Экспериментально доказано что. Экспериментально доказано, что в древнем египте было электричество

Международная команда физиков из Университета Гуанчжоу в Китае и Института Вейцмана в Израиле, работающая во главе с Ульфом Леонхардтом (Ulf Leonhardt) впервые продемонстрировала толкающее давление света на жидкость. Результаты исследования и выводы из своей работы учёные изложили в статье , опубликованной в издании New Journal of Physics.

Дискуссия о природе давления или, как его ещё называют физики, импульса света, восходит к 1908 году. Тогда знаменитый немецкий учёный Герман Минковский выдвинул гипотезу о том, что свет воздействует на жидкости, такие как масло или вода, притягивая их на себя. Однако в 1909 году физик Макс Абрахам (Max Abraham) опроверг эту гипотезу и теоретически доказал, что свет оказывает толкающее давление на жидкости.

"Учёные спорили на протяжении столетия о природе импульса света и его воздействия на среду. Мы обнаружили, что импульс света не является основной физической величиной, но она проявляется во взаимодействии между светом и материей и зависит от способности света деформировать материю.

Если среда движется под воздействием пучка излучения, то прав Минковский, и свет оказывает тянущее давление. Если же среда неподвижна, то прав Абрахам, и свет оказывает толкающее давление на жидкости", — рассказывает Леонхардт.

Два различных типа давления могут быть идентифицированы экспериментально, путём освещения поверхности жидкости световым лучом. Необходимо только проследить за тем, как ведёт себя жидкость — поднимается или опускается. В первом случае окажется, что свет тянет жидкую среду на себя, а во втором — наоборот. Добавим, что обе теории согласуются в пустом пространстве (когда показатель преломления среды эквивалентен единице), но расходятся в том случае, если показатель преломления больше 1.

В своём эксперименте Леонхардт и его коллеги продемонстрировали, что поверхность жидкости можно заставить изогнуться внутрь, что будет соответствовать толкающему давлению света, и сделать это при помощи относительно широкого пучка излучения в относительно крупном контейнере. Эти два фактора заставляют свет формировать структуру потока в жидкости.

Исследователи показали, что толкающее давление света проявляется как в воде, так и в масле, которые имеют различные показатели преломления. Таким образом им удалось подтвердить теорию Абрахама.

Авторы нового исследования отмечают, что в предыдущих экспериментах их коллеги доказывали лишь правоту Минковского, демонстрируя тянущее давление света. Однако, по их словам, прежде учёные использовали более узкие световые лучи и небольшие контейнеры с жидкостью.

Леонхардт и его команда решили повторить свой эксперимент и, как только они использовали узкий луч и малый контейнер, проявилось тянущее давление света. Это означает, что характер давления зависит не только от света, но и от самой жидкости, поясняют исследователи.

Чтобы понять природу импульса света, Леонхардт предлагает провести аналогию с игрой в бильярд. По его словам, импульс света несколько отличается от него по энергии, и это различие имеет важные аспекты.

"Представьте себе игру в бильярд. Игрок берёт кий и ударяет по белому шару, который, в свою очередь, должен толкнуть шар цветной, а он может толкнуть ещё несколько шаров. Во всей этой цепочке толкающих движений передаётся импульс, изначально сообщённый игроком кию.

Свет также может толкать материю, хотя эти толчки будут микроскопическими, почти незаметными. В некоторых случаях, впрочем, толчки света могут быть очень значительными для среды. К примеру, вспомним хвосты комет.

Великий астроном Иоганн Кеплер предположил сотни лет назад, что хвост кометы — это материя, вытолкнутая с поверхности её ядра светом, поскольку он смотрит всегда в противоположную сторону от Солнца. Сегодня мы знаем, что Кеплер был отчасти прав, так как материя сталкивается солнечным ветром с ядра кометы и формируется хвост.

Так вот, импульсом мы называем способность света приводить материю в движение, и это понятие действительно тесно связано с энергией света, хотя и отличается от него", — поясняет Леонхардт.

Результаты данного исследования имеют как фундаментальное, так и практическое значение для науки. С точки зрения фундаментальных теорий, физики теперь лучше будут понимать природу света. Леонхардт и его коллеги ответили на вопрос о том, увеличивается или уменьшается импульс света с увеличением показателя преломления среды: результат зависит от способности свет привести в механическое движение жидкость, и если пучок света на это способен, то импульс уменьшается, а если нет — то увеличивается.

Что же касается практического значения нового исследования, то оно может пригодиться в развитии инновационной технологии инерциально удерживаемого термоядерного синтеза, которая подразумевает использование силы светового импульса для инициации ядерного синтеза.

Последняя работа также повлияет на оптические технологии в целом, в том числе и на развитие и .

Страница 2

Экспериментально доказано, что носителями свободных зарядов в металлах являются электроны. Под действием электрического поля электроны движутся с постоянной средней скоростью из-за торможения со стороны кристаллической решетки. Скорость упорядоченного движения прямо пропорциональна напряженности поля в проводнике.

IV. Зависимость сопротивления проводника от температуры

Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.

Если при температуре, равной , сопротивление проводника равно , а при температуре оно равно , то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры: .

Коэффициент пропорциональности называют температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры. Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К. Для всех металлических проводников и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов .

При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счет изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры: .

Так как мало меняется при изменении температуры проводника, то можно считать, что удельное сопротивление проводника линейно зависит от температуры (рис. 1).

Рис. 1

Хотя коэффициент довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов просто необходим. Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока более чем в 10 раз.

У некоторых сплавов, например у сплава меди с никелем, температурный коэффициент сопротивления очень мал:

; удельное сопротивление константана велико: . Такие сплавы используют для изготовления эталонных сопротивлений и добавочных сопротивлений к измерительным приборам, т.е. в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве основного рабочего элемента такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры хорошо известна. Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Удельное сопротивление металлов растет линейно с увеличением температуры. У растворов электролитов оно уменьшается при увеличении температуры.

V. Сверхпроводимость

Рис. 2

В 1911 г. голландский физик Камерлинг-Оннес открыл замечательное явление – сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре очень резко падает до нуля (рис. 2). Это явление было названо сверхпроводимостью. Позже было открыто много других сверхпроводников. Сверхпроводимость наблюдается при очень низких температурах – около .

Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем устранить источник электрического тока, то сила этого тока не меняется сколь угодно долго. В обычном же не сверхпроводящем проводнике электрический ток прекращается.

Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения теплоты в сверхпроводящей обмотке не происходит.

Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая этого состояния, нельзя.

Сотни тысяч физических опытов было поставлено за тысячелетнюю историю науки. Сложно отобрать несколько «самых-самых».Среди физиков США и Западной Европы был проведен опрос. Исследователи Роберт Криз и Стони Бук просили их назвать наиболее красивые за всю историю физические эксперименты. Об опытах, вошедших в первую десятку по итогам выборочного опроса Криза и Бука, рассказал научный работник Лаборатории нейтринной астрофизики высоких энергий, кандидат физико-математических наук Игорь Сокальский.

1. Эксперимент Эратосфена Киренского

Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии, находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров. Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами, сообщает сайт «Химия и жизнь».

2. Эксперимент Галилео Галилея

В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.

Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.

Результаты, полученные Галилеем, - следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

3. Другой эксперимент Галилео Галилея

Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам. Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

4. Эксперимент Генри Кавендиша

После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=γ (mM/r2), оставалось определить значение гравитационной постоянной γ - Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала. Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо.

Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы - коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы. Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

5. Эксперимент Жана Бернара Фуко

Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звездам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли.

6. Эксперимент Исаака Ньютона

В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой - экран. На экране Ньютон наблюдал «радугу»: белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей - от фиолетового до красного. Это явление называется дисперсией света.

Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный - при наименьшем. Ньютон же проделал дополнительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что «никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных

количество света не меняет вида цвета». Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного.

Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам.

7. Эксперимент Томаса Юнга

До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц - корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон («кольца Ньютона»), общепринятая точка зрения оставалась корпускулярной.

Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

8. Эксперимент Клауса Йонссона

Немецкий физик Клаус Йонссон провел в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц.

9. Эксперимент Роберта Милликена

Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц. В теорию был введен термин «электрон», обозначавший некую частицу - носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально. В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи - это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны.

Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента. Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х 10-10 электростатических единиц.

10. Эксперимент Эрнста Резерфорда

К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта «положительно-отрицательная» система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало. Большинство физиков приняли модель Дж.Дж.Томсона: атом как равномерно заряженный положительный шар диаметром примерно 108 см с плавающими внутри отрицательными электронами.

В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в «рыхлом» атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома - массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.

Современные физические эксперименты значительно сложнее экспериментов прошлого. В одних приборы размещают на площадях в десятки тысяч квадратных километров, в других заполняют объем порядка кубического километра. А третьи вообще скоро будут проводить на других планетах.

Тайны Абидоса

Луиджи Гальвани в 1790 году открыл "животное электричество" по чистой случайности. Он заметил, что мышцы лягушки непроизвольно сокращаются, если к ее лапке одновременно приложить пластины из разных металлов.
Так начиналась известная история, создания современной "электротехнической" цивилизации.

В 1969 г.В фундаменте Египетского храма Хатхор (построен в период правления царицы Клеопатры VII - 69-30 г.г.до н.э.) в Дендере были найдены узкие камеры шириной 1,1 м. Археологи ничего не могут сказать о назначении этих помещений, но здесь изображены древние лампы накаливания!
Подземная камера расположена у самой дальней стены храма, двумя этажами ниже под землей. В нее можно попасть через узкую шахту. Ширина этой камеры 1 м 12 см, а длина — 4 м 80 см. Почему именно в такой неприглядной труднодоступной,узкой камере, на настенных барельефах, изображен — процесс электрического освещения?!
Египетский храм Хатхор:

Древняя электролампа?!

Этих барельефов три.
Все они находятся в одном зале и посвящены одной теме: группа людей (жрецы?) занята действием с некими предметами. Первая аналогия, возникающая при виде этих предметов, - электрическая лампа.
На них изображены люди держащие большие, прозрачные,колбообразные предметы, внутри них видны извивающиеся змеи (В иероглифических текстах, сопровождающих барельефы, эти змеи описываются глаголом seref, что означает «пылать»,речь здесь может идти о некоей форме электрического освещения),вытянувшись по всей длине объекта,являют собой символическое изображение витой нити накаливания.
Острые хвосты змей введены во что-то вроде цветков лотоса: не нужно большой фантазии, чтобы увидеть в них электрические патроны.
Под «лампами» находятся весьма необычные предметы называемые Джед(потом были найдены образцы Джед, на которых висели медные провода),похожие на изоляторы, на которые как на колонны, опираются колбы.
От лотоса-патрона отходят кабели в полосатой оплетке, ведущие к «ящику» (в текстах этот кабель назван "барка бога солнца Ра").Солнечное божество, изображенное на коробке-«генераторе» - Хех или по иной версии Атум-Ра, указывает на сопричастность данного ящика к некой энергии.
Подобно Джеду, Хех являлся олицетворением вечности, его имя означает «миллион» или вообще очень большое число. В то время как изолятор-Джед символизирует «постоянную» вечность, Хех олицетворяет вечную смену циклов,что может символизировать,ну очень большой ресурс данного источника энергии.
Справа на рельефе стоит демон-павиан или бог Гор с собачьей головой и держит в руках ножи,которые можно истолковать как и охраняющую силу или опасность исходящую от ящика,или даже как включатель/выключатель.
Есть мнение,что эта подземная камера в фундаменте храма Хатхор("место бога Гора") в Дендере, была мини-электростанцией, и здесь изобразили тайную науку об электричестве, которая передавалась только посвященным..
Что касается «ламп»,можно идентифицировать их как трубки Крукса. Британский физик Уильям Крукс (1832-1919) одним из первых начал изучать распространение электрического разряда в стеклянных трубках, наполненных разреженными газами. При подключении к высоковольтной обмотке индукционной катушки такие трубки испускали яркое свечение.
Существует мнение, что подобные лампы использовались во время нанесения изображений в различных постройках древнего Египта, на стенах которых не было найдено следов от копоти,которую "должны" были оставить обычные ламны.С одной стороны это аргумент в поддержку выше приведенной гипотезы, с другой доподлинно неизвестно какими лампами пользовались древние египтяне, и возможно что помещения тщательно очищали от копоти.
Более того,были найдены списки по ведению расходов, в которых указывалось количество выданного рабочим, масла, для освещения работ.
Судя по содержанию иероглифических надписей сопровождающих барельефы, те кто их вырезал уже плохо представляли истинный смысл рисунков,вероятнее всего, что изображения эти, доставшиеся в "наследство" от ранней цивилизации, стали "каноническими" и на протяжении времени копировались,лишь повторяя канон еще более древних, священных изображений подобно современным иконам...кстати о иконах и артефактах на них, подобных этим,речь еще впереди..


































Существо с ножами в руках,может символизировать опасность исходящую в этом месте, от силы тока:

Столбики именуемые Джед, считают изоляторами или чем то близким к процессу передачи электрического тока:

Джеды существуют в самых различных изображениях:


Существуют и небольшие, вполне привычные по использовании в быту, изображения электрических лампочек:


При содействии Эриха фон Деникена (на фото):


Произведена реконструкция "древнего светильника" :