этого заключается в том, что в диэлектриках заряд остается там, где он возник, и не может через всю поверхность тела перейти на другие соприкасающиеся с данным телом предметы. Впрочем, одно из натираемых тел могло бы быть и куском металла, укрепленным на изолирующей ручке. Однако наш опыт электризации трением не удался бы, если бы оба трущиеся друг о друга тела были металлами, даже если оба эти тела были изолированы. Причина заключается в том, что мы практически не можем отделить наши тела одно от другого сразу по всей поверхности. Вследствие неизбежной их шероховатости в момент отрыва всегда будут оставаться какие-то последние точки соприкосновения, и так как электроны свободно движутся через металл, то через эти «мостики» в последний момент все избыточные электроны перетекут с одного куска металла на другой, и оба они окажутся незаряженными.

7.1. Почему при расчесывании сухих волос пластмассовым гребнем волосы «прилипают» к гребню (при этом иногда слышно легкое потрескивание, а в темноте удается наблюдать и маленькие искорки, проскакивающие между волосами и гребнем)?

7.2. Прижмите к теплой кафельной печи лист бумаги и потрите его ладонями. Лист пристанет к поверхности печи. При отрывании слышен треск, и в темноте видны искры между бумагой и печью. Объясните явление. Почему опыт обычно не удается с холодной, нетопленной печью? Обратите внимание на сказанное в § 2.

Почему же мы не наблюдаем электрических сил при­тяжения и отталкивания между окружающими нас те­лами? Ведь все тела состоят из атомов, а атомы - из частиц, обладающих электрическими зарядами.

Причина в том, что атомы в целом - нейтральны. Общий отрицательный заряд всех электронов в атоме равен положительному заряду ядра. Суммарный заряд атома - нуль. А раз нейтрален атом, - нейтральна и мо­лекула. И тело, состоящее из атомов или молекул, тоже нейтрально; оно не обладает электрическим зарядом.

Возьмите стеклянную палочку и сильно потрите её куском сухого шёлка. При этом часть электронов отры­вается от молекул стекла и переходит к молекулам шёлка. Происходит так называемая ионизация некоторых молекул стекла, превращение их из нейтральных частиц в электрически заряженные частицы - ионы. Молекулы стекла, потерявшие один или несколько электронов, уже не нейтральны. Положительный заряд ядер в такой моле­куле больше, чем отрицательный заряд оставшихся в ней электронов. Молекула заряжена положительно - это положительный ион. Атом или молекула, за­хватившие один или несколько лишних электронов, назы­ваются отрицательными ионами.

Если прикоснуться этой палочкой к двум листоч­кам папиросной бумаги, подвешенным на нитках, то часть электронов с листочков притянется положительно заряженной палочкой и перейдёт на неё. Листочки заря­дятся положительно и станут отталкиваться друг от друга, как это изображено на рисунке 3.

Листочки можно зарядить и отрицательно. Для этого вместо стеклянной надо взять эбонитовую или сургучную палочку, а вместо шёлка - мех или шерстяную ткань. При натирании сургуча или эбонита мехом часть электро­нов переходит с меха на палочку и она заряжается отри­цательно. Электроны отталкиваются друг от друга. По­этому, когда палочка касается листка папиросной бумаги,

Часть электронов переходит на него. Два листочка, кото­рых мы коснёмся эбонитовой или сургучной палочкой, заряжаются отрицательно. Между собой они отталки­ваются так же, как показано на рисунке 3, а к положи­тельно заряженным листочкам притягиваются (рис. 4).

Впервые люди познакомились с электричеством, на­тирая янтарь шерстью. Было это в древней Греции две с половиной тысячи лет назад. Янтарь по-гречески назы­вается «электрон». Так родилось слово «электричество».

Мы видим теперь, что электрические свойства янтаря, стекла, эбонита и других тел, с которыми люди познако­мились на опыте, суть лишь проявление электрических сил, действующих между электронами и ядрами.

Названия «положительный» и «отрицательный» заряды были даны тогда, когда о строении атома, об электронах и ядрах ещё ничего не знали. Впоследствии оказалось, что положительным был назван заряд ядра, а отрицатель­ным - заряд электрона.

Положительно заряженное тело - это тело, потеряв­шее часть своих электронов. Отрицательно заряженное тело - это тело, приобретшее избыточные электроны. Электризация тел при трении вызвана переходом части электронов от одного тела к другому.

Требования к качеству, области применения и правилам эксплуатации электрооборудования, предъявляемые современными отечественными и мировыми стандартами и техническими регламентами, определяют необходимость регулярного обслуживания...

Мы живём в замечательное время, которое навсегда войдёт в историю неразрывно связанным с именем Иосифа Виссарионовича Сталина. Под руководством коммунистической партии и её вождя товарища Сталина советские люди построили социализм …

Кроме токов, текущих всё время: в одном направлении, в технике широко применяются также так называемые переменные токи. Направление переменного тока в цепи изменяется обычно много раз за секунду. Рассмотрим здесь …

2002-02-22T16:40+0300

2008-06-04T20:08+0400

https://сайт/20020222/77999.html

Электризация трением

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

Электризация трением

Вадим Прибытков, физик-теоретик, постоянный автор Терры Инкогнита. Понимание атома в качестве классической системы Резерфорда-Бора дает возможность для объяснения широкого круга природных явлений, возникающих в ходе трения материальных компонентов. К ним, в частности, относится и такое явление, как электризация трением янтаря, стекла, тканей, бумаги и других изоляторов. С этого явления начинаются почти все книги по электричеству, однако его объяснение обычно обходится. Почему? А ведь с электрических свойств янтаря началось само электричество. Этот вопрос очень интересует Китайгородского. Он понимает, что при трении возникают свободные заряды-электроны и констатирует: "В общих чертах картина более или менее ясна, но не только. Видимо, то мизерное количество свободных электронов, которое имеется у изолятора, связано с его молекулярными разными силами у разных диэлектриков. Поэтому если привести в тесное соприкосновение два тела, то электроны перейдут с одного из них на другое....

Вадим Прибытков, физик-теоретик, постоянный автор Терры Инкогнита.

Понимание атома в качестве классической системы Резерфорда-Бора дает возможность для объяснения широкого круга природных явлений, возникающих в ходе трения материальных компонентов. К ним, в частности, относится и такое явление, как электризация трением янтаря, стекла, тканей, бумаги и других изоляторов. С этого явления начинаются почти все книги по электричеству, однако его объяснение обычно обходится. Почему?

А ведь с электрических свойств янтаря началось само электричество.

Этот вопрос очень интересует Китайгородского. Он понимает, что при трении возникают свободные заряды-электроны и констатирует: "В общих чертах картина более или менее ясна, но не только. Видимо, то мизерное количество свободных электронов, которое имеется у изолятора, связано с его молекулярными разными силами у разных диэлектриков. Поэтому если привести в тесное соприкосновение два тела, то электроны перейдут с одного из них на другое. Произойдет электризация. Однако "тесное соприкосновение"--это приведение поверхностей на расстояние, равное межатомному. Поскольку атомогладких поверхностей в природе не существует, трение помогает ликвидировать всякого рода выступы и увеличивает площадь, так сказать, истинного соприкосновения.

Переход электронов от одного тела к другому имеет место для любой пары тел-металлов, полупроводников и изоляторов.

Наэлектризовать же удается только изоляторы, ибо лишь в этих телах возникшие заряды остаются в тех местах, куда они перебрались от одного тела к другому.

Я не могу сказать, чтобы эта теория оставляла чувство глубокого удовлетворения. Неясно, чем хороши--эбонит, стекло, кошачий мех. Можно задать кучу вопросов, на которые нет вразумительного ответа". (А.И. Китайгородский, Электроны, М., с.54).

Частично Китайгородский объяснил сущность явления правильно, однако в его трактовке имеются существенные пробелы и основной--в отсутствия анализа взаимодействия электромагнитных квантов с электронами вещества. Дело здесь не только в "тесном соприкосновении", на что напирает Китайгородский, а именно в трении, которое он не знает, как использовать.

Трение между двумя диэлектриками, при этом они совершенно не обязательно должны быть разными веществами, могут быть и одинаковыми, например, два листа бумаги, приводит к соударению электронов, перераспределению между ними электромагнитной энергии, к отрыву ряда электронов от атомов и их перемещению.

На поверхности диэлектриков образуются зоны с преобладанием разных зарядов, что при взаимном соприкосновении ведет к их притяжению или отталкиванию. Кроме того, свободные электроны переходят при этом с одной части поверхности на другую.

Перейдя с одного диэлектрика на другой, электроны локализуются на нем, потому что диэлектрик не является проводником. Аналогичную природу имеют электрические разряды в атмосфере, возникающие за счет трения молекул и атомов газа и паров воды. То, что речь идет о соударении электронов подтверждается электризацией бумаги на пишущей машинке и даже под воздействием шариковой ручки.

Вот и все объяснение. Оно простое, наглядное, убедительное и раскрывает сущность явления. Электромагнитная энергия управляет электронами и играет решающую роль в их движении.