Элективный курс: "Практическая и экспериментальная физика". Презентация к уроку по физике (10 класс) на тему: экспериментальная работа по физике "Изменение давления"


 Колебания и волны.
 Оптика.

Задачи для самостоятельной работы .
Задача 1. Гидростатическое взвешивание .
Оборудование : линейка деревянная длиной 40 см , пластилин, кусок мела, мерный стакан с водой, нитки, лезвие бритвы, штатив с держателем.
Задание .
Измерьте

  • плотность пластилина;
  • плотность мела;
  • массу деревянной линейки.

Примечания :

  1. Кусок мела желательно не мочить – может развалиться.
  2. Плотность воды считать равной 1000 кг/м 3

Задача 2. Удельная теплота растворения гипосульфита .
При растворении гипосульфита в воде температура раствора сильно понижается.
Измерьте удельную теплоту растворения данного вещества.
Под удельной теплотой растворения понимают количество теплоты, необходимое для растворения единицы массы вещества.
Удельная теплоемкость воды 4200 Дж/(кг × K), плотность воды 1000 кг/м 3 .
Оборудование : калориметр; мензурка или мерный стакан; весы с разновесами; термометр; гипосульфит кристаллический; теплая вода.

Задача 3. Математический маятник и ускорение свободного падения .

Оборудование : штатив с лапкой, секундомер, кусок пластилина, линейка, нить.
Задание : измерить ускорение свободного падения с помощью математического маятника.

Задача 4. Показатель преломления материала линзы .
Задание : измерьте показатель преломления стекла, из которого изготовлена линза.

Оборудование : двояковыпуклая линза на подставке, источник света (лампочка на подставке с источником тока и соединительными проводами), экран на подставке, штангенциркуль, линейка.

Задача 5. «Колебания стержня»

Оборудование : штатив с лапкой, секундомер, спица вязальная, ластик, иголка, линейка, пробка пластиковая от пластиковой бутылки.

  • Исследуйте зависимость периода колебаний получившегося физического ма-ятника от длины верхней части спицы. Постройте график полученной зависимости. Проверьте выполнимость формулы (1) в вашем случае.
  • Определите с максимально возможной точностью минимальный период колебаний полученного маятника.
  • Определите значение ускорения свободного падения.

Задача 6. Определите с максимально возможной точностью сопротивление резистора .
Оборудование : источник тока, резистор с известным сопротивлением, резистор с неизвестным сопротивлением, стаканчик (стеклянный, на 100 мл), термометр, часы (можно использовать свои наручные), миллиметровая бумага, кусок пенопласта.

Задача 7. Определите коэффициент трения бруска о стол .
Оборудование : брусок, линейка, штатив, нитки, гиря известной массы.

Задача 8. Определите вес плоской фигуры .
Оборудование : плоская фигура, линейка, гирька.

Задача 9. Исследуйте зависимость скорости истечения струи, вытекающей из сосуда, от высоты уровня воды в этом сосуде .
Оборудование : штатив с муфтой и лапкой, стеклянная бюретка со шкалой и резиновой трубкой; пружинный зажим; винтовой зажим; секундомер; воронка; кювета; стакан с водой; лист миллиметровой бумаги.

Задача 10. Определите температуру воды, при которой ее плотность максимальна .
Оборудование : стакан с водой, при температуре t = 0 °С ; металлическая подставка; термометр; ложечка; часы; маленький стакан.

Задача 11. Определите силу разрыва Т нити, mg < T .
Оборудование : планка, длина которой 50 см ; нить или тонкая проволока; линейка; груз известной массы; штатив.

Задача 12. Определите коэффициент трения металлического цилиндра, масса которого известна, о поверхность стола .
Оборудование : два металлических цилиндра приблизительно одинаковой массы (масса одного из них известна (m = 0,4 - 0,6 кг )); линейка длины 40 - 50 см ; динамометр Бакушинского.

Задача 13. Исследуйте содержимое механического «черного ящика» . Определите характеристики твердого тела, заключенного в «ящике».
Оборудование : динамометр, линейка, миллиметровая бумага, «черный ящик» – закрытая банка, частично заполненная водой, в которой находятся твердое тело с прикрепленной к нему жесткой проволокой. Проволока выходит из банки сквозь малое отверстие в крышке.

Задача 14. Оределите плотность и удельную теплоемкость неизвестного вам металла .
Оборудование : калориметр, пластмассовый стакан, ванночка для проявки фотографий, измерительный цилиндр (мензурка), термометр, нитки, 2 цилиндра из неизвестного металла, сосуд с горячей (t г = 60° –70° ) и холодной (t х = 10° – 15° ) водой. Удельная теплоемкость воды c в = 4200 Дж/(кг × K ).

Задача 15. Определите модуль Юнга стальной проволоки .
Оборудование : штатив с двумя лапками для крепления оборудования; два стальных стержня; стальная проволока (диаметром 0,26 мм ); линейка; динамометр; пластилин; булавка.
Примечание . Коэффициент жесткости проволоки зависит от модуля Юнга и геометрических размеров проволоки следующим образом k = ES/l , где l – длина проволоки, a S – площадь ее поперечного сечения.

Задача 16. Определите концентрацию поваренной соли в выданном вам водном растворе .
Оборудование : стеклянная банка объемом 0,5 л ; сосуд с водным раствором поваренной соли неизвестной концентрации; источник переменного тока с регулируемым напряжением; амперметр; вольтметр; два электрода; соединительные провода; ключ; набор из 8 навесков поваренной соли; миллиметровая бумага; емкость с пресной водой.

Задача 17. Определите сопротивления милливольтметра и миллиамперметра для двух диапазонов измерений .
Оборудование : милливольтметр (50/250 мВ ), миллиамперметр (5/50 мА ), два соединительных провода, медная и цинковая пластины, соленый огурец.

Задача 18. Определите плотность тела .
Оборудование : тело неправильной формы, металлический стержень, линейка, штатив, сосуд с водой, нить.

Задача 19. Определите сопротивления резисторов R 1 , …, R 7 , амперметра и вольтметра .
Оборудование : батарейка, вольтметр, амперметр, соединительные провода, переключатель, резисторы: R 1 – R 7 .

Задача 20. Определите коэффициент жесткости пружины .
Оборудование : пружина, линейка, лист миллиметровой бумаги, брусок, груз массой 100 г .
Внимание! Не подвешивайте груз на пружине, так как при этом вы превысите предел упругой деформации пружины.

Задача 21. Определите коэффициент трения скольжения спичечной головки о шероховатую поверхность спичечного коробка .
Оборудование : коробка со спичками, динамометр, груз, лист бумаги, линейка, нить.

Задача 22 . Деталь волоконно-оптического соединителя представляет собой стеклянный цилиндр (показатель преломления n = 1,51), в котором имеется два круглых цилиндрических канала. Торцы детали заклеены. Определите расстояние между каналами .
Оборудование : деталь соединителя, миллиметровая бумага, лупа.

Задача 23. «Черный сосуд» . В «черный сосуд» с водой на нити опущено тело. Найдите плотность тела ρ m , его высоту l уровень воды в сосуде с погруженным телом (h ) и когда тело находится вне жидкости (h o ).
Оборудование . «Черный сосуд», динамометр, миллиметровая бумага, линейка.
Плотность воды 1000 кг/м 3 . Глубина сосуда Н = 32 см .

Задача 24. Трение. Определите коэффициенты трения скольжения деревянной и пластмассовой линеек о поверхность стола .
Оборудование . Штатив с лапкой, отвес, деревянная линейка, пластмассовая линейка, стол.

Задача 25. Заводная игрушка. Определите энергию, запасенную пружиной заводной игрушки (машинки), при фиксированном «заводе» (числе поворотов ключа) .
Оборудование : заводная игрушка известной массы, линейка, штатив с лапкой и муфтой, наклонная плоскость.
Примечание . Заводите игрушку так, чтобы ее пробег не превышал длину стола.

Задача 26. Определение плотности тел . Определите плотность груза (резиновой пробки) и рычага (деревянной рейки), используя предложенное оборудование.
Оборудование : груз известной массы (пробка маркированная); рычаг (деревянная рейка); цилиндрический стакан (200 - 250 мл ); нить (1 м ); деревянная линейка, сосуд с водой.

Задача 27. Изучаем движение шарика .
Приподнимем на некоторую высоту над поверхностью стола шарик. Отпустим его и понаблюдаем за его движением. Если бы соударения были абсолютно упругими (иногда говорят упругими), то шарик всё время подскакивал бы на одну и ту же высоту. В действительности же, высота подскоков постоянно уменьшается. Уменьшается и интервал времени между последовательными подскоками, что явно ощутимо на слух. Спустя некоторое время подскоки прекращаются, и шарик остаётся на столе.
1 задание – теоретическое .
1.1. Определите долю теряемой (коэффициент энергетических потерь) энергии после первого, второго, третьего отскока.
1.2. Получите зависимость времени от количества отскоков.

2 задание – экспериментальное .
2.1. Прямым методом, используя линейку, определите коэффициент энергетических потерь после первого, второго, третьего удара.
Можно определить коэффициент энергетических потерь, используя метод, основанный на измерении суммарного времени движения шарика с момента его бросания с высоты H до момента прекращения подскоков. Для этого вам предстоит установить зависимость общего времени движения с коэффициентом энергетических потерь.
2.2. Определите коэффициент энергетических потерь, используя метод, основанный на измерении суммарного времени движения шарика.
3. Погрешности .
3.1. Сравните погрешности измерений коэффициента энергетических потерь в п. 2.1 и 2.2.

Задача 28. Устойчивая пробирка .

  • Найдите массу выданной вам пробирки и её внешний и внутренний диаметры.
  • Вычислите теоретически, при какой наименьшей высоте h min и наибольшей высоте h max налитой в пробирку воды она будет устойчиво плавать в вертикальном положении, и найдите численные значения, используя результаты первого пункта.
  • Определите h min и h max экспериментально и сравните с результатами пункта 2.

Оборудование . Пробирка неизвестной массы с наклеенной шкалой, сосуд с водой, стаканчик, лист миллиметровой бумаги, нитка.
Примечание . Отклеивать шкалу от пробирки запрещается!

Задача 29. Угол между зеркалами. Определите двугранный угол между зеркалами с наибольшей точностью .
Оборудование . Система из двух зеркал, измерительная лента, 3 булавки, лист картона.

Задача 30. Шаровой сегмент .
Шаровым сегментом называется тело, ограниченное сферической поверхностью и плоскостью. При помощи данного оборудования постройте график зависимости объёма V шарового сегмента единичного радиуса r = 1 от его высоты h .
Примечание . Формула объёма шарового сегмента не предполагается известной. Плотность воды принять равной 1,0 г/см 3 .
Оборудование . Стакан с водой, теннисный шарик известной массы m с проколом, шприц с иглой, лист миллиметровой бумаги, скотч, ножницы.

Задача 31. Снег с водой .
Определите массовую долю снега в смеси снега и воды на момент выдачи.
Оборудование . Смесь снега со льдом, термометр, часы.
Примечание . Удельная теплоёмкость воды с = 4200 Дж/(кг × °С), удельная теплота плавления льда λ = 335 кДж/кг.

Задача 32. Регулируемый «чёрный ящик» .
В «черном ящике», имеющем 3 вывода, собрана электрическая цепь, состоящая из нескольких резисторов с постоянным сопротивлением и одного переменного резистора. Сопротивление переменного резистора можно изменять от нуля до некоторого максимального значения R o с помощью регулировочной ручки, выведенной наружу.
С помощью омметра исследуйте схему «черного ящика» и, предполагая, что число находящихся в нем резисторов минимально,

  • изобразите схему электрической цепи, заключенной в «черном ящике»;
  • вычислите сопротивления постоянных резисторов и величину R o ;
  • оцените точность вычисленных вами значений сопротивлений.

Задача 33. Измерение электрических сопротивлений .
Определите сопротивления вольтметра, батарейки и резистора. Известно, что реальную батарейку можно представлять как идеальную, последовательно соединенную с некоторым резистором, а реальный вольтметр – как идеальный, параллельно которому включен резистор.
Оборудование . Батарейка, вольтметр, резистор с неизвестным сопротивлением, резистор с известным сопротивлением.

Задача 34. Взвешивание сверхлёгких грузов .
Определить с помощью предложенного оборудования массу m кусочка фольги.
Оборудование . Банка с водой, кусок пенопласта, набор гвоздей, деревянные зубочистки, линейка с миллиметровыми делениями или миллиметровая бумага, остро отточенный карандаш, фольга, салфетки.

Задача 35. ВАХ ЧЯ .
Определите вольт амперную характеристику (ВАХ) «чёрного ящика» (ЧЯ ). Опишите методику снятия ВАХ и постройте её график. Оцените погрешности.
Оборудование . ЧЯ, ограничивающий резистор известным сопротивлением R, мультиметр в режиме вольтметра, регулируемый источник тока, соединительные провода, миллиметровая бумага.
Внимание . Подключать ЧЯ к источнику тока в обход ограничивающего резистора строго запрещается.

Задача 36. Мягкая пружина .

  • Экспериментально исследуйте зависимость удлинения мягкой пружины под действием ее собственного веса от числа витков пружины. Дайте теоретическое объяснение найденной зависимости.
  • Определите коэффициент упругости и массу пружины.
  • Исследуйте зависимость периода колебания пружины от ее числа витков.

Оборудование : мягкая пружина, штатив с лапкой, рулетка, часы с секундной стрелкой, шарик из пластилина массой m = 10 г , миллиметровая бумага.

Задача 37. Плотность проволоки .
Определите плотность проволоки. Ломать проволоку не разрешается.
Оборудование : кусок проволоки, миллиметровая бумага, нить, вода, сосуд.
Примечание . Плотность воды 1000 кг/м 3 .

Задача 38. Коэффициент трения .
Определить коэффициент трения скольжения материала шпульки по дереву. Ось шпульки должна быть горизонтальна.
Оборудование : шпулька, нить длиной 0,5 м , деревянная линейка, закрепленная под углом в штативе, миллиметровая бумага.
Примечание . Во время проведения работы запрещается изменять положение линейки.

Задача 39. Доля механической энергии .
Определите долю механической энергии, теряемой шариком при падении без начальной скорости с высоты 1 м .
Оборудование : теннисный шарик, линейка длиной 1,5 м , лист белой бумаги формата А4 , лист копировальной бумаги, стеклянная пластинка, линейка; кирпич.
Примечание : при малых деформациях шарика можно (но не обязательно) считать справедливым закон Гука.

Задача 40. Сосуд с водой «черный ящик» .
«Черный ящик» представляет собой сосуд с водой, в который опущена нить, на которой закреплены два груза на некотором расстоянии друг от друга. Найдите массы грузов и их плотности. Оцените размеры грузов, расстояние между ними и уровень воды в сосуде.
Оборудование : «черный ящик», динамометр, миллиметровая бумага.

Задача 41. Оптический «черный ящик» .
Оптический «черный ящик» состоит из двух линз, одна из которых является собирающей, а другая - рассеивающей. Определите их фокусные расстояния.
Оборудование : трубка с двумя линзами (оптический «черный» ящик), лампочка, источник тока, линейка, экран с листом миллиметровой бумаги, лист миллиметровой бумаги.
Примечание . Допускается использование света удаленного источника. Приближать лампочку вплотную к линзам (то есть ближе, чем позволяют стойки) не разрешается.

В первой главе дипломной работы были рассмотрены теоретические аспекты проблемы использования электронных учебников в процессе обучения физике в старшем звене общеобразовательной школы. В ходе теоретического анализа проблемы мы определили принципы и виды электронных учебников, выявили и теоретически обосновали педагогические условия использования информационных технологий в процессе обучения физике в старшем звене общеобразовательной школы.

Во второй главе дипломной работы нами формулируются цель, задачи и принципы организации экспериментальной работы. В данной главе рассмотрена методика реализации выделенных нами педагогических условий использования электронных учебников в процессе обучения физике в старшем звене общеобразовательной школы, в заключительном параграфе приводится интерпретация и оценка результатов, полученных в ходе экспериментальной работы.

Цель, задачи, принципы и методы организации экспериментальной работы

Во вводной части работы была выдвинута гипотеза, которая содержала основные условия, требующие проверки на практике. С целью проверки и доказательства выдвинутых в гипотезе предложений нами была проведена экспериментальная работа.

Эксперимент в «Философском энциклопедическом словаре» определяется как планомерно проведенное наблюдение; планомерная изоляция, комбинация и варьирование условий с целью изучения зависящих от них явлений. В этих условиях человек создает возможность наблюдений, на основе которых складывается его знание о закономерностях в наблюдаемом явлении. Наблюдения, условия и знания о закономерностях являются наиболее существенными, на наш взгляд, признаками, характеризующие данное определение.

В словаре «Психология» понятие эксперимента рассматривается как один из основных (наряду с наблюдением) методов научного познания вообще, психологического исследования в частности. Отличается от наблюдения активным вмешательством в ситуацию со стороны исследователя, осуществляющего планомерное манипулирование одной или несколькими переменными (факторами) и регистрацию сопутствующих изменений в поведении изучаемого объекта. Правильно поставленный эксперимент позволяет проверять гипотезы о причинно-следственных отношениях, не ограничивается констатацией связи (корреляции) между переменными. Наиболее существенными признаками, как показывает опыт, здесь являются: активность исследователя, характерная для поискового и формирующего типов эксперимента, а также проверка гипотезы.

Выделяя существенные признаки приведенных определений, как справедливо пишут А.Я. Наин и З.М. Уметбаев, можно построить использовать следующее понятие: эксперимент - это исследовательская деятельность, предназначенная для проверки выдвинутой гипотезы, разворачиваемая в естественных или искусственно созданных контролируемых и управляемых условиях. Результатом этого, как правило, является новое знание, включающее в себя выделение существенных факторов, влияющих на эффективность педагогической деятельности . Организация эксперимента невозможна без выделения критериев. И именно наличие их и позволяет отличить экспериментальную деятельность от какой-либо другой. Такими критериями, по мнению Э.Б. Каиновой, могут быть наличие: цели эксперимента; гипотезы; научного языка описания; специально созданных условий эксперимента; способов диагностики; способов воздействия на предмет экспериментирования; нового педагогического знания .

По целям различают констатирующий, формирующий и оценочный эксперименты. Цель констатирующего эксперимента - измерение наличного уровня развития. В данном случае мы получаем первичный материал для исследования и организации формирующего эксперимента. Это является чрезвычайно важным для организации любого изыскания.

Формирующий (преобразующий, обучающий) эксперимент ставит своей целью не простую констатацию уровня сформированное той или иной деятельности, развития тех или иных умений испытуемых, а их активное формирование. Здесь необходимо создать специальную экспериментальную ситуацию. Результаты экспериментального исследования часто представляют собой не выявленную закономерность, устойчивую зависимость, а ряд более или менее полно зафиксированных эмпирических фактов. Эти данные часто носят описательный характер, представляют лишь более определенный материал, который сужает дальнейшую сферу поиска. Результаты эксперимента в педагогике и психологии нередко следует рассматривать как промежуточный материал и исходную основу для дальнейшей исследовательской работы.

Оценочный эксперимент (контролирующий) - с его помощью через какой-то промежуток времени после формирующего эксперимента определяется уровень знаний, умений испытуемых по материалам формирующего эксперимента.

Целью проведения экспериментальной работы является апробация выделенных педагогических условий использования электронных учебников в процесс обучения физике в старшем звене общеобразовательной школы и определение их эффективности.

Основными задачами экспериментальной работы являлись: выбор экспериментальных площадок для педагогического эксперимента; определение критериев для подбора экспериментальных групп; разработка инструментария и определение методов педагогической диагностики выбранных групп; разработка педагогических критериев для выявления и соотнесения уровней обученности учащихся контрольных и экспериментальных классов.

Экспериментальная работа осуществлялась в три этапа, включая в себя: диагностирующий этап (проведенный в форме констатирующего эксперимента); содержательный этап (организуемый в форме формирующего эксперимента) и аналитический (проведенный в форме контрольного эксперимента). Принципы осуществления экспериментальной работы.

Принцип всесторонности научно-методической организации экспериментальной работы. Принцип требует обеспечения высокого уровня профессионализма самого педагога-экспериментатора. На эффективность внедрения информационных технологий обучения школьников влияет множество факторов, и, несомненно, её базовым условием является соответствие содержание обучения возможностям школьников. Но даже в этом случае возникают проблемы в преодолении интеллектуальных и физических барьеров и поэтому, при использовании приёмов эмоционально-интеллектуального стимулирования познавательной активности обучающихся мы обеспечивали методическое консультирование, отвечающее следующим требованиям:

а) проблемно-поисковый материал представлялся с использованием персонифицированных объяснительных методов и инструкций, облегчающих усвоение школьниками учебного материала;

б) предлагались различные приёмы и пути усвоения содержания изучаемого материала;

в) отдельным педагогам представлялась возможность свободно выбирать приёмы и схемы решения компьютеризированных задач, работать по своим оригинальным педагогическим приёмам.

Принцип гуманизации содержания экспериментальной работы. Это идея приоритета человеческих ценностей над технократическими, производственными, экономическими, административными и др. Принцип гуманизации реализовывался путём соблюдения следующих правил педагогической деятельности: а) педагогический процесс и воспитательные отношения в нём строятся на полном признании прав и свобод обучающегося и уважении к нему;

б) знать и в ходе педагогического процесса опираться на положительные качества школьника;

в) постоянно осуществлять гуманистическое просвещение педагогов в соответствии с Декларацией «О правах ребёнка»;

г) обеспечивать привлекательность и эстетичность педагогического провеса и комфортность воспитательных отношений всех его участников .

Таким образом, принцип гуманизации, как считают И.А.Колесникова и Е.В.Титова, обеспечивает школьникам определённую социальную защиту в образовательном учреждении .

Принцип демократизации экспериментальной работы - это идея о представлении участникам педагогического процесса определённых свобод для саморазвития, саморегуляции, самоопределения. Принцип демократизации в процессе использования информационных технологий обучения школьников реализуется через соблюдение следующих правил:

а) создавать открытый для общественного контроля и влияния педагогический процесс;

б) создавать правовое обеспечение деятельности обучающихся, способствующие защите их от неблагоприятных воздействий среды;

в) обеспечивать взаимное уважение, такт и терпение во взаимодействии педагогов и обучающихся.

Реализация этого принципа способствует расширению возможностей обучающихся и учителей в определении содержания образования, выборе технологии использования информационных технологий в процесс обучения.

Принцип культуросообразности экспериментальной работы - это идея о максимальном использовании в воспитании, образовании и обучении той среды, в которой и для развития которой создано образовательное учреждение - культуры региона, народа, нации, общества, страны. Реализуется принцип на основе соблюдения таких правил:

а) понимание педагогическою общественностью в школе культуро-исторической ценности;

б) максимальное использование семейной и региональной материальной и духовной культуры;

в) обеспечение единства национального, интернационального, межнационального и интерсоциального начал в воспитании, образовании, обучении школьников;

г) формирование творческих способностей и установок учителей и обучающихся на потребление и создание новых культурных ценностей .

Принцип целостного изучения педагогических явлений в опытной работе, который предполагает: использование системного и интегративно - развивающего подходов; чёткого определения места изучаемого явления в целостном педагогическом процессе; раскрытие движущих сил и явлений изучаемых объектов.

Данным принципом мы руководствовались при моделировании процесса использования информационных технологий обучения.

Принцип объективности, предполагающий: проверку каждого факта несколькими методами; фиксацию всех проявлений изменения исследуемого объекта; сопоставление данных своего исследования с данными других аналойных исследований.

Принцип активно использовался в процессе проведения констатирующего и формирующего этапов эксперимента, при использовании электронного процесса в образовательном процессе, а также при анализе полученных результатов.

Принцип адаптации, требующий учёта личностных особенностей и познавательных способностей, обучающихся в процессе использования информационных технологий, использовался при проведении формирующего эксперимента. Принцип активности, предполагающий, что коррекция личного смыслового поля и стратегии поведения может осуществляться лишь в ходе активной и интенсивной работы каждого участника.

Принцип экспериментирования, направленный на активный поиск участниками занятий новых стратегий поведения. Этот принцип важен как толчок к развитию творчества и инициативы личности, а также как образец поведения в реальной жизни обучающегося .

Говорить о технологии обучения с использованием электронных учебников можно только в том случае, если: она удовлетворяет основным принципам педагогической технологии (предварительное проектирование, воспроизводимость, целеобразование, целостность); она решает задачи, которые ранее в дидактике не были теоретически и/или практически решены; средством подготовки и передачи информации обучаемому является компьютер.

В связи с этим приведём основные принципы системного внедрения компьютеров в учебный процесс, которые были широко использованы в нашей опытной работе .

Принцип новых задач. Суть его состоит в том, чтобы не перекладывать на компьютер традиционно сложившиеся методы и приёмы, а перестраивать их в соответствии с новыми возможностями, которые дают компьютеры. На практике это означает, что при анализе процесса обучения выявляются потери, происходящие от недостатков его организации (недостаточный анализ содержания образования, слабое знание реальных учебных возможностей школьников и др.). В соответствии с результатом анализа намечается список задач, которые в силу различных объективных причин (большой объем, громадные затраты времени и т.п.) сейчас не решаются или решаются неполно, но которые вполне решаются с помощью компьютера. Эти задачи должны быть направлены на полноту, своевременность и хотя бы приближенную оптимальность принимаемых решений.

Принцип системного подхода. Это означает, что внедрение компьютеров должно основываться на системном анализе процесса обучения. То есть должны быть определены цели и критерии функционирования процесса обучения, проведена структуризация, вскрывающая весь комплекс вопросов, которые необходимо решить для того, чтобы проектируемая система наилучшим образом соответствовала установленным целям и критериям.

Принципы максимально разумной типизации проектных решений. Это означает, что, разрабатывая программное обеспечение, исполнитель должен стремиться к тому, чтобы предлагаемые им решения подходили бы возможно более широкому кругу заказчиков не только с точки зрения используемых типов компьютеров, но и различных типов образовательных учреждений.

В заключение данного параграфа отметим, что использование вышеперечисленных методов с другими методами и принципами организации экспериментальной работы позволило определить отношение к проблеме использования электронных учебников в процессе обучения, и наметить конкретные пути эффективного решения проблемы.

Следуя логике теоретического исследования, мы сформировали две группы - контрольную и экспериментальную. В экспериментальной группе проверялась действенность выделенных педагогических условий, в контрольной группе организация процесса обучения была традиционной.

Образовательные особенности реализации педагогических условий использования электронных учебников в процессе обучения физике в старшем звене представлены в параграфе 2.2.

Результаты проделанной работы нашли отражение в параграфе 2.3.


Введение

Глава 1. Теоретические основы использования экспериментального метода на уроках физики в старших классах

1 Роль и значение экспериментальных заданий в школьном курсе физики (определение эксперимента в педагогике, психологии и в теории методике обучения физики)

2 Анализ программ и учебников по использованию экспериментальных заданий в школьном курсе физики

3 Новый подход в проведении экспериментальных заданий по физики с помощью Лего-констукторов на примере раздела «Механика»

4 Методика проведения педагогического эксперимента на уровне констатирующего эксперимента

5 Выводы по первой главе

Глава 2. Разработка и методика проведения экспериментальных заданий по разделу «Механика» для учащихся 10 классов общеобразовательного профиля

1 Разработка систем экспериментальных заданий по теме «Кинематика точки». Методические рекомендации по применению на уроках физики

2 Разработка систем экспериментальных заданий по теме «Кинематика твердого тела». Методические рекомендации по применению на уроках физики

3 Разработка систем экспериментальных заданий по теме «Динамика». Методические рекомендации по применению на уроках физики

4 Разработка систем экспериментальных заданий по теме «Законы сохранения в механике». Методические рекомендации по применению на уроках физики

5 Разработка систем экспериментальных заданий по теме «Статика». Методические рекомендации по применению на уроках физики

6 Выводы по второй главе

Заключение

Список литературы

Ответ на вопрос


Введение


Актуальность темы. Общепризнано, что изучение физики дает не только фактические знания, но и развивает личность. Физическое образование, несомненно, является сферой развития интеллекта. Последний, как известно, проявляется и в мыслительной, и в предметной деятельности человека.

В этой связи особое значение приобретает экспериментальное решение задач, которое с необходимостью предполагает оба вида деятельности. Как и любой вид решения задач, оно имеет общую для процесса мышления структуру и закономерности. Экспериментальный подход открывает возможности развития образного мышления.

Экспериментальное решение физических задач, в силу их содержания и методологии решения, может стать важным средством развития универсальных исследовательских навыков и умений: постановки эксперимента, опирающегося на определенные модели исследования, собственно экспериментирования, способности выделить и сформулировать наиболее существенные результаты, выдвинуть гипотезу, адекватную изучаемому предмету, и на ее основе построить физическую и математическую модель, привлечь к анализу вычислительную технику. Новизна содержания физических задач для учащихся, вариативность в выборе экспериментальных методик и средств, необходимая самостоятельность мышления при разработке и анализе физической и математической моделей создают предпосылки для формирования творческих способностей.

Таким образом, разработка системы экспериментальных заданий по физике на примере механики актуальна в плане развивающего и личностно - ориентированного обучения.

Объектом исследования является процесс обучения учащихся десятых классов.

Предметом исследования является система экспериментальных заданий по физике на примере механики, направленная на развитие интеллектуальных способностей, формирование исследовательского подхода, творческой активности учащихся.

Цель исследования - разработка системы экспериментальных заданий по физике на примере механики.

Гипотеза исследования - Если в систему физического эксперимента раздела «Механика» включить демонстрации учителя, связанные с ними домашние и классные опыты учащихся, а также экспериментальные задания для учащихся по элективным курсам, а познавательную деятельность учащихся при их выполнении и обсуждении организовать на основе проблемности, то у школьников появится возможность приобретать, наряду со знанием основных физических понятий и законов, информационные, экспериментальные, проблемные, деятельностные умения, что и приведет к повышению интереса к физике как предмету. Исходя из цели и гипотезы исследования, были доставлены следующие задачи:

1. Определить роль и значение экспериментальных заданий в школьном курсе физики (определение эксперимента в педагогике, психологии и в теории методике обучения физики).

Проанализировать программы и учебники по использованию экспериментальных заданий в школьном курсе физики.

Раскрыть сущность методики проведения педагогического эксперимента на уровне констатирующего эксперимента.

Разработать систему экспериментальных заданий по разделу «Механика» для учащихся 10 классов общеобразовательного профиля.

Научная новизна и теоретическая значимость работы заключается в следующем: Установлена роль экспериментального решения физических заданий как средства в развитии познавательных способностей, исследовательских навыков и творческой активности учащихся 10 - х классов.

Теоретическое значение исследований определяется разработкой и обоснованием методических основ технологии проектирования и организации учебного процесса по экспериментальному решению физических задач как средства развивающего и личностно-ориентированного обучения.

Для решения поставленных задач использовалась совокупность методов:

·теоретический анализ психолого-педагогической литературы и сравнительно-сопоставительный методы;

·системный подход к оценке результатов теоретического анализа, метод восхождения от абстрактного к конкретному, синтез теоретического и эмпирического материала, метод содержательного обобщения, логико-эвристическая разработка решений, вероятностное прогнозирование, прогностическое моделирование, мысленный эксперимент.

Работа состоит из введения, двух глав, заключения, библиографического списка, приложений.

Апробация разработанной системы заданий проводилась на базе школы - интерната № 30 Среднего Общего Образования Открытого Акционерного Общества «Российские Железные Дороги», адрес: город Комсомольск - на Амуре, проспект Ленина 58/2.


Глава 1. Теоретические основы использования экспериментального метода на уроках физики в старших классах


1 Роль и значение экспериментальных заданий в школьном курсе физики (определение эксперимента в педагогике, психологии и в теории методике обучения физики)


Роберт Вудвортс (R. S. Woodworth), опубликовавший свой классический учебник по экспериментальной психологии («Experimental psychology», 1938), определял эксперимент как упорядоченное исследование, в ходе которого исследователь непосредственно изменяет некий фактор (или факторы), поддерживает остальные неизменными и наблюдает результаты систематических изменений .

В педагогике Сластенин В. определял эксперимент как исследовательскую деятельность с целью изучения причинно-следственных связей в педагогических явлениях .

В философии Соколов В.В. описывает эксперимент, как метод научного познания .

Основатель физики - Знаменский А.П. описывал эксперимент как вид познавательной деятельности, в которой ключевая для той или иной научной теории ситуация разыгрывается не в реальном действии .

По Роберту Вудвортсу констатирующий эксперимент - это эксперимент, устанавливающий наличие какого-либо непреложного факта или явления .

По Сластенину В. - констатирующий эксперимент проводится в начале исследования и направлен на выяснение состояния дел в школьной практике по изучаемой проблеме .

По Роберту Вудвортсу формирующий (преобразующий, обучающий) эксперимент ставит своей целью активное формирование или воспитание тех или иных сторон психики, уровней деятельности и т.д.; используется при изучении конкретных путей формирования личности ребёнка, обеспечивая соединение психологических исследований с педагогическим поиском и проектированием наиболее эффективных форм учебно-воспитательной работы .

По Сластенину В. - формирующий эксперимент, в процессе которого конструируются новые педагогические явления .

По Сластенину В. - экспериментальные задания - это кратковременные наблюдения, измерения и опыты, тесно связанные с темой урока .

Личностно ориентированное обучение - это такое обучение, где во главу угла ставится личность ребенка, ее самобытность, самоценность, субъектный опыт каждого сначала раскрывается, а затем согласовывается с содержанием образования. Если в традиционной философии образования социально-педагогические модели развития личности описывались в виде извне задаваемых образцов, эталонов познания (познавательной деятельности), то личностно ориентированное обучение исходит из признания уникальности субъектного опыта самого ученика, как важного источника индивидуальной жизнедеятельности, проявляемой, в частности, в познании. Тем самым признается, что в образовании происходит не просто интериоризации ребенком заданных педагогических воздействий, а «встреча» задаваемого и субъектного опыта, своеобразное «окультуривание» последнего, его обогащение, приращение, преобразование, что и составляет «вектор» индивидуального развития Признание ученика главной действующей фигурой всего образовательного процесса и есть личностно-ориентированная педагогика.

При проектировании образовательного процесса нужно исходить из признания двух равноправных источников: обучения и учения. Последнее не есть просто дериват первого, а является самостоятельным, личностно-значимым, а потому очень действенным источником развития личности.

Личностно-ориентированное обучение строится на принципе субъектности. Из него вытекает целый ряд положений.

Учебный материал не может быть одинаковым для всех учащихся. Ученику надо дать возможность выбрать то, что соответствует его субъектности при изучении материала, выполнении заданий, решении задач. В содержании учебных текстов возможны и допустимы противоречивые суждения, вариативность изложения, проявление разного эмоционального отношения, авторские позиции. Ученик не заучивает обязательный материал с заранее заданными выводами, а сам его отбирает, изучает, анализирует и делает собственные выводы. Упор делается не на развитие только памяти ученика, а на самостоятельность его мышления и самобытность выводов. Проблемность заданий, неоднозначность учебного материала подталкивают ученика к этому.

Формирующий эксперимент, - это специфический исключительно для психологии вид эксперимента, в котором активное воздействие экспериментальной ситуации на испытуемого должно способствовать его психическому развитию и личностному росту .

Рассмотрим роль и значение экспериментальных заданий в психологии, педагогике, философии, и теории методики обучения физики.

Основным методом исследовательской работы психолога является эксперимент. Известный отечественный психолог С.Л. Рубинштейн (1889-1960) выделял следующие качества эксперимента, обуславливающие его значение для получения научных фактов: «1) В эксперименте исследователь сам вызывает изучаемое им явление, вместо того чтобы ждать, как при объективном наблюдении, пока случайный поток явления доставит ему возможность его наблюдать. 2) Имея возможность вызывать изучаемое явление, экспериментатор может варьировать, изменять условия, при которых протекает явление, вместо того чтобы, как при простом наблюдении, брать их таким, каким ему их доставляет случай. 3) Изомеруя отдельные условия и изменяя одно из них при сохранении неизменными остальных, эксперимент тем самым выявляет значение этих отдельных условий и устанавливает закономерные связи, определяющие изучаемый им процесс. Эксперимент, таким образом, очень мощные методическое средство для выявления закономерностей. 4) Выявляя закономерные связи между явлениями, эксперимент часто может варьировать не только самые условия в смысле их наличия или отсутствия, но и их количественные соотношения. В результате эксперимент устанавливает допускающие математическую формулировку качественные закономерности» .

Наиболее ярким педагогическим направлением, призванным реализовать идеи «нового воспитания», выступает экспериментальная педагогика, ведущим стремлением которой является разработка научно обоснованной теории обучения и воспитания, способной развить индивидуальность личности. Возникшая в XIX в. экспериментальная педагогика (термин предложил Э. Мейман) ставила своей целью всестороннее исследование ребёнка и обоснование педагогической теории экспериментальным путём. Она оказала сильное влияние на ход развития отечественной педагогической науки. .

Ни одна тема не должна быть пройдена чисто теоретически, как ни одна работа не должна быть проделана без освещения ее научной теории. Умелое сочетание теории с практикой и практики с теорией даст нужный воспитательный и образовательный эффект и обеспечит выполнение требований, которые предъявляет нам педагогика. Основное орудие обучения физике (ее практической части) в школе - демонстрационный и лабораторный эксперимент, с которым учащийся должен иметь дело в классе при объяснениях учителя, на лабораторных работах, в физическом практикуме, в физическом кружке и в домашних условиях.

Без эксперимента нет и не может быть рационального обучения физике; одно словесное обучение физике неизбежно приводит к формализму и механическому заучиванию .

Эксперимент в школьном курсе физики - это отражение научного метода исследования, присущего физике.

Постановка опытов и наблюдений имеет большое значение для ознакомления учащихся с сущностью экспериментального метода, с его ролью в научных исследованиях по физике, а так же в формировании умений самостоятельно приобретать и применять знания, развитии творческих способностей.

Сформированные умения в ходе проведения экспериментов являются важным аспектом для положительной мотивации учащихся на исследовательскую деятельность. В школьной практике эксперимент, экспериментальный метод и экспериментальная деятельность учащихся реализуются в основном при постановке демонстрационных и лабораторных опытов, в проблемно-поисковом и исследовательском методах обучения.

Отдельную группу экспериментальных основ физики составляет фундаментальные научные эксперименты. Ряд экспериментов демонстрируется на имеющемся в школе оборудовании, другие - на моделях, третьи, - просматривая кинофильмы. Изучение фундаментальных экспериментов позволяет активизировать деятельность учащихся, способствует развитию их мышления, вызывает интерес, побуждает к самостоятельным исследованиям.

Большое количество наблюдений и демонстраций не обеспечивает формирование у учащихся умения самостоятельно и целостно проводить наблюдение. Этот факт можно связать с тем, что в большинстве экспериментов, предлагаемых учащимся, определены состав и последовательность выполнения всех операций. Эта проблема еще более усугубилась после появления тетрадей для лабораторных работ на печатной основе. Учащиеся, выполнив по таким тетрадям только за три года обучения (с 9 по 11 классы) более тридцати лабораторных работ, не могут определить основные операции эксперимента. Хотя для учащихся с низким и удовлетворительным уровнями обучаемости они обеспечивают ситуацию успеха и создают познавательный интерес, положительную мотивацию. Что еще раз подтверждают исследования: более 30% школьников любят уроки физики за возможность самостоятельно выполнять лабораторные и практические работы.

Для того чтобы на уроках и лабораторных работах у учащихся формировались все элементы экспериментальных методов учебного исследования: измерений, наблюдения, фиксация их результатов, проведение математической обработки полученных результатов, и при этом их выполнение сопровождалось высокой степенью самостоятельности и эффективности, перед началом проведения каждого эксперимента учащимся предлагается эвристическое предписание «Учусь ставить эксперимент», а перед наблюдением эвристическое предписание «Учусь наблюдать». Они подсказывают учащимся, что нужно сделать (но не как) намечают направление движения вперед.

Большие возможности для организации самостоятельных экспериментов учащихся имеет «Тетрадь для экспериментальных исследований учащихся 10 классов» (авторы Н.И. Запрудский, А.Л. Карпук). В зависимости от способностей учащихся им предлагается два варианта проведения (самостоятельно с использованием общих рекомендаций по планированию и проведению эксперимента - вариант А или в соответствии с предложенными в варианте Б пошаговыми действиями). Выбор дополнительных к программным экспериментальных исследований и экспериментальных задач дает большие возможности для реализации интересов учащихся .

В целом, в процессе самостоятельной экспериментальной деятельности учащиеся приобретают следующие конкретные умения:

·наблюдать и изучать явления и свойства веществ и тел;

·описывать результаты наблюдений;

·выдвигать гипотезы;

·отбирать, необходимые для проведения экспериментов, приборы;

·выполнять измерения;

·вычислять погрешности прямых и косвенных измерений;

·представлять результаты измерений в виде таблиц и графиков;

·интерпретировать результаты экспериментов;

·делать выводы;

·обсуждать результаты эксперимента, участвовать в дискуссии.

Учебный физический эксперимент является неотъемлемой, органической частью курса физики средней школы. Удачное сочетание теоретического материала и эксперимента дает, как показывает практика, наилучший педагогический результат .


.2 Анализ программ и учебников по использованию экспериментальных заданий в школьном курсе физики


В старшей школе (10 - 11 классах) распространены и используются в основном пять УМК.

УМК - «Физика 10-11» авт. Касьянов В.А.

класс. 1-3 часа в неделю. Учебник, авт. Касьянов В.А.

Курс предназначен для учащихся общеобразовательных классов, для которых физика не является профильным предметом и должна изучаться в соответствии с базисным компонентом учебного плана. Основная цель - формирование у школьников представлений о методологии научного познания, роли, месте и взаимосвязи теории и эксперимента в процессе познания, об их соотношении, о структуре Вселенной и о положении человека в окружающем мире. Курс призван сформировать у учащихся мнение об общих принципах физики и основных задачах, которые она решает; осуществить экологическое образование школьников, т.е. сформировать у них представление о научных аспектах охраны окружающей среды; выработать научный поход к анализу вновь открываемых явлений. Данный УМК в плане содержания и методики изложения учебного материала доработан автором в большей степени, чем другие, но требует для изучения 3 и более часов в неделю (10-11 кл.) В комплект входят:

Методическое пособие для учителя.

Тетрадь для лабораторных работ к каждому из учебников.

УМК - «Физика 10-11», авт. Мякишев Г.Я., Буховцев Б. Б., Сотский Н. Н.

класс. 3-4 часа в неделю. Учебник, авт. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н.

класс. 3-4 часа в неделю. Учебник, авт. Мякишев Г.Я., Буховцев Б. Б.

Физика 10 класс. Рассчитан на 3, и более часов в неделю, к коллективу первых двух хорошо известных авторов Мякишеву Г.Я., Буховцеву Б.Б. добавился Сотский Н.Н., написавший раздел механики, изучение которого теперь стало необходимо в старшей профильной школе. Физика 11 класс. 3 - 4 часа в неделю. Авторский коллектив прежний: Мякишев Г.Я., Буховцев Б.Б. Этот курс переработан мало, по сравнению со «старым Мякишевым» почти не изменился. Имеет место незначительное перенесение отдельных частей в выпускной класс. Данный комплект является переработанным вариантом традиционных учебников (по ним учился почти весь СССР) для старшей школы тех же авторов.

УМК - «Физика 10-11», авт. Анциферов Л. И.

класс. 3 часа в неделю. Учебник, авт. Анциферов Л.И.

В основу программы курса положен циклический принцип построения учебного материала, предусматривающий изучение физической теории, ее использование при решении задач, применение теории на практике. Выделены два уровня содержания образования: базовый минимум, обязательный для всех, и учебный материал повышенной трудности, адресуемый школьникам, особо интересующимся физикой. Этот учебник написан известным методистом из г. Курска проф. Анциферовым Л.И. Многолетняя работа в педагогическом ВУЗе и чтение лекций студентам привела к созданию данного школьного курса. Эти учебники трудны для общеобразовательного уровня, требуют переработки и дополнительных методических материалов.

УМК - «Физика 10-11», авт. Громов С. В.

класс. 3 часа в неделю. Учебник, авт. Громов С. В.

класс. 2 часа в неделю. Учебник, авт. Громов С. В.

Учебники предназначены для старших классов общеобразовательных школ. Включают теоретическое изложение «школьной физики». При этом значительное внимание уделяется историческим материалам и фактам. Порядок изложения необычен: механика завершается главой СТО, далее следуют электродинамика, МКТ, квантовая физика, физика атомного ядра и элементарных частиц. Такая структура, по мнению автора курса, позволяет формировать в сознании учащихся более строгое представление о современной физической картине мира. Практическая часть представлена описаниями минимального числа стандартных лабораторных работ. Прохождение материала предполагает решение большого количества задач, приведены алгоритмы решения их основных типов. Во всех представленных выше учебниках для старшей школы должен реализоваться так называемый общеобразовательный уровень, но это во многом будет зависеть от педагогического мастерства учителя. Все эти учебники в современной школе вполне могут использоваться в классах естественнонаучного, технического и др. профилей, с сеткой 4-5 ч. в неделю.

УМК - «Физика 10-11», авт. Мансуров А. Н., Мансуров Н. А.

11 класс. 2 часа (1час) в неделю. Учебник, авт. Мансуров А. Н., Мансуров Н. А.

По данному комплекту работают единичные школы! Но он является первым учебником, для предполагаемого гуманитарного профиля физики. Авторы попытались сформировать представление о физической картине мира, последовательно рассматриваются механическая, электродинамическая и квантово-статистическая картины мира. В содержание курса включены элементы методов познания. Курс содержит фрагментарное описание законов, теорий, процессов и явлений. Математический аппарат почти не используется и заменен словесным описанием физических моделей. Решение задач и проведение лабораторных работ не предусмотрено. Дополнительно к учебнику изданы методические пособия и планирование .


3 Новый подход в проведении экспериментальных заданий по физики с помощью Лего-констукторов на примере раздела «Механика»

физика школьный экспериментальный механика

Реализация современных требований к сформированности экспериментальных умений невозможна без использования новых подходов к проведению практических работ. Необходимо использовать методику, при которой лабораторные работы выполняют не иллюстративную функцию к изучаемому материалу, а являются полноправной частью содержания образования и требуют применения исследовательских методов в обучении. При этом возрастает роль фронтального эксперимента при изучении нового материала с использованием исследовательского подхода и максимальное количество опытов должно переноситься с демонстрационного стола учителя на парты учащихся. При планировании учебного процесса необходимо уделить внимание не только количеству лабораторных работ, но и видам деятельности, которые они формируют. Желательно переносить часть работ с проведения косвенных измерений на исследования по проверке зависимостей между величинами и построение графиков эмпирических зависимостей. При этом уделить внимание формированию следующих умений: конструировать экспериментальную установку исходя из формулировки гипотезы опыта; строить графики и рассчитывать по ним значения физических величин; анализировать результаты экспериментальных исследований, выраженных в виде экспериментальных исследований, выраженных в виде таблицы или графика, делать выводы по результатам эксперимента.

Федеральный компонент государственного образовательного стандарта по физике предполагает приоритет деятельностного подхода к процессу обучения, развития у учащихся умений проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач. Использование в учебном процессе Лего-технологий имеет огромное значение для реализации этих требований.

Использование Лего-конструкторов повышает мотивацию учащихся к обучению, т.к. при этом требуются знания практически из всех учебных дисциплин от искусств и истории до математики и естественных наук. Межпредметные занятия опираются на естественный интерес к разработке и постройке различных механизмов.

Современная организация учебной деятельности требует того, чтобы теоретические обобщения учащиеся дали на основе результатов собственной деятельности. Для учебного предмета «физика» - это учебный эксперимент.

Принципиально изменились роль, место и функции самостоятельного эксперимента при обучении физики: учащиеся должны овладевать не только конкретными практическими умениями, но и основами естественнонаучного метода познания, а это может быть реализовано только через систему самостоятельных экспериментальных исследований. Lego-конструкторы существенно мобилизируют такие исследования.

Особенностью преподавания учебного предмета «Физика» в 2009/2010 учебном году является использование образовательных Лего - конструкторов, которые позволяют в полной мере реализовать принцип личностно-ориентированного обучения, провести демонстрационные эксперименты и лабораторные работы, охватывающие практически все темы курса физики и выполняющие не столько иллюстративную функцию к изучаемому материалу, а требующие применения исследовательских методов, что способствует повышению интереса к изучаемому предмету.

1.Индустрия развлечений. ПервоРобот. В наборе: 216 ЛЕГО-элементов, включая RCX-блок и ИК передатчик, датчик освещенности, 2 датчика касания, 2 мотора 9 В.

2.Автоматизированные устройства. ПервоРобот. В наборе: 828 ЛЕГО-элементов, включая Лего-компьютер RCX, инфракрасный передатчик, 2 датчика освещенности, 2 датчика касания, 2 мотора 9 В.

.ПервоРобот NXT. В наборе: программируемый блок управления NXT, три интерактивных сервомотора, набор датчиков (расстояния, касания, звука, света и др.), аккумулятор, соединительные кабели, а также 407 конструктивных ЛЕГО-элементов - балки, оси, зубчатые колеса, штифты, кирпичи, пластины и др.

.Энергия, работа, мощность. В наборе: четыре одинаковых, полностью укомплектованных мини-набора по 201 детали в каждом, включая моторы и электрические конденсаторы.

.Технология и физика. В наборе: 352 детали, предназначенных для изучения основных законов механики и теории магнетизма.

.Пневматика. В наборе: насосы, трубы, цилиндры, клапаны, воздушный ресивер и манометр для построения пневматических моделей.

.Возобновляемые источники энергии. В наборе: 721 элемент, в том числе микромотор, солнечная батарея, различные шестеренки и соединительные провода.

Наборы ПервоРобот на базе блоков управления RCX и NXT предназначены для создания программируемых роботизированных устройств, которые позволяют производит сбор данных с датчиков и их первичную обработку.

Образовательные Лего-конструкторы серии «EDUCATIONAL» (образование) могут быть использованы при изучении раздела «Механика» (блоки, рычаги, виды движения, преобразование энергии, законы сохранения). При достаточной мотивации и методической подготовке с помощью тематических комплектов Lego возможно охватить основные разделы физики, что сделает занятия интересными и эффективными, а, следовательно, осуществлять качественную подготовку учащихся .


.4 Методика проведения педагогического эксперимента на уровне констатирующего эксперимента


Есть два варианта построения педагогического эксперимента.

Первый - когда в эксперименте участвуют две группы детей, одна из которых занимается по экспериментальной программе, а вторая - по традиционной. На третьем этапе исследования будут сравниваться уровни знаний и умений обеих групп.

Второй - когда в эксперименте участвует одна группа детей, и на третьем этапе сравнивается уровень знаний до формирующего эксперимента и после.

В соответствии с гипотезой и задачами исследования был разработан план педагогического эксперимента, который включал три этапа.

Констатирующий этап проводился в месяц, год. Целью его явилось изучение особенностей / знаний / навыков и т.д. ... у детей... возраста.

На формирующем этапе (месяц, год), проводилась работа по формированию..., с использованием....

Контрольный этап (месяц, год) ставил своей целью проверку усвоения детьми... возраста экспериментальной программы знаний/умений.

Эксперимент проводился в.... В нем участвовало кол-во детей (указать возраст).

На первом этапе констатирующего эксперимента изучались представления/знания/умения детей о....

Была разработана серия заданий для изучения знаний детей....

задание. Цель:

Анализ выполнения задания показал: ...

задание. Цель:

Анализ выполнения задания...

задание. ...

От 3 до 6 заданий.

Результаты анализа заданий стоит разместить в таблицах. В таблицах указывают кол-во детей или процент от общего их количества. В таблицах можно указывать уровни развития данного умения у детей, или кол-во выполненных заданий, и т.д. Пример таблиц:


Таблица №....

Количество детей №№Абсолютное число%1 задание (на определенные знания, умения)2 задание3 задание

Или такая таблица: (в этом случае необходимо указать, по каким критериям дети относятся к тому или иному уровню)

Для выявления у детей уровня..., нами были разработаны следующие критерии:

Были выделены три уровня.... :

Высокий: ...

Средний: ...

Низкий: ...

В таблице № представлено соотношение количества детей контрольной и экспериментальной групп по уровням.


Таблица №....

Уровень знаний/уменийКоличество детей №№Абсолютное число%ВысокийСреднийНизкий

Полученные данные свидетельствуют о том, что....

Проведенная экспериментальная работа дала возможность определить пути и средства... .


1.5 Выводы по первой главе


В первой главе нами рассмотрена роль и значение экспериментальных заданий при изучении физики в школе. Даны определения: эксперимента в педагогике, психологии, философии, методике обучения физике, экспериментальных заданий в этих же областях.

Проанализировав все определения, можно сделать следующий вывод о сути экспериментальных заданий. Разумеется, определение этих заданий как исследовательских, имеет несколько условный характер, так как возможность школьного кабинета физики и уровень подготовленности учащихся даже в старших классах делают задачу проведения физических исследований не выполнимой. Поэтому к исследовательским, творческим следует отнести те задания, в которых ученик может открыть новые, неизвестные для него закономерности или для решения которых, он должен сделать какие - то изобретения. Такое самостоятельное открытие известного в физике закона или изобретение способа измерения физической величины не является простым повторением известного. Это открытие или изобретение, обладающее лишь субъективной новизной, для ученика является объективным доказательством его способности к самостоятельному творчеству, позволяет приобрести необходимую уверенность в своих силах и способностях. И все же можно решить эту задачу.

Проанализировав программы и учебники «Физика» 10 класс по использованию экспериментальных заданий в разделе «Механика». Можно сказать о том, что лабораторных работ и опытов в данном курсе проводится недостаточно для того, чтобы полноценно воспринимать весь материал по разделу «Механика».

Также рассмотрен новый подход в преподавании физики - использование Лего - конструкторов, позволяющих развивать творческое мышление учащихся.


Глава 2. Разработка и методика проведения экспериментальных заданий по разделу «Механика» для учащихся 10 классов общеобразовательного профиля


1 Разработка систем экспериментальных заданий по теме «Кинематика точки». Методические рекомендации по применению на уроках физики


На изучение темы кинематика точки отводится 13 часов.

Движение с постоянным ускорением.

Для этой темы разработано экспериментальное задание:

Для выполнения работы используется машина Атвуда.

Для выполнения работы машина Атвуда должна быть установлена строго вертикально, что легко проверить по параллельности шкалы и нити.

Цель опыта: Проверка закона скоростей

Измерения

Проверяют вертикальность установки машины Атвуда. Балансируют грузы.

Укрепляют на шкале кольцевую полочку П1. Регулируют ее положение.

Накладывают на правый груз перегрузок в 5-6 г.

Двигаясь равноускоренно из верхнего положения до кольцевой полочки, правый груз проходит путь S1 за время t1 и приобретает к концу этого движения скорость v. На кольцевой полочке груз сбрасывает перегрузок и дальше движется равномерно со скоростью, которую он приобрел в конце разгона. Для определения ее следует измерить время t2 движения груза на пути S2. Таким образом, каждый опыт состоит из двух измерений: сначала измеряется время равноускоренного движения t1, а затем груз повторно запускается для измерения времени равномерного движения t2.

Проводят 5-6 опытов при различных значениях пути S1 (с шагом 15-20 см). Путь S2 выбирается произвольно. Полученные данные заносят в таблицу отчета.

Методические особенности:

Несмотря на то, что основные уравнения кинематики прямолинейного движения имеют простую форму и не вызывают сомнения, экспериментальная проверка этих соотношений весьма сложна. Трудности возникают в основном по двум причинам. Во-первых, при достаточно больших скоростях движения тел необходимо с большой точностью измерять время их движения. Во-вторых, в любой системе движущихся тел действуют силы трения и сопротивления, которые трудно учесть с достаточной степенью точности.

Поэтому необходимо проводить такие эксперименты и опыты, которые снимают все трудности.


2 Разработка систем экспериментальных заданий по теме «Кинематика твердого тела». Методические рекомендации по применению на уроках физики


На изучение темы Кинематика отводится 3 часа, и включает в себя следующие разделы:

Механическое движение и его относительность. Поступательное и вращательное движение твердого тела. Материальная точка. Траектория движения. Равномерное и равноускоренное движение. Свободное падение. Движение тела по окружности. По этой теме нами предложено следующее экспериментальное задание:

Цель работы

Экспериментальная проверка основного уравнения динамики вращательного движения твердого тела вокруг закрепленной оси.

Идея эксперимента

В эксперименте исследуется вращательное движение закрепленной на оси системы тел, у которой может меняться момент инерции (маятник Обербека). Различные моменты внешних сил создаются грузами, подвешенными на нити, намотанной на шкив.

Экспериментальная установка

Ось маятника Обербека закреплена в подшипниках, так что вся система может вращаться вокруг горизонтальной оси. Передвигая грузы по спицам, можно легко изменять момент инерции системы. На шкив виток к витку наматывается нить, к которой привязана платформа известной массы. На платформу накладываются грузы из набора. Высота падения грузов измеряется с помощью линейки, укрепленной параллельно нити. Маятник Обербека может быть снабжен электромагнитной муфтой - пускателем и электронным секундомером. Перед каждым опытом маятник следует тщательно отрегулировать. Особое внимание необходимо обратить на симметричность расположения грузов на крестовине. При этом маятник оказывается в состоянии безразличного равновесия.

Проведение эксперимента

Задание 1. Оценка момента силы трения, действующей в системе

Измерения

Устанавливают грузы m1 на крестовине в среднее положение, размещая их на равном расстоянии от оси таким образом, чтобы маятник находился в положении безразличного равновесия.

Накладывая небольшие грузы на платформу, определяют приближенно минимальную массу m0 , при которой маятник начнет вращаться. Оценивают момент силы трения из соотношения

где R - радиус шкива, на который намотана нить.

Дальнейшие измерения желательно проводить с грузами массой m 10m0.

Задание 2. Проверка основного уравнения динамики вращательного движения

Измерения

Укрепляют грузы m1 на минимальном расстоянии от оси вращения. Балансируют маятник. Измеряют расстояние r от оси маятника до центров грузов.

Наматывают нить на один из шкивов. По масштабной линейке выбирают начальное положение платформы, производя отсчет, например, по ее нижнему краю. Тогда конечное положение груза будет находиться на уровне поднятой приемной платформы. Высота падения груза h равна разности этих отсчетов и может быть оставлена во всех опытах одинаковой.

Кладут на платформу первый груз. Расположив груз на уровне верхнего отсчета, фиксируют это положение, зажимая нить электромагнитной муфтой. Подготавливают к измерению электронный секундомер.

Отпускают нить, предоставив грузу возможность падать. Это достигается отключением муфты. При этом автоматически включается секундомер. Удар о приемную платформу останавливает падение груза и останавливает секундомер.

Измерение времени падения при одном и том же грузе выполняется не менее трех раз.

Проводят измерения времени падения груза m при других значениях момента Мн. Для этого либо добавляют на платформу дополнительные перегрузки, либо перебрасывают нить на другой шкив. При одном и том же значении момента инерции маятника необходимо провести измерения не менее чем с пятью значениями момента Мн.

Увеличивают момент инерции маятника. Для этого достаточно симметрично переместить грузы m1 на несколько сантиметров. Шаг такого перемещения должен быть выбран таким образом, чтобы получить 5-6 значений момента инерции маятника. Проводят измерения времени падения груза m (п.2-п.7). Все данные заносят в таблицу отчета.


3 Разработка систем экспериментальных заданий по теме «Динамика». Методические рекомендации по применению на уроках физики


На изучение темы Динамика отводится 18 часов.

Силы сопротивления при движении твердых тел в жидкостях и газах.

Цель эксперимента: Показать, как скорость воздуха влияет на полет самолета.

Материалы: маленькая воронка, мячик для настольного тенниса.

Переверните воронку широкой частью вниз.

Вложите мячик в воронку и поддерживайте его пальцем.

Дуйте в узкий конец воронки.

Перестаньте поддерживать пальцем мячик, но продолжайте дуть.

Итоги: Мячик остается в воронке.

Почему? Чем быстрее мимо мяча проходит воздух, тем меньше давления он оказывает на мяч. Давление воздуха над мячом гораздо меньше, чем под ним, поэтому мячик поддерживается находящимся под ним воздухом. Благодаря давлению движущегося воздуха крылья самолета как бы подталкиваются вверх. Благодаря форме крыла воздух быстрее передвигается над его верхней поверхностью, чем под нижней. Поэтому возникает сила, которая толкает самолет вверх - подъемная сила. .


4 Разработка систем экспериментальных заданий по теме «Законы сохранения в механике». Методические рекомендации по применению на уроках физики


На тему законы сохранения в механике отводится 16 часов.

Закон сохранения импульса. (5 часов)

Для этой темы нами было предложено следующее экспериментальное задание:

Цель: изучение закона сохранения импульса.

Каждый из Вас наверное сталкивался с такой ситуацией: Вы бежите с определенной скоростью по коридору и сталкиваетесь со стоящим человеком. Что происходит с этим человеком? Действительно, он начинает двигаться, т.е. приобретает скорость.

Проделаем опыт по взаимодействию двух шаров. На тонких нитях висят два одинаковых шарика. Отведем в сторону левый шар и отпустим. После столкновения шаров левый остановится, а правый придет в движение. Высота, на которую поднимется правый шар, будет совпадать с той, на которую до этого был отклонен левый шар. То есть левый шар передает правому весь свой импульс. На сколько уменьшится импульс первого шара, на столько же увеличится импульс второго шара. Если же говорить о системе 2-х шаров, то импульс системы остается неизменным, то есть сохраняется.

Такое соударение называется упругим (слайды № 7-9).

Признаки упругого соударения:

-Нет остаточной деформации и, следовательно, выполняются оба закона сохранения в механике.

-Тела после взаимодействия движутся совместно.

-Примеры подобного вида взаимодействия: игра в теннис, хоккей и т. п.

-Если масса подвижного тела больше массы неподвижного (m1 > m2), то оно уменьшает скорость, не меняя направления.

-Если наоборот, то первое тело от него отражается и движется в противоположную сторону.

Существует также неупругое соударение

Понаблюдаем: возьмем один большой шарик, один маленький. Маленький шарик покоится, а большой приводим в движение по направлению к маленькому.

После столкновения шарики движутся вместе с одной скоростью.

Признаки упругого соударения:

-В результате взаимодействия тела движутся совместно.

-У тел появляется остаточная деформация, следовательно, механическая энергия превращается во внутреннюю энергию.

-Выполняется только закон сохранения импульса.

-Примеры из жизненного опыта: столкновение метеорита с Землёй, удары молотком по наковальне и т. п.

-При равенстве масс (одно из тел неподвижно) теряется половина механической энергии,

-Если m1 много меньше m2, то теряется её большая часть (пуля и стена),

-Если наоборот, передается незначительная часть энергии (ледокол и маленькая льдина).

То есть существует два вида столкновений: упругие и неупругие. .


5 Разработка систем экспериментальных заданий по теме «Статика». Методические рекомендации по применению на уроках физики


На изучение темы «Статика. Равновесие абсолютно твердых тел» отводится 3 часа.

Для этой темы нами было предложено следующее экспериментальное задание:

Цель эксперимента: Найти положение центра тяжести.

Материалы: пластилин, две металлические вилки, зубочистка, высокий стакан или банка с широким горлом.

Скатайте из пластилина шарик диаметром около 4 см.

Воткните в шарик вилку.

Вторую вилку воткните в шарик под углом в 45 градусов по отношению к первой вилке.

Воткните зубочистку в шарик между вилками.

Зубочистку поместите концом на край стакана и двигайте к центру стакана, пока не наступит равновесие.

Итоги: При определенном положении зубочистки вилки уравновешиваются.

Почему? Поскольку вилки расположены под углом друг к другу, то их вес как бы сосредоточен в определенной точке палочки, находящейся между ними. Эта точка называется центром тяжести.


.6 Выводы по второй главе


Во второй главе нами были представлены экспериментальные задания по теме «Механика».

Было выяснено, что каждый эксперимент, выработка понятий, допускающих качественные характеристики в форме числа. Чтобы из наблюдений сделать общие выводы, выяснить причины явлений, надо установить количественные зависимости между величинами. Если такая зависимость получается, то найден физический закон. Если найден физический закон, то нет необходимости ставить в каждом отдельном случае опыт, достаточно выполнить соответствующие вычисления.

Изучив экспериментально количественные связи между величинами, можно выявить закономерности. На основе этих закономерностей развивается общая теория явлений.


Заключение


Уже в определении физики как науки заложено сочетание в ней как теоретической, так и практической частей. Считается важным, чтобы в процессе обучения учащихся физике учитель смог как можно полнее продемонстрировать своим ученикам взаимосвязь этих частей. Ведь когда учащиеся почувствуют эту взаимосвязь, то они смогут многим процессам, происходящим вокруг них в быту, в природе, дать верное теоретическое объяснение. Это может являться показателем достаточно полного владения материалом.

Какие формы обучения практического характера можно предложить в дополнение к рассказу преподавателя? В первую очередь, конечно, это наблюдение учениками за демонстрацией опытов, проводимых учителем в классе при объяснении нового материала или при повторении пройденного, так же можно предложить опыты, проводимые самими учащимися в классе во время уроков в процессе фронтальной лабораторной работы под непосредственным наблюдением учителя. Еще можно предложить: 1)опыты, проводимые самими учащимися в классе во время физического практикума; 2)опыты-демонстрации, проводимые учащимися при ответах; 3)опыты, проводимые учащимися вне школы по домашним заданиям учителя; 4)наблюдения кратковременных и длительных явлений природы, техники и быта, проводимые учащимися на дому по особым заданиям учителя.

Опыт же не только учит он увлекает ученика заставляет лучше понимать то явление, которое он демонстрирует. Ведь известно, что человек заинтересованный в конечном результате добивается успеха. Так и в данном случае заинтересовав ученика, пробудем тягу к знаниям.


Список литературы


1.Блудов М.И. Беседы по физике. - М.: Просвещение, 2007. -112 с.

2.Буров В.А. и др. Фронтальные экспериментальные задания по физике в средней школе. - М.: Академия, 2005. - 208 с.

.Галлингер И.В. Экспериментальные задания на уроках физики // Физика в школе. - 2008. -№ 2 . - С. 26 - 31.

.Знаменский А.П. Основы физики. - М.: Просвещение, 2007. - 212 с.

5.Иванов А.И. и др. Фронтальные экспериментальные задания по физике: для 10 класса. - М.: Вузовский учебник, 2009. - 313 с.

6.Иванова Л.А. Активизация познавательной деятельности учащихся на уроках физики при изучении нового материала. - М.: Просвещение, 2006. - 492 с.

7.Исследование в психологии: методы и планирование / Дж. Гудвин. СПб.: Питер, 2008. - 172 с.

.Кабардин О.Ф. Педагогический эксперимент // Физика в школе. - 2009. -№ 6 . - С. 24-31.

9.Мякишев Г.Я, Буховцев Б.Б, Сотский Н.Н Физика. 10 класс. Учебник: Учебник. - М.: Гардарика, 2008. - 138 с.

10.Программы для общеобразовательных учреждений. Физика. Составители Ю.И. Дик, В.А. Коровин. - М.: Просвещение, 2007. -112 с.

11.Рубинштейн С.Л. Основы психологии. - М.: Просвещение, 2007. - 226 с.

.Сластенин В. Педагогика. - М.: Гардарики, 2009. - 190 с.

.Соколов В.В. Философия. - M.: Высшая школа, 2008. - 117 с.

14.Теория и методика обучения физике в школе. Общие вопросы. Под ред.С.Е.Каменецкого, Н.С.Пурышевой. - М.: ГЕОТАР Медиа, 2007. - 640 с.

15.Харламов И.Ф. Педагогика. Изд. 2-е перераб. и доп. - М.: Высшая школа, 2009 - 576с.

16.Шилов В.Ф. Домашние экспериментальные задания по физике. 9 - 11 классы. - М.: Знание, 2008. - 96 с.

Ответ на вопрос


Отношение реального и возможного, отношение между есть и может быть - вот та интеллектуальная инновация, которая, согласно классическим исследованиям Ж.Пиаже и его школы, становится доступной детям после 11-12 лет. Многочисленные критики Пиаже пытались показать, что возраст 11-12 лет является весьма условным и может быть сдвинут в любую сторону, что переход на новый интеллектуальный уровень совершается не рывком, а проходит целый ряд промежуточных стадий. Но никто не оспаривал сам факт того, что на границе младшего школьного и подросткового возраста в интеллектуальной жизни человека появляется новое качество. Подросток начинает анализ вставшей перед ним задачи с попытки выяснить возможные отношения, применимые к имеющимся в его распоряжении данным, а потом пытается путем сочетания эксперимента и логического анализа установить, какие из возможных отношений здесь реально имеются.

Фундаментальная переориентация мышления с познания того, как устроена реальность, на поиск потенциальных возможностей, лежащих за непосредственной данностью, именуется переходом к гипотетико-дедуктивному мышлению.

Новые гипотетико-дедуктивные средства постижения мира резко раздвигают границы внутренней жизни подростка: его мир наполняется идеальными конструкциями, гипотезами о себе, окружающих, человечестве в целом. Эти гипотезы далеко выходят за границы наличных взаимоотношений и непосредственно наблюдаемых свойств людей (себя в том числе) и становятся основой экспериментального опробования собственных потенциальных возможностей.

Гипотетико-дедуктивное мышление основывается на развитии комбинаторики и пропозициональных операций. Первый шаг когнитивной перестройки характеризуется тем, что мышление становится менее предметным и наглядным. Если на стадии конкретных операций ребенок сортирует предметы только по признаку тождества или сходства, теперь становится возможной классификация неоднородных объектов в соответствии с произвольно выбранными критериями высшего порядка. Анализируются новые сочетания предметов или категорий, отвлеченные высказывания или идеи сопоставляются друг с другом самыми разнообразными способами. Мышление выходит за рамки наблюдаемой и ограниченной действительности и оперирует произвольным числом каких угодно комбинаций. Комбинируя предметы, теперь можно систематически познавать мир, обнаруживать возможные в нем изменения, хотя подростки пока еще не способны выразить формулами скрывающиеся за этим математические закономерности. Однако сам принцип такого описания уже найден и осознан.

Пропозициональные операции - умственные действия, осуществляемые, в отличие от конкретных операций, не с предметными представлениями, а с отвлеченными понятиями. Они охватывают суждения, которые комбинируются с точки зрения их соответствия илинесоответствия предложенной ситуации (истинности или неистинности). Это не просто новый способ увязывать факты, а логическая система, которая гораздо богаче и вариабельнее конкретных операций. Проявляется возможность анализировать любую ситуацию независимо от реальных обстоятельств; подростки впервые обретают способность систематически строить и проверять гипотезы. Одновременно идет дальнейшее развитие конкретных мыслительных операций. Абстрактные понятия (типа объема, веса, силы и т.д.) теперь обрабатываются в уме независимо от конкретных обстоятельств. Становится возможной рефлексия по поводу собственных мыслей. На ней основаны умозаключения, уже не нуждающиеся в проверке на практике, поскольку в них соблюдены формальные законы логики. Мышление начинает подчиняться формальной логике.

Таким образом, между 11 и 15-м годами жизни в когнитивной области происходят существенные структурные изменения, выражающиеся в переходе к абстрактному и формальному мышлению. Они завершают линию развития, начавшуюся в младенчестве формированием сенсомоторных структур и продолжающуюся в детстве вплоть до предпубертатного периода, становлением конкретных умственных операций.

Лабораторная работа «Электромагнитная индукция»

В этой работе проводится изучение явления электромагнитной индукции.

Цели работы

Измерить напряжение, возникающее при перемещении магнита в катушке.

Исследовать влияния смены полюсов магнита при перемещении в катушке, изменение скорости перемещения магнита, использование разных магнитов на возникающее напряжение.

Найти изменение магнитного потока при опускании магнита в катушку.

Порядок выполнения работы

Поместите трубку в катушку.

Закрепите трубку на штативе.

Подключите датчик напряжения к выходу 1 Панели. При работе с Панелью CoachLab II/II+ вместо датчика напряжения используются провода с 4-мм штекерами.

Подсоедините провода к желтому и черному гнездам выхода 3 (эта схема приведена на рисунке и описана в разделе Лабораторные работы Coach).

Откройте Лабораторные работы Coach 6 Изучение физики >Электромагнитная индукция.

Начните измерения, нажав кнопку Пуск. При выполнении работы используется автоматическая запись. Благодаря этому, несмотря на то, что эксперимент длится примерно полсекунды, можно измерить возникающую ЭДС индукции. Когда амплитуда измеряемого напряжения достигнет определенного значения (по умолчанию при увеличении напряжения и достижении значения 0.3 В), компьютер начнет запись измеряемого сигнала.

Начните вдвигать магнит в пластмассовую трубку.

Измерения начнутся, когда значение напряжения достигнет 0.3 В, что соответствует началу опускания магнита.

Если минимальное значение для запуска очень близко к нулю, то запись может начаться из-за помех сигнала. Поэтому минимальное значение для запуска не должно быть близко к нулю.

В случае если значение для запуска выше максимального (ниже минимального) значения напряжения, то запись никогда не начнется автоматически. В этом случае нужно изменить условия запуска.

Анализ полученных данных

Может оказаться, что полученная зависимость напряжения от времени не симметрична относительно нулевого значения напряжения. Это означает, что имеют место помехи. Это не повлияет на качественный анализ, но при расчетах нужно внести поправки, учитывающие эти помехи.

Объясните форму сигнала (минимумы и максимумы) записанного напряжения.

Объясните, почему максимумы (минимумы) несимметричны.

Определите, когда магнитный поток меняется сильнее всего.

Определите суммарное изменение магнитного потока во время первой половины стадии перемещения, когда магнит вдвигали в катушку?

Для нахождения этого значения используйте опции либо Обработать/Анализировать > Площадь или Обработать/Анализировать > Интеграл.

Определите суммарное изменение магнитного потока во время второй половины стадии перемещения, когда магнит выдвигали из катушки?


Теги: Разработка системы экспериментальных заданий по физике на примере раздела "Механика" Диплом Педагогика

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследование зависимости давления твердых тел от силы давления и от площади поверхности, на которую действует сила давления

В 7 классе мы выполняли задание по расчету давления, которое производит ученик, стоя на полу. Задание интересное, познавательное и имеет большое практическое значение в жизни человека. Мы решили изучить этот вопрос.

Цель: исследовать зависимость давления от силы и площади поверхности, на которую действует тело Оборудование: весы; обувь с разной площадью подошвы; бумага в клетку; фотоаппарат.

Для того чтобы вычислить давление нам необходимо знать площадь и силу Р= F/S P- давление (Па) F- сила (Н) S- площадь (м кв.)

ЭКСПЕРИМЕНТ-1 З ависимость давления от площади, при неизменной силе Цель: определить зависимость давления твердого тела от площади опоры. Методика вычисления площади тел неправильной формы такова: - подсчитываем количество квадратов целых, - подсчитываем количество квадратов известной площади не целых и делим пополам, -суммируем площади целых и нецелых квадратов Для этого я мы должны с помощью карандаша обвести края подметки и каблука; посчитать число полных (В) и неполных клеток (С) и определить площадь одной клетки (S к); S 1 = (В + С/2) · S к Ответ получим в см кв., которые нужно перевести в м кв. 1см кв.=0,0001 м кв.

Для того чтобы вычислить силу нам понадобиться масса исследуемого тела F=m*g F – сила тяжести m - масса тела g – ускорение свободно падения

Данные для нахождения давления № опыта Обувь с разной S S (м кв.) F (Н) P (Па) 1 Туфли на шпильке 2 Туфли на платформе 3 Туфли на плоской подошве

Давление, оказываемое на поверхность Туфли на шпильке р= Туфли на платформе р= Туфли на плоской подошве р= Вывод: давление твёрдого тела на опору с увеличением площади уменьшается

Какую обувь носить? - Учёные выяснили, что давление, оказываемое одной шпилькой приблизительно равно давлению, которое оказывают 137 гусеничных тракторов. - Слон давит на 1 квадратный сантиметр поверхности в 25 раз с меньшим весом, чем женщина на 13 сантиметровом каблуке. Каблуки – главнейшая причина возникновения плоскостопии у женщин

ЭКСПЕРИМЕНТ-2 Зависимость давления от массы, при неизменной площади Цель: определить зависимость давления твердого тела от его массы.

Как зависит давление от массы? Масса ученика m= Р= Масса ученика с ранцем на спине m= Р=


По теме: методические разработки, презентации и конспекты

Организация опытно-экспериментальной работы по внедрению системы мониторинга качества обучения в практику работы учителя-предметника

Мониторинг в образовании не заменяет и не ломает традиционную систему внутришкольного управления и контроля, а способствует обеспечению ее стабильности, долгосрочности и надежности. Он проводится там,...

1. Пояснительная записка к экспериментальной работе по теме «Формирование грамматической компетенции у дошкольников в условиях логопункта".2. Календарно-тематический план логопедических занятий...

Программа даёт чёткую систему изучения творчества Ф.И. Тютчева в 10 классе....

)

преподаватель физики
ГАОУ НПО Профессиональное училище №3 г.Бузулук

Pedsovet.su – тысячи материалов для ежедневной работы учителя

Опытно-экспериментальная работа по развитию умения учащихся профессиональных училищ решать задачи по физике.

Решение задач является одним из основных способов развития мышления учащихся, а также закрепления их знаний. Поэтому проанализировав сложившуюся ситуацию, когда некоторые учащиеся не могли решить даже элементарную задачу, не только из-за проблем с физикой, но и с математикой. Моя задача состояла из математической стороны и физической.

В своей работе по преодолению математических затруднений учащихся я использовала опыт учителей Н.И. Одинцовой (г.Москва, Московский педагогический государственный университет) и Е.Е. Яковец(г.Москва, средняя школа №873) с коррекционными карточками. Карточки составлены по образцу карточек, используемых в курсе математики, но ориентированы на курс физики. Карточки сделаны по всем вопросам курса математики, вызывающим трудности у учащихся на уроках физики(«Перевод единиц измерения», «Использование свойств степени с целым показателем», «Выражение величины из формулы» и др.)

Коррекционные карточки имеют сходные структуры:

    правило→ образец→ задание

    определение, действия→ образец→ задание

    действия → образец→ задание

Коррекционные карточки применяются в следующих случаях:

    Для подготовки к контрольной работе и как материал для самостоятельных занятий.

Учащиеся на уроке или дополнительном занятии по физике перед контрольной работой, зная свои пробелы по математике, могут получить конкретную карточку по слабо усвоенному математическому вопросу, позаниматься и устранить пробел.

    Для работы над математическими ошибками, допущенными в контрольной.

После проверки контрольной работы педагог анализирует математические затруднения учащихся и обращает их внимание на допущенные ошибки, которые они ликвидируют на уроке либо на дополнительном занятии.

    Для работы с учащимися по подготовке к ЕГЭ и различным олимпиадам.

При изучении очередного физического закона, и в конце изучения небольшой главы или раздела предлагаю учащимся первый раз совместно, а затем самостоятельно(домашнее задание) заполнить таблицу№2. При этом даю пояснение, что такие таблицы помогут нам при решении задач.

Таблица № 2

Наименование

физической величины

С этой целью на первом уроке по решению задач показываю учащимся на конкретном примере как пользоваться этой таблицей. И предлагаю алгоритм решения элементарных физических задач.

    Установить, какая величина неизвестна в задаче.

    Пользуясь таблице №1, выяснить обозначение, единицы измерения величины, а также математический закон, связывающий неизвестную величину и заданные в задаче величины.

    Проверить полноту данных, необходимых для решения задачи. При их недостатке, использовать соответствующие значения из справочной таблицы.

    Оформить краткую запись, аналитическое решение и численный ответ задачи в общепринятых обозначениях.

Обращаю внимание учащихся, что алгоритм достаточно прост и универсален. Он может применяться к решению элементарной задачи практически из любого раздела школьной физики. Позднее элементарные задачи будут входить как вспомогательные в задачи более высокого уровня.

Таких алгоритмов решения задач по конкретным темам достаточно много, но запомнить их все практически невозможно, поэтому целесообразнее научить учащихся не методам решения отдельных задач, а методу поиска их решения.

Процесс решения задачи заключается в постепенном соотнесении условия задачи с её требованием. Начиная изучать физику, учащиеся не имеют опыта решения физических задач, но некоторые элементы процесса решения задач по математике могут быть перенесены на решение задач по физике. Процесс обучения учащихся умению решать физические задачи основывается на сознательном формировании у них знаний о средствах решения.

С этой целью на первом уроке по решению задач следует познакомить учащихся с физической задачей: представить им условие задачи как конкретную сюжетную ситуацию, в которой происходит некоторое физическое явление.

Разумеется, что процесс формирования у учащихся умения самостоятельно решать задачи начинается с выработки у них умения выполнять простейшие операции. В первую очередь учащихся следует научить правильно и полно записывать краткую запись («Дано»). Для этого им предлагается выделить из текста нескольких задач структурные элементы явления: материальный объект, его начальное и конечное состояния, воздействующий объект и условия их взаимодействия. По этой схеме сначала учитель, а затем каждый из учеников самостоятельно анализируют условия полученных задач.

Проиллюстрируем сказанное примерами анализа условия следующих физических задач (таблица№3):

    Эбонитовый шарик, заряженный отрицательно, подвешен на шёлковой нити. Изменится ли сила её натяжения, если второй такой же, но положительно заряженный шарик поместить в точке подвеса?

    Если заряженный проводник покрыт пылью, то он быстро теряет свой заряд. Почему?

    Между двумя пластинами, расположенными горизонтально в вакууме на расстояние 4,8 мм друг от друга, находятся в равновесии отрицательно заряженная капелька масла массой 10 нг. Сколько «избыточных» электронов имеет капля, если на пластины подано напряжение 1кВ?

Таблица № 3

Структурные элементы явления

Безошибочное нахождение структурных элементов явления в тексте задачи всеми учащимися (после анализа 5-6 задач) позволяет перейти к следующей части урока, имеющей целью усвоение учащимися последовательности выполнения операций. Таким образом, в общей сложности учащиеся анализируют около 14 задач (не доводя решения до конца), что оказывается достаточным для обучения выполнению действия «выделение структурных элементов явления».

Таблица №4

Карточка – предписание

Задание: выразите структурные элементы явления в

физических понятиях и величинах

Ориентировочные признаки

    Замените указанный в задаче материальный объект соответствующим идеализированным объектом Выразите характеристики начального объекта с помощью физических величин. Замените указанный в задаче воздействующий объект соответствующим идеализированным объектом. Выразите характеристики воздействующего объекта с помощью физических величин. Выразите характеристики условий взаимодействия с помощью физических величин. Выразите характеристики конечного состояния материального объекта с помощью физических величин.

Далее учащиеся обучаются выражению структурных элементов рассматриваемого явления и их характеристик на языке физической науки, что чрезвычайно важно, поскольку все физические законы сформулированы для определённых моделей, и для реального явления, описанного в задаче, должна быть построена соответствующая модель. Например: «маленький заряженный шарик» - точечный заряд; «тонкая нить» - пренебрежимо мала масса нити; «шёлковая нить» - нет утёчки заряда и т.п.

Процесс формирования этого действия аналогичен предыдущему: сначала преподаватель в беседе с учащимися показывает на 2-3 примерах, как нужно его выполнять, затем учащиеся производят операции самостоятельно.

Действие «составление плана решения задачи» формируется у учащихся сразу, так как составляющие операции уже известны учащимся и освоены ими. После показа образца выполнения действия каждому учащемуся для самостоятельной работы выдаётся карточка – предписание «Составление плана решения задачи». Формирование этого действия проводится до тех пор, пока оно не будет выполняться безошибочно всеми учащимися.

Таблица №5

Карточка – предписание

«Составление плана решения задачи»

Выполняемые операции

    Определите, какие характеристики материального объекта изменились в результате взаимодействия. Выясните причину, обусловливающую данное изменение состояния объекта. Запишите причинно-следственную связь между воздействием при данных условиях и изменением состояния объекта в виде уравнения. Выразите каждый член уравнения через физические величины, характеризующие состояния объекта и условия взаимодействия. Выделите искомую физическую величину. Выразите искомую физическую величину через другие известные.

Четвёртый и пятый этапы решения задач проводятся традиционно. После освоения всех действий, составляющих содержание метода поиска решения физической задачи, полный их перечень выписывается на карточку, которая служит учащимся ориентиром при самостоятельном решении задач в течение нескольких уроков.

Для меня этот метод ценен тем, что усвоенный учащимися при изучении одного из разделов физики (когда он становится стилем мышления), успешно применяется при решении задач любого раздела.

В ходе эксперимента возникла необходимость напечатать алгоритмы решения задач на отдельных листах для работы учащимися не только на уроке и после урока, но и дома. В результате работы по развитию предметной компетентности по решению задач была скомплектована папка дидактический материал для решения задач, которым мог воспользоваться любой учащийся. Затем совместно с учащимися было сделано несколько копий таких папок, на каждый стол.

Использование индивидуального подхода помогало формировать у учащихся важнейших компонентов учебной деятельности - самооценки и самоконтроля. Правильность хода решения задачи проверялась учителем и учащимися - консультантами, а затем всё больше учащихся все чаще стали помогать друг другу, непроизвольно втягиваясь в процесс решения задач.